Kypseli Logo
    • Ελληνικά
    • English
  •  Αρχική
  •  Πλοήγηση 
    • Κοινότητες & Συλλογές
    • Ανά ημερομηνία δημοσίευσης
    • Συγγραφείς
    • Τίτλοι
    • Λέξεις κλειδιά
    • Με αριθμό έκδοσης
  • Language elLanguage en
  •  Σύνδεση 
    • Σύνδεση
    Προβολή τεκμηρίου 
    • Αρχική
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)
    • Προβολή τεκμηρίου
    •   Αρχική
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)
    • Προβολή τεκμηρίου
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mitigating insider threats using bio-inspired models.

    Thumbnail
    Προβολή/Άνοιγμα
    ΑΥΔ-2020-00062.pdf (757.6Kb)
    Ημερομηνία
    2020-05
    Συγγραφέας
    Nicolaou, Andreas S.
    Μεταδεδομένα
    Εμφάνιση πλήρους εγγραφής
    Επιτομή
    Insider Threat has become a huge information security issue that governments and organizations must face. The implementation of security policies and procedures may not be enough to protect organizational assets. Even with the evolution of information and network security technology, the insider threat problem is on the rise and many researchers are approaching the problem with various methods, in order to develop a model that will help organizations to reduce their exposure to the threat and prevent damage to their assets. In this M.Sc. dissertation we approach the insider threat problem and attempt to mitigate it, by developing a machine learning model based on bio-inspired computing. The model was developed by using an existing unsupervised learning algorithm for anomaly detection and we fitted the model to a synthetic dataset to detect outliers. We explored swarm intelligence algorithms and their performance on feature selection optimization for improving the performance of the machine learning model. The results showed that swarm intelligence algorithms perform well on feature selection optimization and the generated near-optimal subset of features that has similar performance with the original one.
    URI
    http://hdl.handle.net/11128/4621
    Συλλογές
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)

    Ανοικτό Πανεπιστήμιο Κύπρου

    Ταχ, Κιβ. 12794,

    2252, Λατσιά

    Κύπρος

    Τηλ.: +357 22 411600

    Φαξ.: +357 22 411601

    • Βοήθεια
    • Επικοινωνήστε μαζί μας
    • Ανοικτό Πανεπιστήμιο Κύπρου
    • Βιβλιοθήκη ΑΠΚΥ
    • Πολιτικές
    • Προσβασιμότητα και Προστασία Δεδομένων

    Βρείτε μας στο:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    Το έργο eUniversity συγχρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Aνάπτυξης (ΕΤΠΑ) και από Εθνικούς πόρους κατά την Προγραμματική Περίοδο 2007-2013

     

    Πλοήγηση

    Όλο το ΑποθετήριοΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΜε αριθμό έκδοσηςΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΜε αριθμό έκδοσης

    Ο λογαριασμός μου

    ΣύνδεσηΕγγραφή

    Ανοικτό Πανεπιστήμιο Κύπρου

    Ταχ, Κιβ. 12794,

    2252, Λατσιά

    Κύπρος

    Τηλ.: +357 22 411600

    Φαξ.: +357 22 411601

    • Βοήθεια
    • Επικοινωνήστε μαζί μας
    • Ανοικτό Πανεπιστήμιο Κύπρου
    • Βιβλιοθήκη ΑΠΚΥ
    • Πολιτικές
    • Προσβασιμότητα και Προστασία Δεδομένων

    Βρείτε μας στο:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    Το έργο eUniversity συγχρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Aνάπτυξης (ΕΤΠΑ) και από Εθνικούς πόρους κατά την Προγραμματική Περίοδο 2007-2013