Kypseli Logo
    • Ελληνικά
    • English
  •  Αρχική
  •  Πλοήγηση 
    • Κοινότητες & Συλλογές
    • Ανά ημερομηνία δημοσίευσης
    • Συγγραφείς
    • Τίτλοι
    • Λέξεις κλειδιά
    • Με αριθμό έκδοσης
  • Language elLanguage en
  •  Σύνδεση 
    • Σύνδεση
    Προβολή τεκμηρίου 
    • Αρχική
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)
    • Προβολή τεκμηρίου
    •   Αρχική
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)
    • Προβολή τεκμηρίου
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An advanced adaptive learning intrusion prevention system

    Thumbnail
    Προβολή/Άνοιγμα
    ΑΥΔ-2018-00024.pdf (1.223Mb)
    Ημερομηνία
    2018-12
    Συγγραφέας
    Constantinides, Chrstos
    Μεταδεδομένα
    Εμφάνιση πλήρους εγγραφής
    Επιτομή
    Computer and network attackers are continuously evolving their attack vectors to evade intrusion detection systems. Commercial and real-world intrusion detection prevention systems suffer with low detection rates and high false positives which require substantial optimization and network specific fine tuning. Furthermore, the majority of those systems rely on signatures to detect potential attacks and therefore unknown attacks to the public - "zero day attacks", are by definition, undetectable by such systems. Intrusion Detection Prevention Systems fail to satisfy the organizations security requirements in detecting newly published attacks or variants of existing attacks, effectively responding to attacks launched by sophisticated attackers and resisting attacks that are intended to circumvent them. This is the result of Intrusion Detection Prevention Systems lack of adaptation to new information. Introducing "intelligence" to Intrusion Detection Prevention Systems could solve the problems mentioned above. This thesis propose a novel Network Intrusion Prevention System that utilizes Self Organizing Incremental Neural Networks along with SVMs, not relying on signatures or rules and capable to mitigate known and unknown attacks on a high accurate level in an "online" and incremental manner. Based on the experimental results with NSL KDD dataset the proposed framework can achieve on-line updated incremental learning, suitable for efficient and scaling industrial applications with high accuracy results.
    URI
    http://hdl.handle.net/11128/3931
    Συλλογές
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)

    Ανοικτό Πανεπιστήμιο Κύπρου

    Ταχ, Κιβ. 12794,

    2252, Λατσιά

    Κύπρος

    Τηλ.: +357 22 411600

    Φαξ.: +357 22 411601

    • Βοήθεια
    • Επικοινωνήστε μαζί μας
    • Ανοικτό Πανεπιστήμιο Κύπρου
    • Βιβλιοθήκη ΑΠΚΥ
    • Πολιτικές
    • Προσβασιμότητα και Προστασία Δεδομένων

    Βρείτε μας στο:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    Το έργο eUniversity συγχρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Aνάπτυξης (ΕΤΠΑ) και από Εθνικούς πόρους κατά την Προγραμματική Περίοδο 2007-2013

     

    Πλοήγηση

    Όλο το ΑποθετήριοΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΜε αριθμό έκδοσηςΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΜε αριθμό έκδοσης

    Ο λογαριασμός μου

    ΣύνδεσηΕγγραφή

    Ανοικτό Πανεπιστήμιο Κύπρου

    Ταχ, Κιβ. 12794,

    2252, Λατσιά

    Κύπρος

    Τηλ.: +357 22 411600

    Φαξ.: +357 22 411601

    • Βοήθεια
    • Επικοινωνήστε μαζί μας
    • Ανοικτό Πανεπιστήμιο Κύπρου
    • Βιβλιοθήκη ΑΠΚΥ
    • Πολιτικές
    • Προσβασιμότητα και Προστασία Δεδομένων

    Βρείτε μας στο:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    Το έργο eUniversity συγχρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Aνάπτυξης (ΕΤΠΑ) και από Εθνικούς πόρους κατά την Προγραμματική Περίοδο 2007-2013