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ABSTRACT

Computer and network attackers are continuously evolving their attack vectors to evade intrusion

detection systems. Commercial and real-world intrusion detection prevention systems suffer with low

detection rates and high false positives which require substantial optimization and network specific fine

tuning.  Furthermore, the majority of those systems rely on signatures to detect potential attacks and

therefore unknown attacks to the public - "zero day attacks", are by definition, undetectable by such

systems. 

Intrusion Detection  Prevention  Systems  fail  to  satisfy  the  organizations  security  requirements  in

detecting newly published attacks or variants of existing attacks,  effectively responding to attacks

launched by sophisticated attackers and resisting attacks that are intended to circumvent them. This is

the result of  Intrusion Detection Prevention Systems lack of adaptation to new information. 

Introducing  "intelligence"  to  Intrusion  Detection  Prevention  Systems  could  solve  the  problems

mentioned above.

This  thesis  propose  a  novel  Network  Intrusion  Prevention  System  that  utilizes  Self  Organizing

Incremental Neural Networks along with SVMs, not relying on signatures or rules and capable to

mitigate known and unknown attacks on a high accurate level in an "online" and incremental manner. 

Based on the experimental results with NSL KDD dataset the proposed framework can achieve on-line

updated  incremental  learning,  suitable  for  efficient  and  scaling  industrial  applications  with  high

accuracy results.
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Περίληψη

Οι επιτιθέμενοι υπολογιστών και δικτύων εξελίσσουν συνεχώς τις επιθέσεις τους για να αποφύγουν τα

συστήματα ανίχνευσης εισβολών.  Τα εμπορικά συστήματα πρόληψης  ανίχνευσης  εισβολών που

χρησιμοποιούνται  από  οργανισμούς  υποφέρουν  από  χαμηλά  ποσοστά  ανίχνευσης  και  υψηλά

ποσοστά εσφαλμένων θετικών και απαιτούν σημαντική και ουσιαστική βελτιστοποίηση και συνεχή

ρύθμιση από τον διαχειριστή του δικτύου. 

Επιπλέον, τα περισσότερα από αυτά τα συστήματα βασίζονται σε ηλεκτρονικές υπογραφές για την

ανίχνευση πιθανών επιθέσεων και ως εκ τούτου άγνωστες μη δημοσιευμένες επιθέσεις είναι εξ

ορισμού μη ανιχνεύσιμες από τα συστήματα αυτά.

Τα συστήματα πρόληψης  ανίχνευσης  εισβολών δεν  ικανοποιούν  τις  απαιτήσεις  ασφάλειας  των

οργανισμών  για  την  ανίχνευση  των  πρόσφατα  δημοσιευμένων  επιθέσεων  ή  παραλλαγών  των

γνωστών επιθέσεων, εξελιγμένων επιθέσεων ή/και επιθέσεων που αποσκοπούν στην παράκαμψη

των συστημάτων αυτών. Αυτό είναι το αποτέλεσμα της έλλειψης προσαρμογής νέων δεδομένων των

συστημάτων αυτών.

Μετατρέποντας τα συστήματα πρόληψης  και ανίχνευσης σε "έξυπνα", θα μπορούσε να δώσει λύσεις

στα προβλήματα που αναφέρθηκαν πιο πάνω.

Αυτή η μεταπτυχιακή διατριβή προτείνει ένα νέο εξελιγμένο "έξυπνο" Σύστημα Πρόληψης Ανίχνευσης

Εισβολών Δικτύου το οποίο χρησιμοποιεί αλγόριθμους Self-organizing Incremental Neural Networks

και Support Vector Machines και δεν βασίζεται σε ηλεκτρονικές υπογραφές ή προγραμματιστικούς

κανόνες και είναι σε θέση να ανιχνεύσει γνωστές και άγνωστες επιθέσεις σε υψηλά επίπεδα ακρίβειας

με την συνεχή αναβάθμισης της νοημοσύνης του.

Τα  πειραματικά  αποτελέσματα  έδειξαν  ότι  η  προτεινόμενη  λύση  θα  μπορούσε  μετεξελιχθεί  σε

εμπορική εφαρμογή που θα έχει τη δυνατότητα να προστατεύει τα δίκτυα υπολογιστών με τρόπο που

να ικανοποιεί τις απαιτήσεις ασφάλειας των οργανισμών. 
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Chapter 1
Introduction

The recent attacks in important and prestigious multinational organizations which made headlines in

the news media globally are examples of how destructive a computer and network security breach can

be to an organization’s reputation and financial  stability.  Moreover,  the severity and frequency of

computer and network attacks has increased significantly in  the past  two decades and the progressive

growth of devices connected to networks and the internet, resulted in the progressive growth of security

incidents and events with a cost on organizations assets and a negative impact on peoples lives. Network

security is one of the most important elements towards securing interconnected computerized systems

and Intrusion Detection Systems are on the first line of defense and vital for securing networks and

computers.

Commercial and real-world intrusion detection prevention systems suffer with low detection rates and

high  false  positives  which  require  substantial  optimization  and  network  specific  fine  tuning.

Furthermore, the majority of those systems rely on signatures to detect potential attacks and therefore

unknown attacks to the public - "zero day attacks" are by definition undetectable by such systems.

Intrusion Detection  Prevention  Systems  fail  to  satisfy  an  organization's  security  requirements  in

detecting newly published attacks or variants of existing attacks,  effectively responding to attacks

launched by sophisticated attackers and resisting attacks that are intended to circumvent them and thus

failed to adapt to new information.

Crucial to the security of an organization is the ability to identify and prevent attacks on its computer

and network infrastructure and currently commercial and industrial Intrusion Detection Prevention

Systems fail to do so for newly published attacks or variants of existing attacks. Additionally, the luck of

adaptation to dynamically adjust to new data makes them unsuitable for the ever-changing nature of
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internet and organizations networks. 

Despite the significant academic work by researches to introduce intelligence to NIDPS by implementing

anomaly based machine learning detection methods, there has been little real-world adoption by such

systems. 

A machine learning based NIDPS could offer solutions to the problems signature and rule based

industrial  NIDPS suffer. Additionally to the lack of real-world applications based on machine learning,

there has been very limited academic work focusing on incremental learning algorithms applied to

NIDPS. 

Incremental learning algorithms allows the machine learning algorithm to refine and improve its

capabilities over time (input data) in contrast to an offline or batch learning algorithm where the

classifier is assumed to be exposed to the input data once - in a batch. Network data dynamically change

over time and applying static learned models degrades the detection performance significantly over

time, making an offline algorithm not suitable for a modern NIDPS. 

This postgraduate thesis contribution to the literature and to the computer and network security

industry is to tackle those issues with the use of artificial intelligence and an online incremental machine

learning framework.

This paper proposes a novel Network Intrusion Prevention System based on an incremental machine

learning framework where it achieves high accurate results comparable to most of the offline neural

network-based NIDS.  The framework is  based on a modified version of SOINN -  Self-Organizing

Incremental Neural Network (Shen and  Hasegawa 2006 : 92) to achieve on-line clustering and multiple

SVMs to perform classification. Experimentation and evaluation was performed with the NSL-KDD

dataset (Dhanabal and  Shantharajah 2015 : 446), which is an improved version of well-known KDD'99

dataset. The results shows that the proposed framework can achieve on-line updated incremental

learning in a fast and efficient manner.  The rest of the paper is organized as follows: 

Chapter 2: Literature Review, in this chapter a comprehensive and critical literature review of the

research work done in methodologies and techniques applied to intrusion detection, with an emphasis

on anomaly based detection intrusion detection systems will be presented. The review will show that

there has been limited research work introducing intelligence, implementing anomaly based machine

learning detection methods in an incremental and online manner specifically to network intrusion

detection prevention systems.

Chapter 3: Background information, this chapter provides the necessary background information to the
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reader to understand the technologies used through out this thesis. It begins with an introduction to

intrusion detection in computer and network security and then introduces intrusion detection systems

and the problems these systems suffer in industrial and commercial applications. This chapter also

introduces the reader to the concept  of  artificial  intelligence and the methods machine learning

algorithms use,  as  a  way of  feedback,  namely:  supervised learning,  unsupervised learning,  semi-

supervised learning, active learning, reinforcement learning . A section is dedicated to the concept of

incremental learning and online learning which this thesis is focusing on. Furthermore artificial neuron

networks and support vector machine, technologies that are also used in the proposed framework are

discussed. The final section of this chapter presents the dataset used for the experimental and evaluation

process.

Chapter 4:  Proposed framework, this chapter presents the proposed framework and its modules. It

elaborates on each module function and provides proof-of-concept with the code available in Appendix

A. The detection engine, the preprocessing module of the incoming traffic that feeds the detection

engine, the validation module that evaluates the results of the detection engine and the update module

where the failed predictions are fed back to the detection engine, are described in detail.

Chapter  5:  Experimental  results,  this  chapter  discuss  the  experimental  process  and provides  the

different values used through out the evaluation of the framework. The accuracy and time cost results

are presented in tables along with graphs and a comparison between offline and online results is given.

Chapter 6 :  Discussion and future work, this chapter discusses the experimental evaluation results and

the strengths and limitations the framework posses. The framework achieved incremental learning with

promising results and a comparison between the framework and other offline algorithm is also given.

Future contributions to the framework like an additional module which will detect unknown attacks in

automated way and incrementally are also discussed.

Chapter 7 : Conclusion, this chapter resumes this postgraduate thesis and provides an insight into the

contribution the framework delivers to the literature and the field of computers and network security.

The promising accuracy results,  along with its  life-long learning and scaling  qualities  makes the

proposed  framework  a  promising  prospect  towards  further  development  for  a  future  industrial

application.  
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Chapter 2
Literature Review

The aim of this literature review is to critically evaluate prior research in the areas of intrusion detection,

mainly on the network level, which could be applied in a network intrusion detection and prevention

systems. It will demonstrate where research work failed to provide answers to real world problems in

computer and networks security and more specifically intrusion detection and how this postgraduate

thesis could contribute to the academia and the research community.

Intrusion detection and prevention system implementations failed to provide organizations with a

comprehensive protection against sophisticated and targeted attacks. NIDPS suffer with low detection

rates and high false positives. Furthermore, the majority of those systems rely on signatures to detect

potential attacks and therefore unknown attacks - "zero day attacks" or variants of existing attacks pass

through undetected. 

There has been limited research work introducing intelligence and implementing anomaly based

machine learning detection methods in online and incremental manner to NIDPS. As such there has

been little real-world adoption  of intelligent network intrusion detection and prevention systems. 

An intelligent machine learning based NIDPS could offer solutions to the problems signature and rule

based  industrial intelligent network intrusion detection and prevention systems suffer. Additionally to

the lack of real-world machine learning applications, there has been very limited academic and research

work focusing on incremental learning algorithms applied to intelligent network intrusion detection and

prevention systems. 

This postgraduate thesis will attempt to contribute a solution to the problems mentioned above with the
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use of artificial intelligence and an online incremental machine learning framework to the literature and

computer and network security industry.

2.1 Detection methods

Intrusion detection systems, can be categorized by the way of the detection method used, the two broad

categories classifying these detection methods are signature - misuse; based detection and anomaly

based detection (Liao et al. 2013 : 17)

The signature based detection methodology is using patterns previously defined by known attacks and

is distributed in the form of signatures. The signatures are then compared against patterns found in the

network traffic to discover possible attacks or threads. The disadvantages of this method are the luck of

capability to discover and prevent unknown attacks and the signatures maintenance and updates for the

known and newly discovered attacks could pose a thread if not updated frequently and could become a

system's liability.   

Figure 1: Intrusion Detection  System Techniques

The anomaly based detection methodology is using the concept of discovering anomalies - unusual

patterns in the network traffic compared to normal traffic defined by the system. The system is trained

before by feeding it with data in order to be able to make the distinction of what is normal and what is an

attack. The distinction is found using different data mining techniques which can be divided in to two

broad  categories,  classification  and  clustering.  There  has  been substantial  work  and  research in

classification techniques for Intrusion Detection Systems, among others are : neural networks (Debar et

al.  1992 :  240 -  250,  Ibrahim  2010 :  457-471,  Moradi  and  Zulkernine  2004 15-18,  Ryan and
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Miikkulainen 1998 : 943-949, Zhang 2001 : 85 -90), fuzzy logic and genetic algorithms (Bridges and

Vaughn 2000 : 109-122) and support vector machines (Li et al. 2012 : 424-430). Work in clustering

techniques include k-means and outlier detection algorithm (Bhuyan et al. 2016 243–271).

Combinations of both to these technique categories and to both the detection methods have been used

to form a third category called hybrid. Research work in this category (Depren et al. 2005 : 713-722, Li et

al. 2010 : 169-172, Kim et al. 2014 : 1690-1700 ) combined anomaly and misuse detection to propose

novel solutions for an intrusion detection system. Similar to the method of extending a neural based

technique with the SVMs (Mukkamala et al. 2002 : 1702-1707) to propose a solution for an IDS that

could  recognize  anomalies  and  known intrusions,  this  postgraduate  thesis  used artificial  neuron

networks and support vector machines to achieve its objective.

A lot of research has been contacted on anomaly based techniques in Intrusion Detection Systems,

especially the last few years, and the accuracy rates has been improved during the past decade, however

very few has high enough accuracy rates, low enough false positive rates, time and resource efficient to

be considered candidates for development for real world scalable applications. 

2.2  Artificial Intelligence

Rich and Knight's defined Artificial Intelligence as the study of how to make computers do things at

which, at the moment, people are better (Rich and Knight, 1991 : 3). An important test to pass for

"computer intelligence" is the Turing test, which defines the inability to distinguish computer responses

from human responses.  According to Stuart and Norvig the capabilities needed to pass the Turing test

are natural language processing, knowledge representation, automated reasoning and machine learning

to adapt to new circumstances and to detect and extrapolate patterns. (Stuart and Norvig 2010 : 2). 

2.2.1 Machine Learning

Machine learning refers to the ability an agent possess to progressively improve its performance on a

specific task. The methods used to accomplish the task of learning by example in machine learning as a

way of feedback, are classified in to five broad categories, supervised learning, unsupervised learning,

semi-supervised learning, active learning, reinforcement learning . The methods used to accomplish the

task of learning by example in machine learning as a way of feedback, are classified in to five broad

categories,  supervised  learning,  unsupervised  learning,  semi-supervised  learning,  active  learning,

reinforcement learning . In his work Zhu resulted that the accuracy of the output is improved - if used for

classification, compared to the unsupervised method and the time cost is reduced compared to the

supervised method (Zhu 2006 : 9). This thesis used a combination of unsupervised and supervised
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method, namely, artificial neuron networks - SOINN, which utilizes the unsupervised method to achieve

clustering and incremental learning and Support Vector Machines - SVMs which utilizes the supervised

method for classification. Both of the methods used above to achieve incremental learning applied to

intrusion detection, an essential and desired method along with the online learning technique that could

realize scalable intrusion detection applications. There is very limited research work and no industrial

or commercial applications according to this thesis author knowledge utilizing incremental learning

applied to intrusion detection. For example Yu and Lee proposed a supervised incremental learning

method for use in anomaly detection by cascading service classifier and ITI Decision Tree Methods and

their results based on the KDD-99 dataset were 92.63% detection accuracy and a 1.8% false positives

(Yu and Lee 2009 : 155-160). Although their results show high accuracy, they used the KDD-99 dataset

with the inherit problems discussed in Chapter 3 of this thesis and by Mahbod, et al in their work

(Mahbod, et al. 2009 : 1-6). Substantial research has been made in detecting specifically Dos attacks in

network traffic as well. In their paper, Robinson and Thomas (Robinson and Thomas, 2015 : 185) used

three different datasets to rank the success of machine learning algorithms to detect DoS attack streams.

Their findings indicate that the ensemble algorithm of Adaboost with Random Forest as the base

classifier were the best method for detection, with an average of 99.77 over the three datasets. They

used feature extraction on the packet level and their results show that this approach works well in

distinguishing attack traffic from normal traffic. Choudhury and Bhowal (Choudhury and Bhowal, 2015 :

185) and Panda and Patra (Panda and Patra , 2009 : 472), confirmed Robinson and Thomas study of the

effectiveness of Random Forests in the categorization of traffic. However, both studies suffer from a small

number of training and test data.

2.2.2 Artificial Neural Networks

Most of the work and research in the past few years in artificial intelligence and more specifically

machine learning applied to Intrusion Detection Systems, is focused in Artificial Neural Networks.

Starting with Debar et al., the authors proposed a user behavior model where each user is represented

by a neural network, the neural network component of the proposed model was just a complement of a

statistical model (Debar et al 1992 : 240-250) .  Ryan et al. used the back propagation algorithm to train

the neural network for an IDS proposal with a 96% detection accuracy and a 7% false alarm (Ryan et al

1998 :  943-949).  "HIDE" a work from Zhang 2001,   proposed a Hierarchical  Network Intrusion

Detection system using statistical preprocessing and neural network classification,  in their paper they

tested five different neural networks that showed the back propagation algorithm to outperformed the
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rest (Zhang 2001 : 85-90). 

In their work Moradi and Zulkernine, showed that neural networks with the use of the Multi Layer

Perceptron in an offline analysis, could be applied in intrusion detection and solve  a multi class problem

in  where  not  only  the  attack  could  be  recognized  but  also  classified  based  on  the  type  of  an

attack(Moradi and Zulkernine 2004 : 15-18). The paper's accuracy results was 91% with two hidden

layers. Ibrahim, used a distributed time delay neural network (Ibrahim LM 2010 : 457-471) to solve a

similar a multi class problem to the work by Moradi and Zulkernine, but with improved accuracy results

of 97.24%. 

In their paper Bouzida and Cuppens (Bouzida and Cuppens, 2006 : 28) showed that neural networks

and decision tress can work together in attack classification. They found that neural networks were able

to classify attacks in network traffic and decision trees could identify unknown attacks. 

A recent study based on the same dataset as Bouzida and Cuppens, Kim, et al, utilized deep neural

networks for intrusion detection and attack classification (Kim, et al., 2017 : 313 ). They showed that by

using a deep neural network with four hidden layers and testing against the KDD Cup 99 dataset, they

achieved a detection rate of 99.19. Yet again, another study by Tammi, et al. with the same dataset but

using a combination of K-means clustering and neural networks, specifically

the Probabilistic Neural Network (Tammi, et al., 2015 : 21) which achieved 97.89% accuracy. Again just

like in Chapter 2, the three papers above used the KDD-99 dataset with the inherit problems discussed

in Chapter 3 of this thesis and by Mahbod, et al in their work (Mahbod, et al. 2009 : 1-6).

A paper by Xiang et al. used a modification of SOINN (Shen et.al 2006 : 90-106), a self-organizing

incremental neural network, to apply it to intrusion detection. With a semi-supervised learning based

IDS proposal they showed that the user input could be minimized by combining a modified SOINN and

SVM to achieve semi-supervised learning with the same space efficiency to a supervised SVM (Xiang et

al. 2016 : 815-823).

2.2.3  SOINN - Self-Organizing Incremental Neural Network

In their original paper Shen et.al presented an on-line unsupervised neural network for unlabeled data-

SOINN, realizing incremental learning - a topological representation network, which represents the

topological structure of the input data. The breakthrough SOINN introduced in relation to previous

research and work,  in  machine learning and neural  networks specifically,  is  the  ability  to  learn

incrementally in an online set up with out the need to predefine - and therefore predict, the size and the

structure of the network(Shen et.al 2006 : 90-106). 
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In a following paper  Shen et.al  the authors  proposed an enhanced and more stable version of the

original SOINN called ESOINN which minimized the user input and adopted a single layer in contrast to

the two layers of original SOINN. Both the original and the enhanced version of the SOINN the online

incremental learning was fed by unsupervised data, meaning that the data was not labeled before

classification (Shen et.al 2007 : 893-903). 

In their paper Shen et.al proposed an online, incremental active learning algorithm, based on a self-

organizing incremental neural network fed by semi-supervised data. They extended the original SOINN

which by definition process unlabeled data to process label data.  The previous work mentioned above

on SOINN, was applied to solve problems in optical pattern recognition (Shen et.al 2011 : 1061-1074).

Xiang et al 2016 extended SOINN similar to ESOINN to present a semi-supervised intrusion detection

framework with a Support Vector Machine classifier.  The semi-supervised extension to the single

SOINN - ESOINN, called MSOINN - mixture SOINN is used to process large volume of labeled and

unlabeled data incrementally. From that MSOINN a kernel function is constructed to train the classifier

(SVM) with the labeled and unlabeled data. Their experiments showed  84.5 % detection rate and

7.32% false positives (Xiang et al. 2016 : 815-823).

2.4  Summary

From the literature review we can conclude that there is a gap in on-line learning or life-long learning

tasks applied to Intrusion Detection Prevention Systems, offline analysis is the norm which is not

suitable for the ever-changing nature of internet and organizations networks. Additionally,  the offline

analysis method does not adapt to dynamic data and therefore unsuitable for the detection of "zero day"

attacks - newly published attacks or variants of existing attacks.

This paper objective is trying to address this gap by the of use online  incremental machine learning  by

preserving previously gained knowledge in order overcome the issues from using static  -  offline

machine  learning  models  applied  to  Network  Intrusion  Detection  Prevention  Systems  designs.

Furthermore, the proposed framework lays the ground work for efficient detection of "zero day" attacks

and variants of existing attacks. This thesis, makes use of the NSL-KDD dataset, an updated and refined

version of the KDD99 dataset (Mahbod, et al. 2009 : 1-6), which is widely used, publicly available

dataset,  for network-based anomaly detection systems. 
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Chapter 3
Background Information

In order to better understand the purpose of this thesis, a background information will be presented to

the reader to familiarize with definitions, terms and technologies used to build the framework and

specifically its detection engine - n-SOINN-WTA-SVM. The chapter provides an introduction in section

3.1 to intrusion detection in computer and network security and intrusion detection systems then

introduces and the problems these systems suffer in industrial and commercial applications. In section

3.1.1 intrusion detection prevention systems are presented and the distinction from  intrusion detection

systems is given. In section 3.2 introduces the reader to the concept of artificial intelligence and in

section 3.21 the methods machine learning algorithms use, as a way of feedback, namely: supervised

learning, unsupervised learning, semi-supervised learning, active learning, reinforcement learning. In

section 3.2.2 is dedicated to the concept of incremental learning and online learning which this thesis is

focusing on. Sections 3.3 and 3.4 present artificial neuron networks and support vector machines,

technologies that this framework is based on. Finally Section 3.5 provides details about the dataset used

in the experimental and evaluation process.

3.1  Intrusion Detection

Intrusion detection is the process of monitoring the events occurring in a computer system or network

and analyzing them for signs of intrusions, defined as attempts to compromise the confidentiality,

integrity, availability, or to bypass the security mechanisms of a computer or network (Bace and  Mell

2001 : 5). Intrusion detection technology is the technology designed to monitor computer activities for

the purpose of finding security violations. It is the process of monitoring the events occurring in a

computer system or network and analyzing them for signs of possible incidents, which are violations of

threats, computer security policies, acceptable use policies, or standard security practices (Crothers
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2003 : 1). 

Intrusion prevention works similar to that of an intrusion detection system but it also attempts to stop

and prevent detected security incidents. Intrusion detection prevention systems primarily focus on

identifying and block possible incidents, keep track of incidents in the logging system and create alerts

by reporting to security administrators. In addition, organizations use Intrusion Detection Systems for

other purposes, such as identifying problems with security policies, documenting existing threats, and

deterring individuals from violating security policies (Bace and  Mell 2001 : 23). NIDPS have become a

necessary addition to the security infrastructure of nearly every organization. 

Intrusion Detection Systems provide a layer of protection to an organization's computer and network

security by constantly monitoring and analyzing system events and user behaviors, testing the security

state of the organization's technological system resources, track system configuration changes, identify

attacks based on known patterns, identify attacks based on statistical deviations and managing system's

audit and logging mechanisms. Intrusion Detection Prevention Systems fail to satisfy an organization

security requirements in detecting newly published attacks or variants of existing attacks, effectively

responding to attacks launched by sophisticated attackers, automatically investigating attacks without

human intervention and resisting attacks that are intended to defeat or circumvent them - luck of

adaptation (Bace and  Mell 2001 : 38).

Crucial to the security of an organization is the ability to identify and prevent attacks on its computer

and network infrastructure and currently commercial and industrial Intrusion Detection Prevention

Systems fail to do so for "zero day" attacks - newly published attacks or variants of existing attacks.

Additionally, the luck of adaptation to dynamically adjust to new data makes them unsuitable for the

ever-changing nature of internet and organizations networks. This postgraduate thesis contribution to

the literature and computer and network security industry attempts to tackle those issues with the use

of artificial intelligence and machine learning algorithms and techniques.

3.1.1  Intrusion Detection Prevention Systems

Intrusion detection systems monitor computer and network systems for potential malicious activity.

Intrusion prevention systems prevent a malicious attack after it is identified as well. Network intrusion

detection systems monitor network traffic to identify malicious activity and protect hosts connected to

that  network,  in  contrast  to host  intrusion detection systems,  that  monitor  an individual's  hosts

processes and network activity. A network intrusion prevention system - NIPS, does not only passively

logs and alerts like a network intrusion detection system - NIDS does, but it also actively protects the
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network by dropping network packets that are identified as attacks. An example of network intrusion

detection prevention system can be seen in Fig.2, an attacker bypass the firewall and the NIDPS detects

the attempt on the switch level right before it reaches the host victim, then a mechanism in combination

with the firewall drops the connection.

A network intrusion detection prevention system operates and analyzes network traffic on the transport

layer of the open system interconnection (OSI)  and TCP/IP model. If a network segment or a collection

of these, signature matches to a known collection/library of attacks then, it either logs it and alerts the

network administrator  or either  drops it.  Today's  NIDPS combine signature  based methods and

anomaly based methods to identify an attack. The signature based detection methodology is using

patterns  previously  defined  by known attacks  and  is  distributed  in  the  form of  signatures.  The

signatures are then compared against patterns found in the network traffic to discover possible attacks

or threads. 

Figure 2: Network Intrusion Detection Prevention System

The anomaly based detection methodology is using the concept of discovering anomalies - unusual

patterns in the network traffic compared to normal traffic defined by the system. One of the main

disadvantage of industrial NIDPS is the fact that they are prone to high numbers of false alarms - false
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positives. Also, an organization need to fine-tune and configure its NIDPS when it is initially installed in

order to reduce the number of false positives. To properly configure the NIDPS, in order to be able to

distinguish normal traffic compared to malicious traffic  the system relies heavily on the network

administrator which makes it prone to human errors. Therefore, NIDPS performance is directly related

to the network administrator abilities, time and resources in order to be efficient and operational.

3.2  Artificial Intelligence

Following Rich and Knight's  definition in  which machines  act  as  humans,  they defined Artificial

Intelligence as the study of how to make computers do things at which, at the moment, people are better

(Rich and Knight, 1991 : 3). One of the tests to pass for a computer or a machine to be named

"intelligent" is the Turing test, which defines the inability to distinguish computer responses from

human responses. A computer passes the test if a human interrogator, after posing some written

questions, cannot tell whether the written responses come from a person or from a computer. 

To pass the Turing test and other tests a computer would need to possess the following capabilities:

natural language processing to enable it to successfully translate in a language humans communicate;

knowledge representation to store what it knows or hears; automated reasoning to use the stored

information to answer questions and to draw new conclusions; and machine learning to adapt to new

circumstances and to detect and extrapolate patterns. (Stuart and Norvig 2010 : 2). This postgraduate

thesis used artificial neuron networks and support vector machines to achieve its objective, by detecting

and extrapolate patterns from computer network traffic, all of which fall under the field of machine

learning. 

3.2.1  Machine Learning

A machine or an agent learns if it posses the ability to progressively improve its performance on a

specific task, over observed data - by example. The methods used to accomplish the task of learning by

example in machine learning as a way of feedback, are classified in to five broad categories, supervised

learning, unsupervised learning, semi-supervised learning, active learning, reinforcement learning . 

The function  in supervised method learns by mapping input data with output data as the expected

outcome. The supervised  method is usually used in classification with the output data represented as

labels that are desired for a given input. 

In the unsupervised method the function learns from patterns only found in the input, with no output to

learn from. This method is usually used in clustering where information from input is represented as
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clusters in a compressed form, organizing what seems to be chaotic unlabeled data in a meaningful way.

This postgraduate thesis used artificial neuron networks - SOINN, which utilizes the unsupervised

method to achieve clustering and incremental learning and Support Vector Machines - SVMs which

utilizes the supervised method for classification.

The semi-supervised method uses labeled and unlabeled data for training. It is used as hybrid method

between supervised and unsupervised methodologies by introducing a relatively small amount of

labeled data compared to the unlabeled data. It is stated (Zhu 2006 : 9) that the accuracy of the output is

improved - if used for classification, compared to the unsupervised method and the time cost is reduced

compared to the supervised method.

Active  learning  utilizes  supervised,  unsupervised  and  semi-supervised  methods  to  create  hybrid

systems that aims to train an agent with less data without sacrificing accuracy. Active learning theory

introduces an external - human or not, oracle that labels the output interactively according to the

systems requirements.

Reinforcement Learning is based on the idea of The Reward Hypothesis, which states that all of what we

mean by goals and purposes can be well thought of as maximization of the expected value of the

cumulative sum of a received scalar signal (Sutton 1998). The agent’s goal is to get as much reward as it

can over the long run just like humans learn from interacting with the environment, it comes from our

natural experiences. Reinforcement learning methods specify how the agent changes its policy as a

result of experience with the aim to maximize its objective. 

Figure 3: Reinforcement learning depiction

The system description consists of an agent which interacts with the environment via its actions at
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discrete time steps and receives a reward which in turn transitions the agent into a new state.

3.2.2  Incremental Learning

Incremental learning is a method, in which input data is continuously fed to an agent with limited

resources to extend its knowledge and without sacrificing the models accuracy. It represents a dynamic

technique of supervised learning and unsupervised learning that  can be applied when training -

streaming data  becomes available  gradually  over  time.  Algorithms that  can facilitate  incremental

learning are known as incremental machine learning algorithms. The aim of incremental learning is for

the learning model to adapt to, and repeatedly learn from new data without forgetting its existing

knowledge. Incremental learning applications are best fitted in scenarios with dynamically changing

environments  where  sequential  acquisition  of  knowledge  is  possible.  Computer  networks  are

characterized by a dynamic nature with abundance of new data flowing over time.  Incremental learning

continuous model adaptation is based on a constant stream of data (Alexander and Hammer  2016 : 1)

and that property makes it a perfect candidate method for network intrusion prevention systems, where

new computer and network attacks are emerging constantly.  The challenge of incremental learning is to

acquire new information without destroying or corrupting previously learned knowledge, the so called

Stability Plasticity Dilemma (Carpenter and Grossberg  1988 : 77-88).

Online machine learning refers to the method where the agent is trained when data becomes available

in a sequential order,  as opposed to batch learning where the agent is trained on the entire training data

set, once, and  hold the assumption of complete data availability. Online learning is a common technique

where the algorithm is required to dynamically adapt to new patterns in the data, in which new data

arrive over time.  Furthermore,  online learning becomes necessary in interactive scenarios where

training examples are provided based on human feedback over time [Kawewong et al. 2011].

Incremental learning make use of online learning strategies with limited memory resources available, in

contrast to strategies that store all examples in memory. In order to achieve that incremental learning

often utilizes a scheme where the observed input is represented in a compact form.

This postgraduate thesis proposal implements incremental learning with the use of the online learning

technique by a scheme which utilizes SOINNs to compress the observed input into clusters and inherit

online learning which the specific neural network posses in combination with SVMs for classification.

The scheme also uses an external oracle that labels the output interactively, a characteristic of active and

online learning.

3.3  Neural Networks
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Artificial neural networks are computational learning systems modeled on the parallel  biological neural

networks architecture of animal brains. The network is based on a simple form of inputs and outputs,

an interconnected network of simple processing units (artificial neurons) that learns from experience by

modifying its connections (Gerven and  Bohte 2018 : 12).

An Artificial neural network is a network of mathematical functions, artificial neurons or nodes, which is

interconnected  with edges. Artificial neurons and edges typically are arranged into layers and have a

weight that adjusts as learning proceeds. 

Figure 4: Feed-forward neural network arrangement

Different layers may perform different kinds of transformations on their inputs. A neuron takes an input

x - usually a number and translates that - with the mathematical function into a desired output y. An

example of a simple artificial neural network arrangement is the  feedforward neural network which

consists of multiple nodes arranged in layers. Nodes from adjacent layers connected with edges between

them and have weights associated with them.  The information moves in only one direction – forward –

from the input nodes, through the hidden nodes and to the output nodes as seen in Fig.4.

The Input nodes provide information from the environment as an input to the network and are

arranged as the Input Layer. No computation is performed in any of the Input nodes – they just pass on

the information to the hidden nodes. The Hidden nodes have no direct connection with the environment

and they perform computations and transfer information from the input nodes to the output nodes. A

collection of hidden nodes forms a Hidden Layer. While a feedforward network will only have a single

input layer and a single output layer, it can have zero or multiple Hidden Layers. The Output nodes are

collectively referred to as the  Output Layer and are responsible for computations and transferring
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information from the network to the environment.

Artificial  networks  learn to  perform  tasks  by  considering  examples,  generally  without  being

programmed with any task-specific rules and recognize patterns - make sense of data association that

the human is not possible to make. Those properties makes ANN attractive for many applications and

with great success. Currently, most industrial and commercial Intrusion Detection Systems are based on

rules, signatures and some statistical analysis to operate and ANN and machine learning in general will

eventually replace those types of IDS with intelligent IDS which will eliminate any programming rules at

their core in terms of detection.

3.3.1  SOINN

The self-organizing and incremental neural network introduced by (Shen and Hasegawa 2006: 90-106)

is an online unsupervised incremental learning mechanism for unlabeled data, which represents the

topological structure of the input data. As mentioned in paragraph 3.2.1, one objective of unsupervised

learning is clustering, another objective in terms of applying unsupervised learning beyond classification

is topology learning - the representation of the topology structure of a high-dimension data distribution.

Various models and mechanisms had been developed to address topology learning, all of which had

their limitations compared to SOINN with the objective of achieving online incremental learning,

starting with the self-organizing map - SOM by (Kohonen, 1982  :59–69), which generates mapping

from high-dimensional signal space to lower-dimensional topological structure, is inherently limited

because of its predefined structure and size (Shen and Hasegawa 2006: 91). The combination of

competitive Hebbian learning - CHL and neural gas - NG by (Martinetz and Schulten 1994 : 7(3), 507–

522) solved the problem of the network predefined structure but their work also requires a prior

decision about the network size and finally (Fritzke, 1995) addressed the problem mentioned above

with their work in growing neural gas  - GNG but it had its disadvantage as well, the permanent increase

in the number of nodes of the network and therefore the size of the network will grow exponentially.

In order to achieve online incremental learning in difficult problems of non-stationary data distributions,

on-line learning or life-long learning tasks, the above-mentioned methods are not suitable (Shen and

Hasegawa 2006: 91), the problem with applying the methods above for online learning is the acquisition

of new information without destroying or corrupting previously learned knowledge, the so called

Stability Plasticity Dilemma (Carpenter and Grossberg  1988 : 77-88) as mentioned in the paragraph

3.2.3 above. SOINN's objective is to develop a network that operates autonomously, on-line or life-long,

and in a non-stationary environment. The network grows incrementally, learns the number of nodes
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needed to solve a current task, learns the number of clusters, accommodates input patterns of on-line

non-stationary data distribution, and dynamically eliminates noise in input data (Shen and Hasegawa

2006: 91). 

SOINN's proposed method objectives dictates that for unsupervised on-line learning tasks, Shen and

Hasegawa separate unlabeled non-stationary input data into different classes without prior knowledge

such as how many classes exist. Similarly they address the same principal  to learn input data topologies.

Figure 5: SOINN algorithm flowchart

Their proposed proposed algorithm achieved to process on-line or life-long learning non-stationary

data, no prior conditions such as a suitable number of nodes or knowing how many classes exist, to

conduct unsupervised learning is needed, report a suitable number of classes and to represent the
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topological structure of input probability density. The algorithm also separate classes with low-density

overlap's and detects the main structure of clusters that are polluted by noise - garbage collection (Shen

and Hasegawa 2006: 92).In a following paper of the original work on SOINN (Shen et.al 2007 : 893-

903) proposed an enhanced and more stable version of the original SOINN called E-SOINN which

minimized the user input and adopted a single layer in contrast to the two layers of original SOINN. Both

the original and the enhanced version of the SOINN the online incremental  learning was fed by

unsupervised data, meaning that the data was not labeled before classification. 

The breakthrough SOINN introduced in relation to previous research and work, in machine learning and

neural networks specifically, is the ability to learn incrementally in an online set up with out the need to

predefine - and therefore predict, the size and the structure of the network.

SOINN's properties of online incremental learning and representation of topological structure of input

data makes the use of the network attractive for researchers in various applications. SOINN as an online

incremental clustering method, offers relatively high computational speed with low computational cost.

Furthermore, SOINN network size is controlled and its stability is achieved with a "garbage collector"

technique. The technique defines a parameter called age which is the time period nodes will be removed

if they are not updated  for a specified  time and thus dynamically eliminate noise data. This property

makes it attractive for dynamic environments where long-term learning is required.

Just like in this postgraduate thesis other studies (Xiang et al..  2016 : 815-823) used SOINN as a

clustering method with supervised data to be applied in intrusion detection. The SOINN in this thesis

will be fed with unlabeled and thus unsupervised data for the clustering but the framework devised

along with SVM, more details will be given in the next chapter, will be using supervised, labeled data.  

Although, in the proposed framework of this paper, the size and growth of the network will be controlled

by a new parameter called n where multiple pairs of SOINNs will be used as a supervised clustering

method. SOINN is a two-layer neural network of which the first layer is used to generate a topological

structure of input pattern and the second layer, use nodes identified in the first layer as the input data

set. In order to determine if an input sample belongs to previously learned clusters or to a new cluster

the Euclidean distance between the nodes is used as seen below. 

SOINN as seen in Fig. 5  initializes the network with an empty set of nodes and then the first two nodes

are added to the list with the weight vectors set as the two input vectors. 

After the initialization, for every input vector it finds the nearest node (winner) and the second-nearest

node (second winner) of the input vector by measuring the distance S1 and S2 from every input to every
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node with the following equations:

Figure 6: SOINN distance equations

If the input vector belongs to the same cluster of the winner or second winner based on the distances

calculated against a similarity threshold criterion, update the weight vector of the node and its neighbors

with the weight vector of  the  input  vector  and  connect it to the node by an edge. If the input vector

does not belong to the same cluster of the winner or second winner, add a new node to the network.

3.3.2 n- SOINN

Inspired by n- SOINN (Kawewong et.al. 2013 : 496 - 502 ), where the original SOINN is modified in two

ways to utilize multiple pairs of SOINNs as a supervised clustering method, the proposed framework of

this paper also uses the same technique. First by adding a global parameter to control the topology of the

network and second the standard Euclidean distance is used to calculate the distance between the input

and the nodes instead of the normal-basic Euclidean distance. 

Figure 7: Euclidean Distance in Euclidean space

20



In order to control the number of output nodes of the network, the difference of how accurate the

compressed information will be among the two types of SOINNs - the negative and the positive, a

parameter named n is introduced. 

This parameter, dictates that any first winner node that wins more than n times assign a win to the

second winner node. Only and only if the second winner node also has a winning times of more than n, a

new node is generated. Setting n = 0 then the network behaves exactly like the original SOINN. Setting  n

> 0 then the number of nodes created will be less than n = 0 and therefore less accurate. 

The normal Euclidean distance used in the original SOINN was intended  for the purpose of a single

SOINN to realize the unsupervised incremental learning task. The Euclidean distance between points p

and q is the length of the line segment connecting them. In Cartesian coordinates, if p = (p1, p2,..., pn) and

q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance (d) from p to q, or from q to p is

given by the following formula in In the context of Euclidean geometry for n dimensions:

Figure 8: Euclidean Distance equation

The proposed framework uses multiple SOINNs with the objective of clustering and to calculate the

distance function dist, as seen in Fig. 6 between the input and the weight vector of n-SOINN, by the

normal Euclidean distance would be a non-trivial task, the distance - the variance of data in each class is

calculated by the standardized - normalized Euclidean distance instead of the normal-basic Euclidean

distance. 

Figure 9: Normalized - Squared - Euclidean Distance equation

This helps in balancing the different properties of the attacks and multiple SOINNS provide, the reason

for that is, the original input data data are not preserved by the framework and a representative node of

the input data can be eliminated by the way of the SOINN algorithm's garbage collector whenever it
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becomes non-popular.  

3.4  Support Vector Machine

Support Vector Machines were first introduced in 1992 in a work by Boser et al. where they proposed a

training algorithm that maximizes the margin between the training patterns and the decision boundary.

(Boser et al. 1992 : 1). Their objective was to solve classification problems in the machine learning field. 

Figure 10: SVM separation hyperplanes

Support vector machine - SVM fall in to the category of supervised learning and just like a neural

network,  its  function(s)  learns  by  example.  It  generates  input-output  mapping  functions  -  i.e

classification or regression, from a set of labeled training data. For classification, nonlinear kernel

functions are often used to transform input data to a high-dimensional feature space in which the input
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data become more separable compared to the original input space (Wang  2005)

Support  Vector  Machine   operates  as  a  group classifier  by  constructing  a  hyperplane  or  set  of

hyperplanes in a high dimensional space using training data to separate data into two groups. One of the

main advantages of SVM is its effectiveness in high dimensional spaces and its ability to discriminate

data which are not readily separable by simpler methods. In order to make the separation easier for non

linearable separable datasets to discriminate, or for overlapping variations of features for two classes,

the algorithm maps the original data space into much higher space to make the separation easier. 

Tasks like classification or regression can be accomplished by the construction of hyperplanes as seen in

Fig. 10 where maximizing the minimum distance from the separating hyperplane. For example, the

classifier  generalization  error  could  be  minimized  by  an  optimal  separator  -  maximum  margin,

hyperplane 1 does not separates the class, hyperplane 2 does separates the classes but only with a small

margin and hyperplane 3 is optimal - maximum margin, compared with the other hyperplanes.

Although SVMs are well developed and used extensively for machine learning projects and research

alike, from 2000 to 2010 LIBSVM (Chang and Lin 2011 : 27) has been downloaded more than 250,000

times, in order to achieve good results first an appropriate kernel needs to be identified and then

optimize its function for mapping of features and the other parameters by optimizing it with different

optimization methods. 

In this thesis the RBF kernel in both binary and multi-class SVMs was used and the optimization method

used was a cross-validated grid-search over a parameter grid.

3.4.1  WTA - SVM

Support Vector Machine is  a  supervised machine learning algorithm which was designed and is

fundamentally a  binary classification algorithm to solve  two classes -  binary problems.  Although

effectively extending SVMs for multiclass classification is still an ongoing research problem, several

methods  have  been  proposed  where  a  multi-class classifier is constructed  by  combining  several

binary  classifiers (Hsu et.al. 2002 : 415-425).  Two SVMs common methods are employed to solve the

multi-class problem by reducing the single multi-class problem to into multiple binary classification

problems,  the one-versus-all method and the one-versus-one method.

The one-versus-all method is using the winner-takes-all strategy in which the classifier with the highest

output function gets the class assignment. It constructs k classifiers, where k is the number of classes

and the mth classifier is trained with all of the examples (input) in the mth class with positive labels,  and

all other examples with negative labels. Another problem with the one-versus-the-rest approach is that
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the training sets are imbalanced, in this thesis before using the training sets for every class, each training

set is first balanced.

The one-versus-one method trains k(k-1)/2 different 2-class classifiers on all possible pairs of classes,

and then uses a max-wins voting strategy in which the class with the highest number of votes - a voting

is performed among the classifiers, in every win of the two class problem gets the class assignment.

In this paper the approach of one-versus-all method using the winner-takes-all strategy (WTA) is

employed to solve the multi-class problem.

3.5  Dataset

The NSL-KDD dataset is an updated and refined version of the KDD99 dataset (Mahbod, et al. 2009 : 1-

6), a widely used publicly available dataset for network-based anomaly detection systems. The  KDD99

intrusion detection contest - The Third International Knowledge Discovery and Data Mining Tools

Competition,  dataset consists of five million connection records of TCP dump data from seven weeks of

network traffic. It was prepared and managed by MIT Lincoln Labs for the 1998 DARPA Intrusion

Detection Evaluation Program. The objective of the program was to survey and evaluate research in

intrusion detection. Lincoln Labs set up an environment to acquire nine weeks of raw TCP dump data

simulating multiple attacks against a typical U.S. Air Force LAN.

A connection is a sequence of TCP packets starting and ending at some well defined times, between

which data flows to and from a source IP address to a target IP address under some well defined

protocol. Each connection is labeled as either normal, or as an attack, with exactly one specific attack

type.  Each connection record consists of about 100 bytes (Stolfo et al. 2000 : 8).

The NSL-KDD data set has several advantages over the original KDD data set. The most important

advantages are 1) the NSL-KDD does not include redundant records in the train set and as such the the

classifiers will not be biased towards more frequent records; 2) there are no duplicate records in the

separate test sets and therefore, the performance of the learners is not biased by the methods which

have better detection rates based on the frequent - duplicated records; 3) the number of records in the

train and test sets is reasonably reduced to a point where it is affordable to experiment on the complete

dataset without the need to split and randomly select smaller chunks of the dataset and therefore

maintain consistent and comparable evaluation results across the board  (Mahbod, et al. 2009 : 1-6).

It is important to note that the test data is not from the same probability distribution as the training data,

and it includes specific attack types not in the training data.  This makes the task more realistic. The
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datasets contain a total of 24 training attack types, with an additional 14 types in the test data only. The

attack classes are grouped into four categories : Denial of Service,  Probe, User to Root and Remote to

Local attacks.

A Denial of Service - DoS attack, is the type of attack in which an attacker executes network requests in

such a way where it consumes all of the resources of a networked computer - usually a web server,

resulting in the failure of that computer to serve legitimate network requests and therefore drop

legitimate users access.

Figure 11: Denial Of Service Attack

A Remote To User (R2L) attack is an attack in which an attacker exploits a computer's vulnerability via

the network to remotely gain unauthorized access to that computer and gain local machine user

privileges.User to Root Attacks (U2R) attack is a privilege escalation attack where an attacker already

has a certain level of privileges of an organization's computer system and attempts to escalate privileges

- gain unauthorized access to a different level of privileges privileges of what the attacker had already

given, usually root or administrator by  exploiting a computer's vulnerability.

Probe is an active reconnaissance type of computer attack in which an attacker actively engages with the

targeted system to gather information about a target systems and network, usually enumeration is

involved to  discover  vulnerabilities.
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Figure 12: Probe Attack

Figure 13: SQL Injection Attack
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In each record there are forty one attributes describing different features of the TCP connection and a

label assigned to each either as an attack type or as normal. The types of attacks are classified into four

major categories; DoS, Probe, R2L and U2R as seen in Table 1.

Attack Class Attack Type # of Attacks

DoS Back,  Land,  Neptune,  Pod,  Smurf,  Teardrop,Apache2,
Udpstorm, Processtable, Worm

10

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, Saint 6

R2L Guess_Password,  Ftp_write,  Imap,  Phf,  Multihop,
Warezmaster,  Warezclient,  Spy, Xlock, Xsnoop, Snmpguess,
Snmpgetattack, Httptunnel, Sendmail, Named

16

U2R Buffer_overflow,  Loadmodule,  Rootkit,  Perl,  Sqlattack,
Xterm, Ps

7

Table 1:  Classification of types of attacks

In table 2 below the details of the attributes namely the attribute name, their description, sample data

and type information of all the 41 attributes available in the NSL-KDD data set (Mahbod, et al. 2009 : 1-

6) are listed.

Attribute
No. Attribute Name Description Sample 

Data

1 Duration Length of time duration of the
connection

0

2 Protocol_type Protocol used in the connection Tcp

3 Service Destination network service
used

ftp_data

4 Flag Status of the connection –
Normal or Error

SF

5 Src_bytes
Number of data bytes

transferred from source to
destination in single connection

491

6 Dst_bytes
Number of data bytes

transferred from destination to
source in single connection

0

7 Land

If source and destination IP
addresses and port numbers and

equal then,this variable takes
value 1 else 0

0
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8 Wrong_fragment Total number of wrong
fragments in this connection

0

9 Urgent

Number of urgent packets in
this connection.Urgent

packets are packed with the
urgent bit activated.

0

10 Hot

Number of
„hot‟ indicators
in the content

such as:
entering a

system directory,
creating

programs and
executing
programs

0

11 Num_failed_logins Count of failed
login attempts

0

12 Logged_in

Login Status :
1 if

successfully
logged in; 0
otherwise

0

13 Num_compromised
Number of

``compromised'
' conditions

0

14 Root_shell
1 if root shell is

obtained; 0
otherwise

0

15 Su_attemped

1 if ``su root''
command

attempted or
used; 0

otherwise

0

16 Num_root

Number of
``root'' accesses

or number of
operations

performed as a
root in the
connection

0

17 Num_file_creations

Number of file
creation

operations in
the connection

0



18 Num_shells Number of
shell prompts 0

19 Num_access_files

Number of
operations on
access control

files

0

20 Num_outbound_cmds

Number of
outbound

commands in
an ftp session

0

21 Is_hot_login

1 if the login
belongs to the
``hot'' list i.e.,

root or admin;
else 0

0

22 Is_guest_login

1 if the login is
a ``guest''

login; 0
otherwise

0

23 Count

Number of
connections to

the same
destination
host as the

current
connection in

the past two seconds

2

24 Srv_count

Number of
connections to

the same
service (port

number) as the
current

connection in
the past two

seconds

2

25 Serror_rate

The percentage
of connections

that have
activated the
flag (4) s0, s1,

s2 or s3,
among the

connections
aggregated in

count (23)

0

26 Srv_serror_rate The percentage 0
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of connections
that have

activated the
flag (4) s0, s1,

s2 or s3,
among the

connections
aggregated in

srv_count (24)

27 Srv_serror_rate

The percentage
of connections

that have
activated the
flag (4) REJ,
among the

connections
aggregated in

count (23)

0

28 Rerror_rate

The percentage
of connections

that have
activated the
flag (4) REJ,
among the

connections
aggregated in

srv_count (24)

0

29 Srv_rerror rate

The percentage
of connections

that were to
the same

service, among
the

connections
aggregated in

count (23)

1

30 Diff_srv_rate

The percentage
of connections

that were to
different
services,

among the
connections

aggregated in
count (23)

0

31 Srv_diff_host_rate The percentage
of connections

that were to

0
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different
destination
machines
among the

connections
aggregated in

srv_count (24)

32 Dst_host_count

Number of
connections
having the

same
destination

host IP address

150

33 Dst_cost_srv_count

Number of
connections
having the
same port

number

25

34 Dst_host_same_srv_rate

The percentage
of connections

that were to the
same service,

among the
connections

aggregated in
dst_host_count

(32)

0,17

35 Dst_host_diff_srv_rate

The percentage
of connections

that were to
different
services,

among the
connections

aggregated in
dst_host_count

(32)

0,03

36 Dst_host_same_src_port_rate

The percentage
of connections

that were to the
same source
port, among

the
connections

aggregated in
dst_host_srv_c

ount (33)

0,17

37 Dst_host_srv_diff_host_rate The percentage 0

31



of connections
that were to

different
destination
machines,
among the

connections
aggregated in

dst_host_srv_count(33)

38 Dst_host_serror_rate

The percentage
of connections

that have
activated the
flag (4) s0, s1,

s2 or s3,
among the

connections
aggregated in

dst_host_count
(32)

0

39 Dst_host_srv_serror_rate

The percent of
connections

that have
activated the
flag (4) s0, s1,

s2 or s3,
among the

connections
aggregated in
dst_host_srv_c

ount (33)

0

40 Dst_host_rerror_rate

The percentage
of connections

that have
activated the
flag (4) REJ,
among the

connections
aggregated in

dst_host_count
(32)

0,05
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41 Dst_host_srv_rerror_rate

The percentage
of connections

that have
activated the
flag (4) REJ,
among the

connections
aggregated in
dst_host_srv_c

ount (33)

0

Table 2: Attributes Description

Type Features

Nominal Protocol_type(2), Service(3), Flag(4)

Binary Land(7), logged_in(12),
root_shell(14), su_attempted(15),
is_host_login(21),, is_guest_login(22)

Numeric Duration(1), src_bytes(5),
dst_bytes(6), wrong_fragment(8),
urgent(9), hot(10),
num_failed_logins(11),
num_compromised(13),
num_root(16),
num_file_creations(17),
num_shells(18),
num_access_files(19),
num_outbound_cmds(20), count(23)
srv_count(24), serror_rate(25),
srv_serror_rate(26), rerror_rate(27),
srv_rerror_rate(28), same_srv_rate(29)
diff_srv_rate(30),
srv_diff_host_rate(31),
dst_host_count(32),
dst_host_srv_count(33),
dst_host_same_srv_rate(34),
dst_host_diff_srv_rate(35),
dst_host_same_src_port_rate(36),
dst_host_srv_diff_host_rate(37),
dst_host_serror_rate(38),
dst_host_srv_serror_rate(39),
dst_host_rerror_rate(40),
dst_host_srv_rerror_rate(41)

Table 3: Attribute Value Type 
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Chapter 4
Proposed Framework

4.1 Incremental Learning NIPS

The proposed framework as seen in Fig. 14, consists of a detection engine, the core of the framework, a

preprocessing module of the incoming traffic that feeds the detection engine, a validation module to

evaluate the results of the detection engine and an update module where the failed results are fed back

to the detection engine.

Figure 14: Incremental Learning  - NIPS

The core of the framework is based on its detection engine, the mechanism that will, with a relative

small sample of input data,  detect adequately enough, basic forms of network attacks. Subsequently, as
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more network data become available, the mechanism will be updated - incrementally, by input data of

classes that it failed to detect in order to refine and advance its protective capabilities. 

The preprocessing module captures, extracts and transforms the data at the TCP layer to be fed to the

detection engine. The validation module validates the results of the detection engine - either by a human

or by any other means in an automated way,  saves the results it in order to feed the detection engine and

at the update phase the detection engine is retrained with the updated module without losing its

previously acquired knowledge. The update module feeds the failed classifications the detection engine

predicted as a way of input back to it in the updated phase. After the initial training the system switches

between two different phases, the live phase, where the input traffic is categorized between normal or

attack - four different categories of attacks where used in experimentation and evaluation and the

updated phase, where the system is incrementally updating its machine learning capabilities by feeding

it with new input data - failed classifications.  

4.1.1 Concept

The framework was conceptualized on the premise that a network protective mechanism can be build

to initially learn from  a relative small sample of network data, adequately enough, for basic network

protection. Subsequently, as more network data become available, the mechanism will be updated

incrementally, by input data of classes that it failed to detect in order to refine and advance its protective

capabilities. The mechanism that decides whether a decision failed or not is decided by a validation

mechanism. In order to advance its capabilities the core mechanism must be able to categorize the

network data in a multi-class manner, not just if a connection is an attack or not, but what kind of attack

that is and therefore provide a solution to an incremental learning multi-class problem.

The core of the framework is based on its detection engine, the mechanism that will, with a relative

small sample of input data,  detect adequately enough, basic forms of network attacks. Subsequently, as

more network data become available, the mechanism will be updated incrementally by input data of

classes that it failed to detect in order to refine and advance its protective capabilities. The detection

engine and the core of the framework as seen in Fig. 15, is initialized with a dataset of k attack classes

where x is a d dimensional TCP network feature vector of the connection and y is an attack class

category label. A network connection attack category is modeled by two n-SOINNs, one with a high n-

value and another with a low  n-value. For every k class, a pair of  two n-SOINNs and one SVM binary

classifier is created. The n-SOINN with the low n-value is supposed to hold more accurate compressed

information than the n-SOINN with the high n-value making it a binary problem. For every pair of n-

SOINNs, the positive n-SOINN is considered to be the one with the low n-value and the negative one with

the high n-value. The input vector of every SVM binary classifier is constructed by the output of the
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positive k n-SOINN and all other negative n-SOINNs. The output class along with its score of every binary

SVM is then compared with all other binary SVMs in order to choose the top m classes. After choosing

the top m classes, the output of their respective n-SOINNs is combined as an input to a multi-class SVM

to get the final class.

Figure 15: n-SOINN-WTA-SVM
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4.2    Framework modules

The framework consists of the detection engine - n-SOINN-WTA-SVM, the core of the framework and the

novelty which this thesis proposes, a preprocessing module that prepares the incoming traffic that feeds

the detection engine, a validation module to evaluate the results of the detection engine and an update

module where the failed results are fed back to the detection engine.

4.2.1 Preprocessing 

This  module  captures  and  process  incoming  traffic  in  real  time.  Features  of  TCP  connection

characteristics are captured and processed in order to be made available as an input vector to the

detection engine - n-SOINN-WTA-SVM. The framework is based on the premise that TCP characteristics

of a connection suggest whether a connection is defined as an attack or not and evermore if it is defined

as an attack what kind of an attack that is. For the purposes of this thesis this module was represented

by the feature selection of the dataset to show proof-of-concept. From the 42 features of the dataset

available as seen in Chapter 3, the author choose only the 32 numerical ones to use for the learning

process. The feature selection was based on the preliminary results of the experimentation which

showed that the model performed better and more stable with the numerical results only. The case that

the use of  a reduced number of features in the NSL-KDD dataset can deliver enhanced or comparable

performance was shown by Sung and Mukkamala where they reduced the features with the method of

elimination to identify important features for each of the 5 classes of intrusion patterns . (Sung and

Mukkamala 2003 : 209-216 ).

The 70 attacks where then categorized into 5 classes, four major  attack categories; DoS, Probe, R2L and

U2R as seen in Table 1 and the normal class.

4.2.2 Detection Engine - n-SOINN-WTA-SVM 

The core module of the framework consists of two main parts as seen in Fig. 15. The clustering part

where a pair of n-SOINNs is used for each class to compress the information given from the TCP

connections by the preprocessing module and achieve incremental learning. For every class a pair of n-

SOINNs is created a negative and a positive, one with a high n-value and another with a low  n-value. The

n-SOINN with the low n-value - the positive n-SOINN, is supposed to hold more accurate compressed

information than the n-SOINN with the high n-value - the negative n-SOINN, making it a binary problem

and thus applicable to any binary suited algorithm solution. For every pair of n-SOINNs, the positive n-

SOINN is considered to be the one with the low n-value and the negative one with the high n-value.  
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Figure 16: Algorithm Flowchart
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The differentiation of negative and positive is realized by the way each n-SOINN feeds the binary SVMs

for class k . Inspired by the winner-takes-all strategy applied  to a multiclass SVM, the output of the

positive n-SOINN feeds classifier k and the negative n-SOINN feeds all other classifiers as depicted in Fig.

15.  The classifying part takes the compressed information from the n-SOINNs - the output of the n-

SOINNs nodes, and constructs an input for an SVM classifier for each class to perform the preliminary

classification. 

To choose the top  m  classes, the predicted class along with its score of every binary SVM is then

compared with all other binary SVMs prediction scores and the top m classes are then sorted by score.

The top m classes are the winners for the next phase. The top m classes pairs of each classifier is then

classified by a multi-class SVM for the final decision. The input-output process is exactly the same as the

previous phase, meaning that the output of the top m SOINNs pairs is used as the input to the multi-class

SVM instead of the binary SVMs to perform the final prediction.

The  reason  to  perform  another  classification  is  that  the  discriminant  function  is  based  on  the

differentiation of the SOINNs compressed positive and the negative input data and thus it is possible that

the first and the second best predictions might deviate from the expected and correct class. It must be

noted that k is user defined according to the system needs in terms of the number of classes available

and the score is calculated on the distance of the samples to the separating hyperplane.

4.2.3  Validation Module 

The validation module serves the purpose of improving and advance the framework's accuracy by

confirming the predicted label manually or automatically. It is the module that given a small sample of

input data and with the online and incremental learning method and technique, life long learning could

be achieved. Incremental learning could be achieved by a manual method where a network security

expert administrator could interact in real time and or at a later time, assuming the predictions are

saved, validates whether the predictions made by the detection engine are valid or not. Alternative, an

automatic method with the predictions saved for later use and compared against known and confirmed

predictions could be used, the module then will forward the failed predictions to the updating module.

For the purpose of a proof-of-concept in this thesis, the validation module used the automatic method

and the comparison was  made against subsets of the NSL-KDD dataset as seen in Chapter 5.  The

validation module also serves the purpose of providing the information of whether a connection is an

attack or  not and based on the prediction the  connection is  then dropped or forwarded to the
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destination. The information could be forwarded by the validation module to a different future module

where it could log, alert and drop connections.  

4.2.4    Updating Module 

The framework was designed to operate in two phases, the live phase where the detection engine is

making decisions based on its previously gained knowledge accumulated and an update phase where

the update module is updating the system with failed predictions to improve its capabilities. 

The validation module pass on the failed prediction results to the update module which updates the

SOINNs with the failed prediction data in the clustering mechanism which holds the compressed data.

The SOINNs cluster weights get updated with every new round of updates, which in turn hold more

accurate information than before the update.  Due to the online capabilities of SOINN, the previously

gained knowledge is  not  lost  with every new round of  updates,  instead the  new information is

accumulated into a more accurate knowledge clustering mechanism. This update mechanism along

with the SVM classification coupling brings novelty to this framework with an incremental online

learning capability.   

The phases could run in parallel if needed in production or switching between the two phases according

to the network traffic. For example, if there is no network traffic the update phase will trigger the update

module to update the system. For the purpose of this postgraduate thesis, the phases run in series -

manually to show proof-of-concept.
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Chapter 5
Experimental Results

  

Experimentation and evaluation was performed with the NSL-KDD dataset, which is an improved

version of well-known KDD'99 dataset, a  very good  candidate  dataset  to  evaluate the  performance  of

any IDS and thus our framework. Although it is stated that the NSL-KDD dataset still suffers from some

of the problems discussed in Chapter 3 and may not be seen as representative for applications of today's

world, the author believes it is suited for the objective of this thesis because it is an effective benchmark

dataset to detect network intrusions and it serves the purpose of the framework which is to show proof-

of-concept of an online incremental-learning intrusion detection system. For the  data structures Pandas,

an open source Python Data Analysis Library was used to perform feature selection, data manipulation

and analysis. 

Figure 17: Class Distribution of NSL-KDD dataset
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With the use of Pandas feature selection of 32 out of 42 features was performed and the 70 attacks

where then categorized into 5 classes, four major attack categories; DoS, Probe, R2L and U2R and the

normal class. The distribution of the classes in the datasets for normal and attack (2 classes) is 53% for

the normal class and 47% for the attack class. At five classes, the distribution is 53% for the normal class,

37% for the DoS class, 9% for the Probe class, 0.7 for the  R2L class and 0.3% for the U2R class.  

The original SOINN is modified in two ways to utilize multiple pairs of SOINNs, for the negative SOINN

we used n=2 and for the positive SOINN we used n = 100.  This numbers where taken by the paper of

Kawewong et.al (Kawewong et.al. 2013 : 496 - 502 ), which inspired this thesis. Different numbers

combinations have been tested to verify the suitability for this framework and the results showed that

n=2 for the negative SOINN and  n = 100  for the positive SOINN yielded the best results.

The classes of the dataset were five and thus five binary classes - a pair of negative and positive SOINN

for each class were created for this experiment, a normal class and four attack classes, namely - Denial of

Service, Probe, R2L and U2R. 

For the the top m classes we choose the smallest possible number after two m = 3 which is the best

performer in a multi-class SVM out of the box in the LIBSVM  (Chang and Lin 2011 : 27),  the RBF kernel

in both binary and multi-class SVMs was used. Both C and gamma in binary and multi-class SVM's

where optimized by cross-validated grid-search over a parameter grid. 

The dataset consists of two different subsets, a subset with 125973 records and a subset with 22544

records. The second subset is not from the same probability distribution as the first one and it also

contains specific types of attacks not present in the first one. For the framework evaluation and in order

to show that incremental learning is achieved we have divided the first subset into five smaller subsets

used for the test/update rounds, subset one with 25197 records, subset two with 25196 records, subset

three with 25194 records, subset four with 25193 records, subset five with 25193 records  and used the

second larger subset from the original with 22544 records for the initial training. It should be noted that

after the initial training for every update round, the subset is tested against the trained n-SOINN-WTA-

SVM and only the failed predictions are fed back to the system. The results as shown in  Table 4,

indicate that the framework can achieve incremental learning with promising prospects. 
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Table 4: Multiclass Final PRedictions Accuracy - Results table

The samples shown in the table are the accumulated samples from the previous round. For example, for

the initial training 22544 records was used and for the first round of updates 5484 records were fed

back to the system, the number of failed predictions against the first test subset out of five with 25197

records, accumulating the number of samples as input to 28028. After the initial training, the model

predicted 78% correct classes with 5484 failed predictions out of 25197, after the first round of updates

the model predicted 84,44% correct classes with 3920 failed predictions out of 25196, after the second

round of updates the the model predicted 87,98% correct classes with 3027 failed predictions out of

25194, after the third round of updates the the model predicted 88,88% correct classes with 2801 failed

predictions out of 25193, after the fourth round of updates the the model predicted 88,96% correct

classes with 2781 failed predictions out of 25193 and finally after the fifth round of updates the the

model predicted 89,67% correct classes with 2602 failed predictions out of 25193.
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Table 5: Binary Top 3 Predictions Accuracy - Results table

Before feeding the output of the SOINNs to the multiclass SVM to get the final prediction, the score of

each prediction of each of the binary SVMs was compared to get the top 3 winning results. Then the

output of each SOINN was used as an input to the multiclass SVM. The top 3 predictions for every round

was as follows: After the initial training, the model predicted 83% correct classes with 4283 failed

predictions out of 25197, after the first round of updates the model predicted 87,37% correct classes

with 3181 failed predictions out of 25196, after the second round of updates the the model predicted

89,22% correct classes with 2715 failed predictions out of 25194, after the third round of updates the

the model predicted 90,36% correct classes with 2428 failed predictions out of 25193, after the fourth

round of updates the the model predicted 91,14% correct classes with 2231 failed predictions out of

25193 and finally after the fifth round of updates the the model predicted 95,02% correct classes with

1254 failed predictions out of 25193.

The chart as shown in  Fig. 18, shows the relation between the number of records accumulating and the

accuracy of the system. Clearly the accuracy trend is pointing upwards with a 89.67% prediction result.
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These accuracy results are recognition results, they are not just accuracy results of a two class problem -

attack and normal, the results are based on a 5 multi-class problem, recognizing not just if a record is an

attack or not, but what kind of an attack is. 

The framework training samples accumulated by the end of Round 5 were 27.30% of the total dataset.

This property of the framework makes it suitable for scaling applications because of its efficiency.

Instead of feeding the model the complete dataset, in our experimentation the SOINNs kept only a

fraction of the information the whole dataset available. In contrast static models are trained with the full

data available with out the ability to adapt to the dynamic nature of network data over time. The time

cost in seconds for the initial training was 986 seconds and after that, each update round the time cost

incrementally increased with the last round costing 3285 seconds as shown  in  Fig. 19. 

Figure 18: Increasing Accuracy vs # Samples Feedback Chart

It must be noted that the time cost is not just for the training of the model but also the combined time

cost for the verification of each record, meaning that each record is tested against the dataset with

correct labels to verify whether the prediction was correct or not.

Although, the time increases over input samples of data, these are in essence rounds of updates which

increase the number of feedback feeding to the model.  
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Figure 19: Time Cost vs # Samples Chart

Figure 20: Online vs Offline Method Chart
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To compare the online - incremental learning method with the offline method, the framework was

trained once in one batch with the same amount of input sample data. The results were 82.59%

accuracy classification with a time cost of 2857 seconds. The time cost, just like in the offline method

was used with the intention to compare the two methods - meaning that the time cost was based on the

fact that the model was trained with the same amount of samples and checked the samples one by one

to validate its accuracy. In the online version, for each round the model is trained and then validates each

record to check whether is accurate or not and save it for the next update cycle. Each cycle is updating

the model with the failed predictions of the previous round. The fact that the offline method achieved

less accurate results only make the case stronger that the incremental learning proposed framework

could be a competitive candidate for an industrial application. 
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Chapter 6
Discussion and Feature Work

The incremental learning property of the proposed framework and the evaluation results indicate that

our proposal can adapt to the dynamic profile nature of network data for both normal and attack

categories. The framework utilize less resources, is faster and it has higher detection rate than the offline

method. It utilizes less resources and it is faster because the system is initialized with a small sample of

data and as the failed predictions are accumulating, in the updated phase n-SOINNs are fed with more

data, however n-SOINN algorithm's garbage collector discards irrelevant nodes while preserving the

previously gained knowledge, making the system efficient. 

By only feeding the system with failed predictions not only we achieve incremental learning with

promising results but the framework is also resources efficient, meaning that - instead of feeding it the

complete dataset, in our experimentation the SOINNs kept only a fraction of the information the whole

dataset had, making the framework a very good candidate for a scaling industrial system. To build the

initial model the framework not only trains the model but it also verifies each record whether it is

accurate or not in order to perform the next cycle of update when it is requested to do so. In an industrial

setting,  the model,  after the initial  learning phase will  be able to predict classes immediately by

separating the prediction with the verification as depicted in Fig. 16.   

Although, the framework's updating time grows as the update data input grows, as seen in  Fig. 19, the

framework's update and live mode could either work in parallel simultaneously or the update mode

could switch when the framework's live phase is idle - when no incoming data are present to predict.

The next contribution to the framework will be to modify the framework in such a way where it will be

capable to learn incrementally unknown attacks automatically with an added module designed just for

that purpose. Additionally to the detection of unknown attacks inherently the framework has now, a

new module will automatically add  these new type of attacks as new classes to the framework which

48



will learn unseen attacks in an incremental - "online" manner as well. 

Experimentation and evaluation was performed with the NSL-KDD dataset, which is an improved

version of well-known KDD'99 dataset, a  very good  candidate  dataset  to  evaluate the  performance  of

any IDS and thus our framework. Although it is stated that the NSL-KDD dataset still suffers from some

of the problems discussed in Chapter 3 and may not be seen as representative for applications of today's

world, the author believes it is suited for the objective of this thesis because it is an effective benchmark

dataset to detect network intrusions and it serves the purpose of the framework which is to show proof-

of-concept of an online incremental-learning intrusion detection system. Additionally, the experimental

results showed that using only the numeric types from the forty one attributes of the dataset the system

is more stable and more accurate.

Another future contribution to the framework will be the use of a different more recent publicly

available dataset that would fit the purpose of this thesis and a dataset that will be created in a lab to

verify these thesis results. 

The  results  of  the  experimentation  process  indicate  that  the  framework  not  only  can  achieve

incremental learning in an online setting with high accurate predictions, the results also show that  as

more data become available and the model process them, the more accurate the model will be. The chart

in  Fig. 18 shows that the model becomes more accurate with more samples processed and in a

networked environment, data are abundant and available as soon as the framework is in place, which

implies that the proposed model, in time and as input data gets processed, could reach 100% accuracy.

Figure 21: Online vs Offline Method Chart
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To compare the accuracy results with other proposed algorithms and research work in order to evaluate

this thesis proposed framework accurately, similar characteristics among the researchers work should

be shared. The scope - network intrusion detection system, approach - behavioral,  method - neural

networks, dataset - NSL-KDD or KDD99 and operational results - accuracy - recognition on a 5 five class

problem, should at least be comparable.  However,  beyond those shared characteristics this thesis

proposed framework novelty, is based on the online incremental learning technique. According to this

thesis  author  knowledge,  there  is  no  other  model  that  utilizes  online  incremental  learning

methodologies against the NSL-KDD dataset for the purposes of Intrusion Detection Systems. In spite of

the fact that no other model that utilizes online incremental learning for network intrusion detection

system, the following comparisons was made to evaluate the accuracy - recognition results of this

framework:  Muna  and  Mehrotra proposed a network intrusion detection system based on Fuzzy logic -

neural network hybrid model that evaluated on the KDD-99 dataset (Muna  and  Mehrotra, 2010 285 -

294), Abuadlla, Yousef, et al.  proposed a network intrusion detection system based on a 2 layer neural

network (Abuadlla, Yousef, et al., 2014 : 601 - 622) both of these models were evaluated on the KDD-99

or its derivative. 

Figure 22: Online vs Offline Method Chart

The performance comparison chart as seen in Fig. 21 compares this thesis framework online accuracy
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result with the other 2 offline accuracy results in the 5 multi-class problem. The fact that n-SOINN-SVM

incremental learning accuracy results performed better than Muna's  and  Mehrotra's proposed model

and it is comparable to  Abuadlla, Yousef, et al. proposed model, shows that this thesis proposed model

not only proves proof-of-concept which it could incrementally improved its detection capabilities over

input network data, a novelty that according to this thesis author knowledge no other model is offering,

but it is also comparable and performs well against its selection of offline counterparts. Similarly, the

results as seen in Fig. 22 which compares this thesis framework offline accuracy result with the other 2

offline  accuracy  results  in  the  5  multi-class  problem  again  it  shows  that  n-SOINN-SVM  is  also

comparable and performs well against its selection of offline counterparts. 

Incremental learning algorithms allows the classifier to refine and improve its capabilities over time

(input data) in contrast to an offline or batch learning algorithm where the classifier is assumed to be

exposed to the input data once - in a batch. Network data dynamically change over time and applying

static learned models degrades the detection performance significantly over time, making an offline

algorithm not suitable for a network intrusion detection system. 

The initial learning was performed with a relative small sample of data compared to the dataset. If for

example the proposed framework was implemented in a commercial application as a cloud service, the

initial  learning,  in  time  and  with  client  applications  increasing,  could  be  a  continuous  updated

accumulated knowledge with continuously better and more accurate initial results. The application will

then update incrementally and improve its detection capabilities based on the data available to that

specific network.

The example above its just one application implementation that the proposed framework could be of a

valuable addition to the computer and network security industry, the proposed framework could

provide  the basis for an industrial intelligent network intrusion detection system.    
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Chapter 7
Conclusion

In summary,  the proposed framework could help build an industrial Network Intrusion Protection

System where it could incrementally improved its detection capabilities over input network data with

the objective to protect  devices - nodes connected to that network. 

This paper proposes a novel Network Intrusion Prevention System based on an incremental machine

learning framework where it achieves high accurate results comparable to most of the offline neural

network-based NIDS. 

The evaluation results shows that the proposed framework can achieve on-line updated incremental

learning in a fast and efficient manner making it suitable for scaling applications.

The framework's ability to adapt to the dynamic profile nature of network data, its life-long learning

capabilities  and the  use  of  minimal  resources  with  a small  sample  data  initialization,  indicate  a

promising prospect for further development towards a future industrial application. 

An intelligent Network Intrusion Protection System could be an appropriate solution for Internet of

Things devices as well, since IoT connected devices have limited hardware resources and the rate of IoT

devices connected to the internet is growing exponentially. 

These are exciting times for Artificial Intelligence and its potential in all areas of human life is enormous,

it  could  help  security  professionals  advance  the  tools  in  their  disposal  to  defend  and  protect

organizations resources and technology users alike. The author believes that this postgraduate thesis

will contribute to the research of artificial intelligence applied to researchers in academia and the

network computer security.
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Appendix A
The Code

The code was written in Python programming language.

A.1 Preparation of Data

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from numpy import array
from numpy import isnan,isinf
import joblib
from pathlib import Path
import os 
from sklearn.model_selection import train_test_split

global columns_names
global nominal_inx
global nominal_inx_labels
global binary_inx
global non_numeric_inx
global non_numeric_inx_labels
global labels
global attack_dict
global dir_path
global path

dir_path = os.path.dirname(os.path.realpath(__file__))
path = Path(dir_path)

columns_names = ["duration","protocol_type","service","flag","src_bytes",
    "dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins",
    "logged_in","num_compromised","root_shell","su_attempted","num_root",
    "num_file_creations","num_shells","num_access_files","num_outbound_cmds",
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    "is_host_login","is_guest_login","count","srv_count","serror_rate",
    "srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate",
    "diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count",
    "dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate",
    "dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate",
    "dst_host_rerror_rate","dst_host_srv_rerror_rate","labels","unknown"]

nominal_inx = ['protocol_type','service','flag', 'labels']
nominal_inx_labels = ['protocol_type','service','flag']
binary_inx = 
['land','logged_in','root_shell','su_attempted','is_host_login','is_guest_login','src_bytes'
, 'dst_bytes']
non_numeric_inx = nominal_inx + binary_inx
non_numeric_inx_labels = nominal_inx_labels + binary_inx
labels = ['labels']

attack_dict = {
    'normal': 'normal',
    
    'back': 'DoS',
    'land': 'DoS',
    'neptune': 'DoS',
    'pod': 'DoS',
    'smurf': 'DoS',
    'teardrop': 'DoS',
    'mailbomb': 'DoS',
    'apache2': 'DoS',
    'processtable': 'DoS',
    'udpstorm': 'DoS',
    
    'ipsweep': 'Probe',
    'nmap': 'Probe',
    'portsweep': 'Probe',
    'satan': 'Probe',
    'mscan': 'Probe',
    'saint': 'Probe',

    'ftp_write': 'R2L',
    'guess_passwd': 'R2L',
    'imap': 'R2L',
    'multihop': 'R2L',
    'phf': 'R2L',
    'spy': 'R2L',
    'warezclient': 'R2L',
    'warezmaster': 'R2L',
    'sendmail': 'R2L',
    'named': 'R2L',
    'snmpgetattack': 'R2L',
    'snmpguess': 'R2L',
    'xlock': 'R2L',
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    'xsnoop': 'R2L',
    'worm': 'R2L',
    
    'buffer_overflow': 'U2R',
    'loadmodule': 'U2R',
    'perl': 'U2R',
    'rootkit': 'U2R',
    'httptunnel': 'U2R',
    'ps': 'U2R',    
    'sqlattack': 'U2R',
    'xterm': 'U2R'
}

def train_dataset_20():
df_train = pd.read_csv(path / 'raw_data' / 'kdd20.txt', sep=',',header=None)
df_train.columns = columns_names
train_item_list = set(df_train.columns)
train_item_list = [e for e in train_item_list if e not in non_numeric_inx]
train_item_list = list(train_item_list)
train_df = df_train[train_item_list]
train_df = train_df.copy()
train_df = train_df.drop(columns='num_outbound_cmds')
train_labels_list = set(df_train.columns)
train_labels_list = [e for e in train_labels_list if e in labels]
train_labels_list = list(train_labels_list)
df_train_labels = df_train[train_labels_list]
df_train_labels = df_train_labels.copy()
df_train_labels['labels'] = df_train_labels['labels'].apply(lambda v: 

attack_dict[v])
df_train_labels['labels'] = df_train_labels['labels'].apply(lambda i: 0 if i 

=='normal' else( 1 if i =='U2R' else( 2 if i =='R2L' else( 3 if i =='DoS' else 4))))
return train_df, df_train_labels

def train_dataset():
df_train = pd.read_csv(path / 'raw_data' / 'kdd_train.txt', 

sep=',',header=None)
df_train.columns = columns_names
train_item_list = set(df_train.columns)
train_item_list = [e for e in train_item_list if e not in non_numeric_inx]
train_item_list = list(train_item_list)
train_df = df_train[train_item_list]
train_df = train_df.copy()
train_df = train_df.drop(columns='num_outbound_cmds')
train_labels_list = set(df_train.columns)
train_labels_list = [e for e in train_labels_list if e in labels]
train_labels_list = list(train_labels_list)
df_train_labels = df_train[train_labels_list]
df_train_labels = df_train_labels.copy()
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df_train_labels['labels'] = df_train_labels['labels'].apply(lambda v: 
attack_dict[v])

df_train_labels['labels'] = df_train_labels['labels'].apply(lambda i: 0 if i 
=='normal' else( 1 if i =='U2R' else( 2 if i =='R2L' else( 3 if i =='DoS' else 4))))

return train_df, df_train_labels

def split_full_train_dataset():
full_train_df, full_df_train_labels = full_train_dataset()
train_df, update_df, df_train_labels, df_update_labels = 

train_test_split(full_train_df, full_df_train_labels, test_size=0.4, random_state=0)
return train_df, df_train_labels, update_df, df_update_labels

def split_train_dataset():
train_df, df_train_labels, update_df, df_update_labels = 

split_full_train_dataset()
return train_df, df_train_labels

def update_dataset():
train_df, df_train_labels, update_df, df_update_labels = 

split_full_train_dataset()
return update_df, df_update_labels

def train_dataset_with_labels():
df_train = pd.read_csv(path / 'raw_data' / 'kdd_train.txt', 

sep=',',header=None)
df_train.columns = columns_names
train_item_list_labels = set(df_train.columns)
train_item_list_labels = [e for e in train_item_list_labels if e not in 

non_numeric_inx_labels]
train_item_list_labels = list(train_item_list_labels)
train_df_with_labels = df_train[train_item_list_labels]
train_df_with_labels = train_df_with_labels.copy()
train_df_with_labels = 

train_df_with_labels.drop(columns='num_outbound_cmds')
train_df_with_labels['labels'] = train_df_with_labels['labels'].apply(lambda v:

attack_dict[v])
train_df_with_labels['labels'] = train_df_with_labels['labels'].apply(lambda i: 

0 if i =='normal' else( 1 if i =='U2R' else( 2 if i =='R2L' else( 3 if i =='DoS' else 4))))
return train_df_with_labels

def train_dataset_20_with_labels():
df_train = pd.read_csv(path / 'raw_data' / 'kdd20.txt', sep=',',header=None)
df_train.columns = columns_names
train_item_list_labels = set(df_train.columns)
train_item_list_labels = [e for e in train_item_list_labels if e not in 

non_numeric_inx_labels]
train_item_list_labels = list(train_item_list_labels)
train_df_with_labels = df_train[train_item_list_labels]
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train_df_with_labels = train_df_with_labels.copy()
train_df_with_labels = 

train_df_with_labels.drop(columns='num_outbound_cmds')
train_df_with_labels['labels'] = train_df_with_labels['labels'].apply(lambda v:

attack_dict[v])
train_df_with_labels['labels'] = train_df_with_labels['labels'].apply(lambda i: 

0 if i =='normal' else( 1 if i =='U2R' else( 2 if i =='R2L' else( 3 if i =='DoS' else 4))))
return train_df_with_labels

def test_dataset():
df_test = pd.read_csv(path / 'raw_data' / 'kdd_test.txt', sep=',',header=None)
df_test.columns = columns_names
test_item_list = set(df_test.columns)
test_item_list = [e for e in test_item_list if e not in non_numeric_inx]
test_item_list = list(test_item_list)
test_df = df_test[test_item_list]
test_df = test_df.copy()
test_df = test_df.drop(columns='num_outbound_cmds')
test_labels_list = set(df_test.columns)
test_labels_list = [e for e in test_labels_list if e in labels]
test_labels_list = list(test_labels_list)
df_test_labels = df_test[test_labels_list]
df_test_labels = df_test_labels.copy()
df_test_labels['labels'] = df_test_labels['labels'].apply(lambda v: 

attack_dict[v])
df_test_labels['labels'] = df_test_labels['labels'].apply(lambda i: 0 if i 

=='normal' else( 1 if i =='U2R' else( 2 if i =='R2L' else( 3 if i =='DoS' else 4))))
return test_df, df_test_labels

def test_dataset_with_labels():
df_test = pd.read_csv(path / 'raw_data' / 'kdd_test.txt', sep=',',header=None)
df_test.columns = columns_names
test_item_list_labels = set(df_test.columns)
test_item_list_labels = [e for e in test_item_list_labels if e not in 

non_numeric_inx_labels]
test_item_list_labels = list(test_item_list_labels)
test_df_with_labels = df_test[test_item_list_labels]
test_df_with_labels = test_df_with_labels.copy()
test_df_with_labels = 

test_df_with_labels.drop(columns='num_outbound_cmds')
test_df_with_labels['labels'] = test_df_with_labels['labels'].apply(lambda v: 

attack_dict[v])
test_df_with_labels['labels'] = test_df_with_labels['labels'].apply(lambda i: 0 

if i =='normal' else( 1 if i =='U2R' else( 2 if i =='R2L' else( 3 if i =='DoS' else 4))))
return test_df_with_labels

def soinn_full_train_data():
train_df, df_train_labels = train_dataset()
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train_df = train_df.as_matrix(columns=None)
train_df = train_df.astype('float')
df_train_labels = df_train_labels.to_records(index=False)
df_train_labels = list(df_train_labels.astype('float').view('float'))
return train_df, df_train_labels

def soinn_train_data(attack):

if attack == 'normal':
train_df_with_labels = test_dataset_with_labels()
#train_df, df_train_labels = train_dataset_20()
train_df_normal = 

train_df_with_labels.loc[train_df_with_labels['labels'] == 0]
#df_train_labels_normal = df_train_labels.loc[df_train_labels['labels'] 

== 0]
train_df_normal = train_df_normal.drop(columns='labels')
train_df_normal = train_df_normal.as_matrix(columns=None)
train_df_normal = train_df_normal.astype('float')
#df_train_labels_normal = 

df_train_labels_normal.to_records(index=False)
#df_train_labels_normal = 

list(df_train_labels_normal.astype('float').view('float'))

elif attack == 'U2R':
train_df_with_labels = test_dataset_with_labels()
#train_df, df_train_labels = train_dataset_20()
train_df_U2R = train_df_with_labels.loc[train_df_with_labels['labels'] 

== 1]
#df_train_labels_U2R = df_train_labels.loc[df_train_labels['labels'] == 

1]
train_df_U2R = train_df_U2R.drop(columns='labels')
train_df_U2R = train_df_U2R.as_matrix(columns=None)
train_df_U2R = train_df_U2R.astype('float')
#df_train_labels_U2R = df_train_labels_U2R.to_records(index=False)
#df_train_labels_U2R = 

list(df_train_labels_U2R.astype('float').view('float'))

elif attack == 'R2L':
train_df_with_labels = test_dataset_with_labels()
#train_df, df_train_labels = train_dataset_20()
train_df_R2L = train_df_with_labels.loc[train_df_with_labels['labels'] 

== 2]
#df_train_labels_R2L = df_train_labels.loc[df_train_labels['labels'] == 

2]
train_df_R2L = train_df_R2L.drop(columns='labels')
train_df_R2L = train_df_R2L.as_matrix(columns=None)
train_df_R2L = train_df_R2L.astype('float')
#df_train_labels_R2L = df_train_labels_R2L.to_records(index=False)
#df_train_labels_R2L = 
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list(df_train_labels_R2L.astype('float').view('float'))

elif attack == 'DoS':
train_df_with_labels = test_dataset_with_labels()
#train_df, df_train_labels = train_dataset_20()
train_df_DoS = train_df_with_labels.loc[train_df_with_labels['labels'] 

== 3]
#df_train_labels_DoS = df_train_labels.loc[df_train_labels['labels'] == 

3]
train_df_DoS = train_df_DoS.drop(columns='labels')
train_df_DoS = train_df_DoS.as_matrix(columns=None)
train_df_DoS = train_df_DoS.astype('float')
#df_train_labels_DoS = df_train_labels_DoS.to_records(index=False)
#df_train_labels_DoS = 

list(df_train_labels_DoS.astype('float').view('float'))

else:
train_df_with_labels = test_dataset_with_labels()
#train_df, df_train_labels = train_dataset_20()
train_df_Probe = 

train_df_with_labels.loc[train_df_with_labels['labels'] == 4]
#df_train_labels_Probe = df_train_labels.loc[df_train_labels['labels'] 

== 4]
train_df_Probe = train_df_Probe.drop(columns='labels')
train_df_Probe = train_df_Probe.as_matrix(columns=None)
train_df_Probe = train_df_Probe.astype('float')
#df_train_labels_Probe = 

df_train_labels_Probe.to_records(index=False)
#df_train_labels_Probe = 

list(df_train_labels_Probe.astype('float').view('float'))

train_df_data = eval('train_df_{0}'.format(attack))
#df_train_labels_data = eval('df_train_labels_{0}'.format(attack))

return train_df_data#, df_train_labels_data

if __name__ == '__main__':
#train, labels = train_dataset()
#train_u, labels_u = update_dataset()
#train_t, labels_t = test_dataset()
#print train.head
#print train_u.head
#print train_t.head
#test_df, df_test_labels = test_dataset()
#print test_df.head
split_full_train_dataset()
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A.2 n_SOINN

import numpy as np
from scipy.sparse import dok_matrix
import util

class Soinn(object):

    def __init__(self,n_soinn=2, delete_node_period=300, max_edge_age=50):

        self.n_soinn = n_soinn
        self.delete_node_period = delete_node_period
        self.max_edge_age = max_edge_age
        self.min_degree = 1
        self.num_signal = 0
        self.nodes = np.array([], dtype=np.float64)
        self.winning_times = []
        self.winning_times1st = []
        self.winning_times2nd = []
        self.adjacent_mat = dok_matrix((0, 0), dtype=np.float64)
        self.n2nd = 0
        self.n1st = 0

    def input_signal(self, signal, learning=True):

        self.__check_signal(signal)
        self.num_signal += 1

        if self.nodes.shape[0] < 3:
            self.__add_node(signal)
            return

        winner, dists = self.__find_nearest_nodes(2, signal)

        if not learning:
            return winner

        sim_thresholds = self.calculate_similarity_thresholds(winner)
        if (dists[0] > sim_thresholds[0] and self.n2nd > self.n_soinn) or (dists[1] > 
sim_thresholds[1] and self.n2nd > self.n_soinn):
            self.__add_node(signal)
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        else:
            self.__add_edge(winner)
            self.__increment_edge_ages(winner[1])
            winner[1] = self.__delete_old_edges(winner[1])
            #print ('winner_beofre = ',winner)
            self.__update_winner(winner[0], winner[1], signal)
            #print ('winner_after = ',winner)
            #print ('self.n_soinn = ',self.n_soinn)
            #print ('self.n2nd = ',self.n2nd)
            #print ('self.n1st = ',self.n1st)
            #exit()
            self.__update_adjacent_nodes(winner[1], signal)

        #if self.num_signal % self.delete_node_period == 0:
         #   self.__delete_noise_nodes()
        return winner

    def __check_signal(self, signal):

        if not(isinstance(signal, np.ndarray)):
            raise TypeError()
        if len(signal.shape) != 1:
            raise TypeError()
        if not(hasattr(self, 'dim')):
            self.dim = signal.shape[0]
        else:
            if signal.shape[0] != self.dim:
                raise TypeError()

    def __add_node(self, signal):
        n = self.nodes.shape[0]
        self.nodes.resize((n + 1, self.dim))
        self.nodes[-1, :] = signal
        self.winning_times1st.append(1)
        self.winning_times2nd.append(1)
        self.winning_times.append(1)
        self.adjacent_mat.resize((n + 1, n + 1))

    def __find_nearest_nodes(self, num, signal, mahar=True):
        #if mahar: return self.__find_nearest_nodes_by_mahar(num, signal)
        n = self.nodes.shape[0]
        indexes = [0.0] * num
        sq_dists = [0.0] * num
        D = util.calc_distance(self.nodes, np.asarray([signal] * n))
        for i in range(num):
            indexes[i] = np.nanargmin(D)
            sq_dists[i] = D[indexes[i]]
            D[indexes[i]] = float('nan')
        return indexes, sq_dists
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    def __find_nearest_nodes_by_mahar(self, num, signal):
        indexes, sq_dists = util.calc_mahalanobis(self.nodes, signal, 2)
        return indexes, sq_dists

    def calculate_similarity_thresholds(self, node_indexes):
        sim_thresholds = []
        for i in node_indexes:
            pals = self.adjacent_mat[i, :]
            if len(pals) == 0:
                idx, sq_dists = self.__find_nearest_nodes(2, self.nodes[i, :])
                sim_thresholds.append(sq_dists[1])
            else:
                pal_indexes = []
                for k in pals.keys():
                    pal_indexes.append(k[1])
                sq_dists = util.calc_distance(self.nodes[pal_indexes], 
np.asarray([self.nodes[i]] * len(pal_indexes)))
                sim_thresholds.append(np.max(sq_dists))
        return sim_thresholds

    def __add_edge(self, node_indexes):
        self.__set_edge_weight(node_indexes, 1)

    def __increment_edge_ages(self, winner_index):
        for k, v in self.adjacent_mat[winner_index, :].items():
            self.__set_edge_weight((winner_index, k[1]), v + 1)

    def __delete_old_edges(self, winner_index):
        candidates = []
        for k, v in self.adjacent_mat[winner_index, :].items():
            if v > self.max_edge_age + 1:
                candidates.append(k[1])
                self.__set_edge_weight((winner_index, k[1]), 0)
        delete_indexes = []
        for i in candidates:
            if len(self.adjacent_mat[i, :]) == 0:
                delete_indexes.append(i)
        self.__delete_nodes(delete_indexes)
        delete_count = sum([1 if i < winner_index else 0 for i in delete_indexes])
        return winner_index - delete_count

    def __set_edge_weight(self, index, weight):
        self.adjacent_mat[index[0], index[1]] = weight
        self.adjacent_mat[index[1], index[0]] = weight

    def __update_winner(self, winner_index0, winner_index, signal):
        self.winning_times[winner_index] += 1
        w = self.nodes[winner_index]
        self.nodes[winner_index] = w + (signal - w)/self.winning_times[winner_index]
        self.winning_times1st[winner_index0] += 1
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        #self.winning_times1st.append(1)
        #self.winning_times2nd[winner_index] += 1 
        self.n1st = self.winning_times1st[winner_index0]
        if self.n1st > self.n_soinn:
            self.winning_times2nd[winner_index] += 1
            #self.winning_times2nd.append(1)
        self.n2nd = self.winning_times2nd[winner_index]
        
    def __update_adjacent_nodes(self, winner_index, signal):
        pals = self.adjacent_mat[winner_index]
        for k in pals.keys():
            i = k[1]
            w = self.nodes[i]
            self.nodes[i] = w + (signal - w)/(100 * self.winning_times[i])

    def __delete_nodes(self, indexes):
        n = len(self.winning_times)
        self.nodes = np.delete(self.nodes, indexes, 0)
        remained_indexes = list(set([i for i in range(n)]) - set(indexes))
        self.winning_times = [self.winning_times[i] for i in remained_indexes]
        #_old_ver_adjacent_mat = self.adjacent_mat[np.ix_(remained_indexes, 
remained_indexes)]
        self.__update_adjacent_mat(indexes, n, len(remained_indexes))
        #assert (_old_ver_adjacent_mat.toarray() == self.adjacent_mat.toarray()).all()

    def __update_adjacent_mat(self, indexes, prev_n, next_n):
        while indexes:
            next_adjacent_mat = dok_matrix((prev_n, prev_n))
            for key1, key2 in self.adjacent_mat.keys():
                if key1 == indexes[0] or key2 == indexes[0]:
                    continue
                if key1 > indexes[0]:
                    new_key1 = key1 - 1
                else:
                    new_key1 = key1
                if key2 > indexes[0]:
                    new_key2 = key2 - 1
                else:
                    new_key2 = key2

                next_adjacent_mat[new_key1, new_key2] = super(dok_matrix, 
self.adjacent_mat).__getitem__((key1, key2))
            self.adjacent_mat = next_adjacent_mat.copy()
            indexes = [i-1 for i in indexes]
            indexes.pop(0)
        self.adjacent_mat.resize((next_n, next_n))

    def __delete_nodes2(self, indexes):
        n = len(self.winning_times)
        self.nodes = np.delete(self.nodes, indexes, 0)
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        remained_indexes = list(set([i for i in range(n)]) - set(indexes))
        self.winning_times = [self.winning_times[i] for i in remained_indexes]
        self.adjacent_mat = self.adjacent_mat[np.ix_(remained_indexes, 
remained_indexes)]

    def __delete_noise_nodes(self):
        n = len(self.winning_times)
        noise_indexes = []
        for i in range(n):
            if len(self.adjacent_mat[i, :]) < self.min_degree:
                noise_indexes.append(i)
        if noise_indexes:
            self.__delete_nodes(noise_indexes)

    def print_info(self):
        print('Total Nodes: {0}'.format(len(self.nodes)))

    def save(self, dumpfile='soinn.dump'):
        import joblib
        joblib.dump(self, dumpfile, compress=True, protocol=0)

A.2.1 n_SOINN's Standard Euclidean Distance

import numpy as np
import scipy
from scipy.spatial import distance
from scipy.spatial.distance import pdist

def calc_distance(x, y):

    V = np.var(x,axis=0)
    V[V == 0] = 1
    for z,w in zip(x,y):
        dist_list.append(distance.seuclidean(z,w,V))
    return np.array(dist_list)
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A.3 Create n_SOINNs Pairs

from n_soinn import Soinn
from collections import defaultdict
from pathlib import Path
import os

def learning(soinn, x_train):
    for i, data_x in enumerate(x_train):
        if i % 1000 == 0:
            print('Processing {0}th data.'.format(i))
        soinn.input_signal(data_x)
   
def print_soinn_info(soinn_nodes):
    for i, node in enumerate(soinn_nodes):
        print('node[{0}] values: {1}'.format(i, node))
    
def create_soinns(data, n_soinn_number, category, delete_period, max_age ):
    train_data = data
    n_soinn = n_soinn_number
    delete_node_period = delete_period
    max_edge_age = max_age
    category_label = category
    dir_path = os.path.dirname(os.path.realpath(__file__))
    path = Path(dir_path)
    dumpfile = path / 'dump' / 'SOINNs' / 
'soinn{0}_{1}.dump'.format(n_soinn,category_label)
    print('New SOINN is created.')
    soinn_i = Soinn(n_soinn, 
delete_node_period=delete_node_period,max_edge_age=max_edge_age)
    learning(soinn_i, train_data)
    soinn_i.print_info()
    soinn_i.save(dumpfile)

if __name__ == '__main__':

data,labels = soinn_train_data('normal')
n_soinn_number = 2
category = 'normal'
delete_period = 100
max_age = 30
create_soinns(data, labels, n_soinn_number, category, delete_period, 

max_age)
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A.4 Prepare Binary SVMs Input Data

from sklearn.svm import SVC
#from sklearn.svm import LinearSVC
import pandas as pd
import joblib
from pathlib import Path
from sklearn.model_selection import GridSearchCV
import numpy as np
import os 
global path
#import time
#start_time = time.time()

dir_path = os.path.dirname(os.path.realpath(__file__))
path = Path(dir_path)

global normal_negatives
global Probe_negatives
global R2L_negatives
global U2R_negatives
global DoS_negatives

normal_negatives = ['DoS', 'U2R', 'R2L', 'Probe']
Probe_negatives = ['DoS', 'U2R', 'R2L', 'normal']
R2L_negatives = ['DoS', 'U2R', 'Probe', 'normal']
U2R_negatives = ['DoS', 'R2L', 'Probe', 'normal']
DoS_negatives = ['U2R', 'R2L', 'Probe', 'normal']

def svm_train_data(category_label):

normal_negatives_soinns = []
Probe_negatives_soinns = []
R2L_negatives_soinns = []
U2R_negatives_soinns = []
DoS_negatives_soinns = []

lo_soinn_dumpfile = path / 'dump' / 'SOINNs' / 
'soinn2_{0}.dump'.format(category_label)

hi_soinn_dumpfile = path / 'dump' / 'SOINNs' / 
'soinn100_{0}.dump'.format(category_label)

df_pos_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_{0}_pos.dump'.format(category_label)

df_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_{0}_neg.dump'.format(category_label)

df_svm_dumpfile = path / 'dump' / 'svms_datasets' / 
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'df_svm_{0}.dump'.format(category_label)
df_svm_labels_dumpfile = path / 'dump' / 'svms_datasets' / 

'df_svm_{0}_labels.dump'.format(category_label)

if category_label == 'normal':

try:
df_svm_normal = joblib.load(df_svm_dumpfile)
df_svm_normal_labels = joblib.load(df_svm_labels_dumpfile)

except:

try:

df_normal_pos = joblib.load(df_pos_dumpfile)
for normal_negative in normal_negatives:

df_soinn_neg_dumpfile = path / 'dump' / 
'Soinns_datasets' / 'df_{0}_neg.dump'.format(normal_negative)

normal_df_neg = 
joblib.load(df_soinn_neg_dumpfile)

normal_negatives_soinns.append(normal_df_neg)

except:
lo_soinn_normal = joblib.load(lo_soinn_dumpfile)
pos_values_normal = []
for node in lo_soinn_normal.nodes:

pos_values_normal.append(list(node))
df_normal_pos = pd.DataFrame(pos_values_normal)
df_normal_pos.loc[:,'labels'] = 1
joblib.dump(df_normal_pos, df_pos_dumpfile)

for normal_negative in normal_negatives:
hi_neg_soinn_dumpfile = path / 'dump' / 

'SOINNs' / 'soinn100_{0}.dump'.format(normal_negative)
hi_soinn = joblib.load(hi_neg_soinn_dumpfile)
neg_values = []
df_soinn_neg_dumpfile = path / 'dump' / 

'Soinns_datasets' / 'df_{0}_neg.dump'.format(normal_negative)
for node in hi_soinn.nodes:

neg_values.append(list(node))
normal_df_neg = pd.DataFrame(neg_values)
normal_df_neg.loc[:,'labels'] = 0

normal_negatives_soinns.append(normal_df_neg)
joblib.dump(normal_df_neg, 

df_soinn_neg_dumpfile)

df_svm_normal = 
df_normal_pos.append(normal_negatives_soinns)
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df_svm_normal_labels = df_svm_normal['labels']
df_svm_normal = df_svm_normal.drop(columns='labels')
joblib.dump(df_svm_normal, df_svm_dumpfile)
joblib.dump(df_svm_normal_labels, df_svm_labels_dumpfile)

elif category_label == 'Probe':

try:
df_svm_Probe = joblib.load(df_svm_dumpfile)
df_svm_Probe_labels = joblib.load(df_svm_labels_dumpfile)

except:

try:

df_Probe_pos = joblib.load(df_pos_dumpfile)
for Probe_negative in Probe_negatives:

df_soinn_neg_dumpfile = path / 'dump' / 
'Soinns_datasets' / 'df_{0}_neg.dump'.format(Probe_negative)

Probe_df_neg = 
joblib.load(df_soinn_neg_dumpfile)

Probe_negatives_soinns.append(Probe_df_neg)

except:
lo_soinn_Probe = joblib.load(lo_soinn_dumpfile)
pos_values_Probe = []
for node in lo_soinn_Probe.nodes:

pos_values_Probe.append(list(node))
df_Probe_pos = pd.DataFrame(pos_values_Probe)
df_Probe_pos.loc[:,'labels'] = 1
joblib.dump(df_Probe_pos, df_pos_dumpfile)

for Probe_negative in Probe_negatives:
hi_neg_soinn_dumpfile = path / 'dump' / 

'SOINNs' / 'soinn100_{0}.dump'.format(Probe_negative)
hi_soinn = joblib.load(hi_neg_soinn_dumpfile)
neg_values = []
df_soinn_neg_dumpfile = path / 'dump' / 

'Soinns_datasets' / 'df_{0}_neg.dump'.format(Probe_negative)
for node in hi_soinn.nodes:

neg_values.append(list(node))
Probe_df_neg = pd.DataFrame(neg_values)
Probe_df_neg.loc[:,'labels'] = 0
Probe_negatives_soinns.append(Probe_df_neg)
joblib.dump(Probe_df_neg, 

df_soinn_neg_dumpfile)

df_svm_Probe = 
df_Probe_pos.append(Probe_negatives_soinns)

df_svm_Probe_labels = df_svm_Probe['labels']
df_svm_Probe = df_svm_Probe.drop(columns='labels')
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joblib.dump(df_svm_Probe, df_svm_dumpfile)
joblib.dump(df_svm_Probe_labels, df_svm_labels_dumpfile)

elif category_label == 'R2L':

try:
df_svm_R2L = joblib.load(df_svm_dumpfile)
df_svm_R2L_labels = joblib.load(df_svm_labels_dumpfile)

except:

try:

df_R2L_pos = joblib.load(df_pos_dumpfile)
for R2L_negative in R2L_negatives:

df_soinn_neg_dumpfile = path / 'dump' / 
'Soinns_datasets' / 'df_{0}_neg.dump'.format(R2L_negative)

R2L_df_neg = 
joblib.load(df_soinn_neg_dumpfile)

R2L_negatives_soinns.append(R2L_df_neg)

except:
lo_soinn_R2L = joblib.load(lo_soinn_dumpfile)
pos_values_R2L = []
for node in lo_soinn_R2L.nodes:

pos_values_R2L.append(list(node))
df_R2L_pos = pd.DataFrame(pos_values_R2L)
df_R2L_pos.loc[:,'labels'] = 1
joblib.dump(df_R2L_pos, df_pos_dumpfile)

for R2L_negative in R2L_negatives:
hi_neg_soinn_dumpfile = path / 'dump' / 

'SOINNs' / 'soinn100_{0}.dump'.format(R2L_negative)
hi_soinn = joblib.load(hi_neg_soinn_dumpfile)
neg_values = []
df_soinn_neg_dumpfile = path / 'dump' / 

'Soinns_datasets' / 'df_{0}_neg.dump'.format(R2L_negative)
for node in hi_soinn.nodes:

neg_values.append(list(node))
R2L_df_neg = pd.DataFrame(neg_values)
R2L_df_neg.loc[:,'labels'] = 0
R2L_negatives_soinns.append(R2L_df_neg)
joblib.dump(R2L_df_neg, 

df_soinn_neg_dumpfile)

df_svm_R2L = df_R2L_pos.append(R2L_negatives_soinns)
df_svm_R2L_labels = df_svm_R2L['labels']
df_svm_R2L = df_svm_R2L.drop(columns='labels')
joblib.dump(df_svm_R2L, df_svm_dumpfile)
joblib.dump(df_svm_R2L_labels, df_svm_labels_dumpfile)
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elif category_label == 'U2R':

try:
df_svm_U2R = joblib.load(df_svm_dumpfile)
df_svm_U2R_labels = joblib.load(df_svm_labels_dumpfile)

except:

try:

df_U2R_pos = joblib.load(df_pos_dumpfile)
for U2R_negative in U2R_negatives:

df_soinn_neg_dumpfile = path / 'dump' / 
'Soinns_datasets' / 'df_{0}_neg.dump'.format(U2R_negative)

U2R_df_neg = 
joblib.load(df_soinn_neg_dumpfile)

U2R_negatives_soinns.append(U2R_df_neg)

except:
lo_soinn_U2R = joblib.load(lo_soinn_dumpfile)
pos_values_U2R = []
for node in lo_soinn_U2R.nodes:

pos_values_U2R.append(list(node))
df_U2R_pos = pd.DataFrame(pos_values_U2R)
df_U2R_pos.loc[:,'labels'] = 1
joblib.dump(df_U2R_pos, df_pos_dumpfile)

for U2R_negative in U2R_negatives:
hi_neg_soinn_dumpfile = path / 'dump' / 

'SOINNs' / 'soinn100_{0}.dump'.format(U2R_negative)
hi_soinn = joblib.load(hi_neg_soinn_dumpfile)
neg_values = []
df_soinn_neg_dumpfile = path / 'dump' / 

'Soinns_datasets' / 'df_{0}_neg.dump'.format(U2R_negative)
for node in hi_soinn.nodes:

neg_values.append(list(node))
U2R_df_neg = pd.DataFrame(neg_values)
U2R_df_neg.loc[:,'labels'] = 0
U2R_negatives_soinns.append(U2R_df_neg)
joblib.dump(U2R_df_neg, 

df_soinn_neg_dumpfile)

df_svm_U2R = df_U2R_pos.append(U2R_negatives_soinns)
df_svm_U2R_labels = df_svm_U2R['labels']
df_svm_U2R = df_svm_U2R.drop(columns='labels')
joblib.dump(df_svm_U2R, df_svm_dumpfile)
joblib.dump(df_svm_U2R_labels, df_svm_labels_dumpfile)
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else:

try:
df_svm_DoS = joblib.load(df_svm_dumpfile)
df_svm_DoS_labels = joblib.load(df_svm_labels_dumpfile)

except:

try:

df_DoS_pos = joblib.load(df_pos_dumpfile)
for DoS_negative in DoS_negatives:

df_soinn_neg_dumpfile = path / 'dump' / 
'Soinns_datasets' / 'df_{0}_neg.dump'.format(DoS_negative)

DoS_df_neg = 
joblib.load(df_soinn_neg_dumpfile)

DoS_negatives_soinns.append(DoS_df_neg)

except:
lo_soinn_DoS = joblib.load(lo_soinn_dumpfile)
pos_values_DoS = []
for node in lo_soinn_DoS.nodes:

pos_values_DoS.append(list(node))
df_DoS_pos = pd.DataFrame(pos_values_DoS)
df_DoS_pos.loc[:,'labels'] = 1
joblib.dump(df_DoS_pos, df_pos_dumpfile)

for DoS_negative in DoS_negatives:
hi_neg_soinn_dumpfile = path / 'dump' / 

'SOINNs' / 'soinn100_{0}.dump'.format(DoS_negative)
hi_soinn = joblib.load(hi_neg_soinn_dumpfile)
neg_values = []
df_soinn_neg_dumpfile = path / 'dump' / 

'Soinns_datasets' / 'df_{0}_neg.dump'.format(DoS_negative)
for node in hi_soinn.nodes:

neg_values.append(list(node))
DoS_df_neg = pd.DataFrame(neg_values)
DoS_df_neg.loc[:,'labels'] = 0
DoS_negatives_soinns.append(DoS_df_neg)
joblib.dump(DoS_df_neg, 

df_soinn_neg_dumpfile)

df_svm_DoS = df_DoS_pos.append(DoS_negatives_soinns)
df_svm_DoS_labels = df_svm_DoS['labels']
df_svm_DoS = df_svm_DoS.drop(columns='labels')
joblib.dump(df_svm_DoS, df_svm_dumpfile)
joblib.dump(df_svm_DoS_labels, df_svm_labels_dumpfile)

svm_train_data = eval('df_svm_{0}'.format(category_label))
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svm_train_labels = eval('df_svm_{0}_labels'.format(category_label))

svm_train_data = svm_train_data.reset_index(drop=True)
svm_train_labels = svm_train_labels.reset_index(drop=True)

return svm_train_data, svm_train_labels

A.5 Prepare Multi-class SVMs Input Data

def multiclass_svm_datasets(category_label, updating=False):

df_pos_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_{0}_pos.dump'.format(category_label)

df_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_{0}_neg.dump'.format(category_label)

dumpfile = path / 'dump'/ 'multi_svms_datasets' / 
'df_svm_{0}.dump'.format(category_label)

dumpfile_labels = path / 'dump' / 'multi_svms_datasets' / 
'df_svm_{0}_labels.dump'.format(category_label)

if category_label == 'normal':

if updating == False:

try:
df_svm_normal = joblib.load(dumpfile)
df_svm_normal_labels = joblib.load(dumpfile_labels)

except:
print('New df_svm_normal file pairs are created.')
df_normal_pos = joblib.load(df_pos_dumpfile)
df_normal_neg = joblib.load(df_neg_dumpfile)
df_normal_pos.loc[:,'labels'] = 0
df_normal_neg.loc[:,'labels'] = 0
df_svm_normal = 

df_normal_pos.append(df_normal_neg)
df_svm_normal_labels = df_svm_normal['labels']
df_svm_normal = 

df_svm_normal.drop(columns='labels')
joblib.dump(df_svm_normal, dumpfile)
joblib.dump(df_svm_normal_labels, dumpfile_labels)

else:

print('Updating..New df_svm_normal file pairs are created.')
df_normal_pos = joblib.load(df_pos_dumpfile)
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df_normal_neg = joblib.load(df_neg_dumpfile)
df_normal_pos.loc[:,'labels'] = 0
df_normal_neg.loc[:,'labels'] = 0
df_svm_normal = df_normal_pos.append(df_normal_neg)
df_svm_normal_labels = df_svm_normal['labels']
df_svm_normal = df_svm_normal.drop(columns='labels')
joblib.dump(df_svm_normal, dumpfile)
joblib.dump(df_svm_normal_labels, dumpfile_labels)

elif category_label == 'Probe':

if updating == False:

try:
df_svm_Probe = joblib.load(dumpfile)
df_svm_Probe_labels = joblib.load(dumpfile_labels)

except:
print('New df_svm_Probe file pairs are created.')
df_Probe_pos = joblib.load(df_pos_dumpfile)
df_Probe_neg = joblib.load(df_neg_dumpfile)
df_Probe_pos.loc[:,'labels'] = 4
df_Probe_neg.loc[:,'labels'] = 4
df_svm_Probe = df_Probe_pos.append(df_Probe_neg)
df_svm_Probe_labels = df_svm_Probe['labels']
df_svm_Probe = df_svm_Probe.drop(columns='labels')
joblib.dump(df_svm_Probe, dumpfile)
joblib.dump(df_svm_Probe_labels, dumpfile_labels)

else:

print('Updating...New df_svm_Probe file pairs are created.')
df_Probe_pos = joblib.load(df_pos_dumpfile)
df_Probe_neg = joblib.load(df_neg_dumpfile)
df_Probe_pos.loc[:,'labels'] = 4
df_Probe_neg.loc[:,'labels'] = 4
df_svm_Probe = df_Probe_pos.append(df_Probe_neg)
df_svm_Probe_labels = df_svm_Probe['labels']
df_svm_Probe = df_svm_Probe.drop(columns='labels')
joblib.dump(df_svm_Probe, dumpfile)
joblib.dump(df_svm_Probe_labels, dumpfile_labels)

elif category_label == 'DoS':

if updating == False:

try:
df_svm_DoS = joblib.load(dumpfile)
df_svm_DoS_labels = joblib.load(dumpfile_labels)
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except:
print('New df_svm_DoS file pairs are created.')
df_DoS_pos = joblib.load(df_pos_dumpfile)
df_DoS_neg = joblib.load(df_neg_dumpfile)
df_DoS_pos.loc[:,'labels'] = 3
df_DoS_neg.loc[:,'labels'] = 3
df_svm_DoS = df_DoS_pos.append(df_DoS_neg)
df_svm_DoS_labels = df_svm_DoS['labels']
df_svm_DoS = df_svm_DoS.drop(columns='labels')
joblib.dump(df_svm_DoS, dumpfile)
joblib.dump(df_svm_DoS_labels, dumpfile_labels)

else:

print('Updating..New df_svm_DoS file pairs are created.')
df_DoS_pos = joblib.load(df_pos_dumpfile)
df_DoS_neg = joblib.load(df_neg_dumpfile)
df_DoS_pos.loc[:,'labels'] = 3
df_DoS_neg.loc[:,'labels'] = 3
df_svm_DoS = df_DoS_pos.append(df_DoS_neg)
df_svm_DoS_labels = df_svm_DoS['labels']
df_svm_DoS = df_svm_DoS.drop(columns='labels')
joblib.dump(df_svm_DoS, dumpfile)
joblib.dump(df_svm_DoS_labels, dumpfile_labels)

elif category_label == 'R2L':

if updating == False:

try:
df_svm_R2L = joblib.load(dumpfile)
df_svm_R2L_labels = joblib.load(dumpfile_labels)

except:
print('New df_svm_R2L file pairs are created.')
df_R2L_pos = joblib.load(df_pos_dumpfile)
df_R2L_neg = joblib.load(df_neg_dumpfile)
df_R2L_pos.loc[:,'labels'] = 2
df_R2L_neg.loc[:,'labels'] = 2
df_svm_R2L = df_R2L_pos.append(df_R2L_neg)
df_svm_R2L_labels = df_svm_R2L['labels']
df_svm_R2L = df_svm_R2L.drop(columns='labels')
joblib.dump(df_svm_R2L, dumpfile)
joblib.dump(df_svm_R2L_labels, dumpfile_labels)

else:
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print('Updating..New df_svm_R2L file pairs are created.')
df_R2L_pos = joblib.load(df_pos_dumpfile)
df_R2L_neg = joblib.load(df_neg_dumpfile)
df_R2L_pos.loc[:,'labels'] = 2
df_R2L_neg.loc[:,'labels'] = 2
df_svm_R2L = df_R2L_pos.append(df_R2L_neg)
df_svm_R2L_labels = df_svm_R2L['labels']
df_svm_R2L = df_svm_R2L.drop(columns='labels')
joblib.dump(df_svm_R2L, dumpfile)
joblib.dump(df_svm_R2L_labels, dumpfile_labels)

 
else:

if updating == False:

try:
df_svm_U2R = joblib.load(dumpfile)
df_svm_U2R_labels = joblib.load(dumpfile_labels)

except:
print('New df_svm_U2R file pairs are created.')
df_U2R_pos = joblib.load(df_pos_dumpfile)
df_U2R_neg = joblib.load(df_neg_dumpfile)
df_U2R_pos.loc[:,'labels'] = 1
df_U2R_neg.loc[:,'labels'] = 1
df_svm_U2R = df_U2R_pos.append(df_U2R_neg)
df_svm_U2R_labels = df_svm_U2R['labels']
df_svm_U2R = df_svm_U2R.drop(columns='labels')
joblib.dump(df_svm_U2R, dumpfile)
joblib.dump(df_svm_U2R_labels, dumpfile_labels)

else:

print('Updating...New df_svm_U2R file pairs are created.')
df_U2R_pos = joblib.load(df_pos_dumpfile)
df_U2R_neg = joblib.load(df_neg_dumpfile)
df_U2R_pos.loc[:,'labels'] = 1
df_U2R_neg.loc[:,'labels'] = 1
df_svm_U2R = df_U2R_pos.append(df_U2R_neg)
df_svm_U2R_labels = df_svm_U2R['labels']
df_svm_U2R = df_svm_U2R.drop(columns='labels')
joblib.dump(df_svm_U2R, dumpfile)
joblib.dump(df_svm_U2R_labels, dumpfile_labels)

multi_svm_data = eval('df_svm_{0}'.format(category_label))
multi_svm_labels = eval('df_svm_{0}_labels'.format(category_label))

return multi_svm_data, multi_svm_labels

75



A.6 Run Binary SVM Predictions

def load_svms(category_label, updating=False):

dumpfile = path / 'dump' / 'Bin_svms' / 
'svm_{0}.dump'.format(category_label)

if category_label == 'normal':

if updating == False:
try:

svm_normal = joblib.load(dumpfile)
#print('normal SVM is loaded.')

except:
print('New normal SVM is created.')
df_svm_normal, df_svm_normal_labels = 

svm_train_data('normal')
svm_normal = SVC(C=21.9428032327, 

gamma=0.000132571136559)
#svm_normal = svm_svc()
svm_normal.fit(df_svm_normal, 

df_svm_normal_labels)
#print 'clf.best_estimator_.C = ', 

svm_normal.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_normal.best_estimator_.gamma
joblib.dump(svm_normal, dumpfile)

else:
print('New normal Updated SVM is created.') 
df_svm_normal, df_svm_normal_labels = 

svm_train_data('normal')
svm_normal = SVC(C=21.9428032327, 

gamma=0.000132571136559)
#svm_normal = svm_svc()
svm_normal.fit(df_svm_normal, df_svm_normal_labels)
#print 'clf.best_estimator_.C = ', svm_normal.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_normal.best_estimator_.gamma
joblib.dump(svm_normal, dumpfile)

elif category_label == 'Probe':

if updating == False:
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try:
svm_Probe = joblib.load(dumpfile)
#print('Probe SVM is loaded.')

except:
print('New Probe SVM is created.')
df_svm_Probe, df_svm_Probe_labels = 

svm_train_data('Probe')
#svm_Probe = svm_svc()
svm_Probe = SVC(C=26.9594844333, 

gamma=0.0001)
svm_Probe.fit(df_svm_Probe, 

df_svm_Probe_labels)
#print 'clf.best_estimator_.C = ', 

svm_Probe.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_Probe.best_estimator_.gamma
joblib.dump(svm_Probe, dumpfile)

else:
print('New Probe Updated SVM is created.')
df_svm_Probe, df_svm_Probe_labels = svm_train_data('Probe')
#svm_Probe = svm_svc()
svm_Probe = SVC(C=26.9594844333, gamma=0.0001)
svm_Probe.fit(df_svm_Probe, df_svm_Probe_labels)
#print 'clf.best_estimator_.C = ', svm_Probe.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_Probe.best_estimator_.gamma
joblib.dump(svm_Probe, dumpfile)

elif category_label == 'DoS':

if updating == False:
try:

svm_DoS = joblib.load(dumpfile)
#print('DoS SVM is loaded.')

except:
print('New DoS SVM is created.')
df_svm_DoS, df_svm_DoS_labels = 

svm_train_data('DoS')
#svm_DoS = svm_svc()
svm_DoS = SVC(C=26.9594844333, 

gamma=0.0001)
svm_DoS.fit(df_svm_DoS, df_svm_DoS_labels)
#print 'clf.best_estimator_.C = ', 

svm_DoS.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_DoS.best_estimator_.gamma
joblib.dump(svm_DoS, dumpfile)

else:
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print('New DoS Updated SVM is created.')
df_svm_DoS, df_svm_DoS_labels = svm_train_data('DoS')
#svm_DoS = svm_svc()
svm_DoS = SVC(C=26.9594844333, gamma=0.0001)
svm_DoS.fit(df_svm_DoS, df_svm_DoS_labels)
#print 'clf.best_estimator_.C = ', svm_DoS.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_DoS.best_estimator_.gamma
joblib.dump(svm_DoS, dumpfile)

elif category_label == 'R2L':

if updating == False:
try:

svm_R2L = joblib.load(dumpfile)
#print('R2L SVM is loaded.')

except:
print('New R2L SVM is created.')
df_svm_R2L, df_svm_R2L_labels = 

svm_train_data('R2L')
#svm_R2L = svm_svc()
svm_R2L = SVC(C=1.0, 

gamma=0.000494171336132)
svm_R2L.fit(df_svm_R2L, df_svm_R2L_labels)
#print 'clf.best_estimator_.C = ', 

svm_R2L.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_R2L.best_estimator_.gamma
joblib.dump(svm_R2L, dumpfile)

else:
print('New R2L Updated SVM is created.')
df_svm_R2L, df_svm_R2L_labels = svm_train_data('R2L')
#svm_R2L = svm_svc()
svm_R2L = SVC(C=1.0, gamma=0.000494171336132)
svm_R2L.fit(df_svm_R2L, df_svm_R2L_labels)
#print 'clf.best_estimator_.C = ', svm_R2L.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_R2L.best_estimator_.gamma
joblib.dump(svm_R2L, dumpfile)

else:

if updating == False:
try:

svm_U2R = joblib.load(dumpfile)
#print('U2R SVM is loaded.')

except:
print('New U2R SVM is created.')
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df_svm_U2R, df_svm_U2R_labels = 
svm_train_data('U2R')

#svm_U2R = svm_svc()
svm_U2R = SVC(C=1.50952026539, 

gamma=0.00104811313415)
svm_U2R.fit(df_svm_U2R, df_svm_U2R_labels)
#print 'clf.best_estimator_.C = ', 

svm_U2R.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_U2R.best_estimator_.gamma
joblib.dump(svm_U2R, dumpfile)

else:
print('New U2R Updated SVM is created.') 
df_svm_U2R, df_svm_U2R_labels = svm_train_data('U2R')
#svm_U2R = svm_svc()
svm_U2R = SVC(C=1.50952026539, 

gamma=0.00104811313415)
svm_U2R.fit(df_svm_U2R, df_svm_U2R_labels)
#print 'clf.best_estimator_.C = ', svm_U2R.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

svm_U2R.best_estimator_.gamma
joblib.dump(svm_U2R, dumpfile)

svm_trained = eval('svm_{0}'.format(category_label))

return svm_trained

A.7 Sort Prediction Pairs and Run multi-class SVMs

import n_soinn_svm_data
from n_soinn_svm_data import *
from sklearn.svm import SVC
#from sklearn.svm import LinearSVC
from pathlib import Path
import os
import itertools
from operator import itemgetter
import heapq

global dumpfile
global category_label
global path
global bin_svm_top3_score_list_final
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bin_svm_top3_score_list_final = []

dir_path = os.path.dirname(os.path.realpath(__file__))
path = Path(dir_path)

def get_all_prediction_pairs(test_data,test_labels):

global Scores
global Predictions
z = test_data.reshape(1,-1)

svm_normal = load_svms('normal')
normal_score_list = []
normal_pred_pair = []
normal_score = svm_normal.decision_function(z)
normal_score_list.append('normal')
normal_score_list.append(abs(normal_score))
normal_pred = svm_normal.predict(z)
normal_score_list.append(normal_pred[0])
normal_pred_pair.append(normal_score_list)

svm_Probe = load_svms('Probe')
Probe_score_list = []
Probe_pred_pair = []
Probe_score = svm_Probe.decision_function(z)
Probe_score_list.append('Probe')
Probe_score_list.append(abs(Probe_score))
Probe_pred = svm_Probe.predict(z)
Probe_score_list.append(Probe_pred[0])
Probe_pred_pair.append(Probe_score_list)

svm_DoS = load_svms('DoS')
DoS_score_list = []
DoS_pred_pair = []
DoS_score = svm_DoS.decision_function(z)
DoS_score_list.append('DoS')
DoS_score_list.append(abs(DoS_score))
DoS_pred = svm_DoS.predict(z)
DoS_score_list.append(DoS_pred[0])
DoS_pred_pair.append(DoS_score_list)

svm_R2L = load_svms('R2L')
R2L_score_list = []
R2L_pred_pair = []
R2L_score = svm_R2L.decision_function(z)
R2L_score_list.append('R2L')
R2L_score_list.append(abs(R2L_score))
R2L_pred = svm_R2L.predict(z)
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R2L_score_list.append(R2L_pred[0])
R2L_pred_pair.append(R2L_score_list)

svm_U2R = load_svms('U2R')
U2R_score_list = []
U2R_pred_pair = []
U2R_score = svm_U2R.decision_function(z)
U2R_score_list.append('U2R')
U2R_score_list.append(abs(U2R_score))
U2R_pred = svm_U2R.predict(z)
U2R_score_list.append(U2R_pred[0])
U2R_pred_pair.append(U2R_score_list)

Scores = [normal_score_list, Probe_score_list, DoS_score_list, R2L_score_list, 
U2R_score_list]

Predictions = [normal_pred, Probe_pred, DoS_pred, R2L_pred, U2R_pred]
Pred_Pairs = zip(normal_pred_pair, Probe_pred_pair, DoS_pred_pair, 

R2L_pred_pair, U2R_pred_pair)

return Scores, Predictions, Pred_Pairs

def get_top_3_score_predictions(Pred_Pairs):
top_3_list = []
for cat_labels in Pred_Pairs:

h = []
for value in cat_labels:

heapq.heappush(h, value)
top_3_list.append(heapq.nlargest(3, h, key=lambda x: x[1]))

return top_3_list[0]

#print get_top_3_score_predictions(Pred_Pairs)

def get_svm_multiclass_data_input(single_pred,updating=False):
Soinn_Data1 = None
Soinn_Data2 = None
Soinn_Data3 = None
i = 0
for pred in single_pred:

i = i + 1
if pred[0] == 'normal':

if updating == False:
df_svm_normal, df_svm_normal_labels = 

multiclass_svm_datasets('normal')
else:

df_svm_normal, df_svm_normal_labels = 
multiclass_svm_datasets('normal',True)
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df_svm_normal.loc[:,'attack'] = 'normal'
if i == 1:

Soinn_Data1 = df_svm_normal, df_svm_normal_labels
elif i == 2:

Soinn_Data2 = df_svm_normal, df_svm_normal_labels
else:

 Soinn_Data3 = df_svm_normal, df_svm_normal_labels
elif pred[0] == 'DoS':

if updating == False:
df_svm_DoS, df_svm_DoS_labels = 

multiclass_svm_datasets('DoS')
else:

df_svm_DoS, df_svm_DoS_labels = 
multiclass_svm_datasets('DoS',True)

df_svm_DoS.loc[:,'attack'] = 'DoS'
if i == 1:

Soinn_Data1 = df_svm_DoS, df_svm_DoS_labels
elif i == 2:

Soinn_Data2 = df_svm_DoS, df_svm_DoS_labels
else:

 Soinn_Data3 = df_svm_DoS, df_svm_DoS_labels
elif pred[0] == 'Probe':

if updating == False:
df_svm_Probe, df_svm_Probe_labels = 

multiclass_svm_datasets('Probe')
else:

df_svm_Probe, df_svm_Probe_labels = 
multiclass_svm_datasets('Probe',True)

df_svm_Probe.loc[:,'attack'] = 'Probe'
if i == 1:

Soinn_Data1 = df_svm_Probe, df_svm_Probe_labels
elif i == 2:

Soinn_Data2 = df_svm_Probe, df_svm_Probe_labels
else:

 Soinn_Data3 = df_svm_Probe, df_svm_Probe_labels 
elif pred[0] == 'U2R':

if updating == False:
df_svm_U2R, df_svm_U2R_labels = 

multiclass_svm_datasets('U2R')
else:

df_svm_U2R, df_svm_U2R_labels = 
multiclass_svm_datasets('U2R',True)

df_svm_U2R.loc[:,'attack'] = 'U2R'
if i == 1:

Soinn_Data1 = df_svm_U2R, df_svm_U2R_labels
elif i == 2:

Soinn_Data2 = df_svm_U2R, df_svm_U2R_labels
else:

 Soinn_Data3 = df_svm_U2R, df_svm_U2R_labels
else:
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if updating == False:
df_svm_R2L, df_svm_R2L_labels = 

multiclass_svm_datasets('R2L')
else:

df_svm_R2L, df_svm_R2L_labels = 
multiclass_svm_datasets('R2L',True)

df_svm_R2L.loc[:,'attack'] = 'R2L'
if i == 1:

Soinn_Data1 = df_svm_R2L, df_svm_R2L_labels
elif i == 2:

Soinn_Data2 = df_svm_R2L, df_svm_R2L_labels
else:

 Soinn_Data3 = df_svm_R2L, df_svm_R2L_labels
 

return Soinn_Data1, Soinn_Data2, Soinn_Data3

def train_multiclass_SVM(SVM_Data1, SVM_Data2, 
SVM_Data3,updating=False,attack_string=False):

df_svm1, df_svm_labels1 = SVM_Data1
df_svm2, df_svm_labels2 = SVM_Data2
df_svm3, df_svm_labels3 = SVM_Data3
df_svm1_cat = df_svm1.iloc[0]['attack']
df_svm2_cat = df_svm2.iloc[0]['attack']
df_svm3_cat = df_svm3.iloc[0]['attack']
df_svm1 = df_svm1.drop(columns='attack')
df_svm2 = df_svm2.drop(columns='attack')
df_svm3 = df_svm3.drop(columns='attack')
df_svm = df_svm1.append([df_svm2, df_svm3])
df_svm = df_svm.as_matrix(columns=None)
df_svm= df_svm.astype('float')
df_svm_labels = df_svm_labels1.append([df_svm_labels2, df_svm_labels3])
df_svm_labels = df_svm_labels.as_matrix(columns=None)
df_svm_labels = df_svm_labels.astype('float')

if df_svm1_cat == 'normal':
if df_svm2_cat == 'DoS':

if df_svm3_cat == 'Probe':
attack_name = 'NPD'

elif df_svm3_cat == 'U2R':
attack_name = 'NDU'

else:
attack_name = 'NDR'

elif df_svm2_cat == 'Probe':
if df_svm3_cat == 'DoS':

attack_name = 'NPD'
elif df_svm3_cat == 'U2R':

attack_name = 'NPU'
else:

attack_name = 'NPR'
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elif df_svm2_cat == 'U2R':
if df_svm3_cat == 'DoS':

attack_name = 'NDU'
elif df_svm3_cat == 'Probe':

attack_name = 'NPU'
else:

attack_name = 'NPR'
else:

if df_svm3_cat == 'DoS':
attack_name = 'NDR'

elif df_svm3_cat == 'Probe':
attack_name = 'NPR'

else:
attack_name = 'NUR'

elif df_svm1_cat == 'DoS':
if df_svm2_cat == 'normal':

if df_svm3_cat == 'Probe':
attack_name = 'NPD'

elif df_svm3_cat == 'U2R':
attack_name = 'NDU'

else:
attack_name = 'NDR'

elif df_svm2_cat == 'Probe':
if df_svm3_cat == 'normal':

attack_name = 'NPD'
elif df_svm3_cat == 'U2R':

attack_name = 'PDU'
else:

attack_name = 'PDR'
elif df_svm2_cat == 'U2R':

if df_svm3_cat == 'normal':
attack_name = 'NDU'

elif df_svm3_cat == 'Probe':
attack_name = 'PDU'

else:
attack_name = 'DUR'

else:
if df_svm3_cat == 'normal':

attack_name = 'NDR'
elif df_svm3_cat == 'Probe':

attack_name = 'PDR'
else:

attack_name = 'DUR'
elif df_svm1_cat == 'Probe':

if df_svm2_cat == 'normal':
if df_svm3_cat == 'DoS':

attack_name = 'NPD'
elif df_svm3_cat == 'U2R':

attack_name = 'NPU'
else:
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attack_name = 'NPR'
elif df_svm2_cat == 'DoS':

if df_svm3_cat == 'normal':
attack_name = 'NPD'

elif df_svm3_cat == 'U2R':
attack_name = 'PDU'

else:
attack_name = 'PDR'

elif df_svm2_cat == 'U2R':
if df_svm3_cat == 'normal':

attack_name = 'NPU'
elif df_svm3_cat == 'DoS':

attack_name = 'PDU'
else:

attack_name = 'PUR'
else:

if df_svm3_cat == 'normal':
attack_name = 'NDR'

elif df_svm3_cat == 'DoS':
attack_name = 'PDR'

else:
attack_name = 'PUR'

elif df_svm1_cat == 'U2R':
if df_svm2_cat == 'normal':

if df_svm3_cat == 'DoS':
attack_name = 'NDU'

elif df_svm3_cat == 'Probe':
attack_name = 'NPU'

else:
attack_name = 'NUR'

elif df_svm2_cat == 'DoS':
if df_svm3_cat == 'normal':

attack_name = 'NDU'
elif df_svm3_cat == 'Probe':

attack_name = 'PDU'
else:

attack_name = 'DUR'
elif df_svm2_cat == 'Probe':

if df_svm3_cat == 'normal':
attack_name = 'NPU'

elif df_svm3_cat == 'DoS':
attack_name = 'PDU'

else:
attack_name = 'PUR'

else:
if df_svm3_cat == 'normal':

attack_name = 'NUR'
elif df_svm3_cat == 'DoS':

attack_name = 'DUR'
else:
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attack_name = 'PUR'

else:
if df_svm2_cat == 'normal':

if df_svm3_cat == 'DoS':
attack_name = 'NDR'

elif df_svm3_cat == 'Probe':
attack_name = 'NPR'

else:
attack_name = 'NUR'

elif df_svm2_cat == 'DoS':
if df_svm3_cat == 'normal':

attack_name = 'NDR'
elif df_svm3_cat == 'Probe':

attack_name = 'PDR'
else:

attack_name = 'DUR'
elif df_svm2_cat == 'Probe':

if df_svm3_cat == 'normal':
attack_name = 'NPR'

elif df_svm3_cat == 'DoS':
attack_name = 'PDR'

else:
attack_name = 'PUR'

else:
if df_svm3_cat == 'normal':

attack_name = 'NUR'
elif df_svm3_cat == 'DoS':

attack_name = 'DUR'
else:

attack_name = 'PUR'

dumpfile = path / 'dump' / 'Multi_SVM' / 
'MSVM_{0}.dump'.format(attack_name)

if attack_name == 'NPD':
Cv = 50.0
gammaV = 0.000868511373751

elif attack_name == 'NDR':
Cv = 50.0
gammaV = 0.000281176869797

elif attack_name == 'NPR':
Cv = 3.4396705138
gammaV = 0.00115139539933

elif attack_name == 'NDU':
Cv = 50.0
gammaV = 0.0001

elif attack_name == 'PUR':
Cv = 9.62973227417
gammaV = 0.000175751062485
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elif attack_name == 'PDU':
Cv = 50.0
gammaV = 0.00014563484775

elif attack_name == 'NUR':
Cv = 3.4396705138
gammaV = 0.00115139539933

elif attack_name == 'PDR':
Cv = 50.0
gammaV = 0.000159985871961

elif attack_name
 == 'NPU':

Cv = 50.0
gammaV = 0.00115139539933

else:
Cv = 7.83781014057
gammaV = 0.0001

if updating == False:
try:

train = joblib.load(dumpfile)

except:
print 'New {0} Multiclass SVM is created'.format(attack_name)
train = SVC(C=Cv, gamma=gammaV)
#parameters = {'C':[1, 10]}
#svc = SVC()
#clf = GridSearchCV(svc, parameters)
#Cs = np.geomspace(1, 50,num=20)
#gammas = np.geomspace(0.0001, 0.01,num=50)
#train = GridSearchCV(estimator=svc, 

param_grid=dict(C=Cs,gamma=gammas),n_jobs=-1)
train.fit(df_svm, df_svm_labels)
#print 'clf.best_estimator_.C = ', train.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', 

train.best_estimator_.gamma
joblib.dump(train, dumpfile)

else:

print 'New {0} Updated Multiclass SVM is 
created'.format(attack_name)

#train = SVC(C=24, gamma='auto',probability=False)
train = train = SVC(C=Cv, gamma=gammaV)
#parameters = {'C':[1, 10]}
#svc = SVC()
#clf = GridSearchCV(svc, parameters)
#Cs = np.geomspace(1, 50,num=20)
#gammas = np.geomspace(0.0001, 0.01,num=50)
#train = GridSearchCV(estimator=svc, 
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param_grid=dict(C=Cs,gamma=gammas),n_jobs=-1)
train.fit(df_svm, df_svm_labels)
#print 'clf.best_estimator_.C = ', train.best_estimator_.C
#print 'clf.best_estimator_.gamma = ', train.best_estimator_.gamma
joblib.dump(train, dumpfile)

return train, attack_name

def get_scores(data,labels,keep_track,troubleshoot=False):

i = keep_track
score_attack_name_list = []

if troubleshoot == False:
Scores, Predictions, Pred_Pairs = get_all_prediction_pairs(data,labels)
top_3_pred_list = get_top_3_score_predictions(Pred_Pairs)
SVM_Data1, SVM_Data2, SVM_Data3 = 

get_svm_multiclass_data_input(top_3_pred_list)
final_SVM, attack_name = train_multiclass_SVM(SVM_Data1, 

SVM_Data2, SVM_Data3)
z = data.reshape(1,-1)
single_score = final_SVM.score(z,labels)
single_prediction = final_SVM.predict(z)
score_attack_name = []
score_attack_name.append(attack_name)
score_attack_name.append(single_score)
score_attack_name_list.append(score_attack_name)

else:

Scores, Predictions, Pred_Pairs = get_all_prediction_pairs(data,labels)
top_3_pred_list = get_top_3_score_predictions(Pred_Pairs)
SVM_Data1, SVM_Data2, SVM_Data3 = 

get_svm_multiclass_data_input(top_3_pred_list)
final_SVM, attack_name = train_multiclass_SVM(SVM_Data1, 

SVM_Data2, SVM_Data3)
z = data.reshape(1,-1)
single_score = final_SVM.score(z,labels)
single_prediction = final_SVM.predict(z)
#print 'single_prediction = ',single_prediction
#print 'attack_name',attack_name
#quit()
score_attack_name = []
score_attack_name.append(attack_name)
score_attack_name.append(single_score)
score_attack_name_list.append(score_attack_name)
#score_attack_name_list_for_trouble_shoot.append(attack_name)
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if single_prediction == 0:
single_prediction_name = 'normal'

elif single_prediction == 1:
single_prediction_name = 'U2R'

elif single_prediction == 2:
single_prediction_name = 'R2L'

elif single_prediction == 3:
single_prediction_name = 'DoS'

else:
single_prediction_name = 'Probe'

if labels[0] == 0:
True_Label_name = 'normal'

elif labels[0] == 1:
True_Label_name = 'U2R'

elif labels[0] == 2:
True_Label_name = 'R2L'

elif labels[0] == 3:
True_Label_name = 'DoS'

else:
True_Label_name = 'Probe'

top3_test_prediction_score_def(top_3_pred_list,True_Label_name)
#if single_prediction_name != True_Label_name:

#print '{0}_th Failed Prediction - Pred_Pairs = '.format(i), 
Pred_Pairs

#print '{0}_th Failed Prediction - top_3_pred_list = '.format(i), 
top_3_pred_list

#print '{0}_th Failed Prediction - Top 3 = '.format(i), 
attack_name

#print '{0}_th Failed Prediction - single_prediction  = 
'.format(i), single_prediction_name

#print '{0}_th Failed Prediction - True Label  = '.format(i), 
True_Label_name

#else:
#print '{0}_th Correct Prediction Pred_Pairs = '.format(i), 

Pred_Pairs
#print '{0}_th Correct Prediction top_3_pred_list = '.format(i), 

top_3_pred_list
#print '{0}_th Correct Prediction Top 3 = '.format(i), 

attack_name
#print '{0}_th Correct Prediction single_prediction = 

'.format(i), single_prediction_name

return score_attack_name_list, single_score, single_prediction

def top3_test_prediction_score_def(top_3_pred_list,True_Label_name):
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global top3_test_prediction_score
top3_test_prediction_score = 0
bin_svm_top3_score_list = []
for single_top_3_pred_list in top_3_pred_list:

if single_top_3_pred_list[0] != True_Label_name:
bin_svm_top3_score_list.append(0)

else:
bin_svm_top3_score_list.append(1)

#print 'bin_svm_top3_score_list', bin_svm_top3_score_list
if bin_svm_top3_score_list[0] == 1 or bin_svm_top3_score_list[1] == 1 or 

bin_svm_top3_score_list[-1] == 1:
bin_svm_top3_score_list_final.append(1)

else:
bin_svm_top3_score_list_final.append(0)

#print 'bin_svm_top3_score_list_final',bin_svm_top3_score_list_final
top3_test_prediction_score = reduce(lambda x, y: x + y, 

bin_svm_top3_score_list_final) / float(len(bin_svm_top3_score_list_final))

def top3_test_prediction_score_def_to_main():
top3_test_prediction_score_m = top3_test_prediction_score
return top3_test_prediction_score_m

def final_update_of_all_BSVMs():

load_svms('normal',True)
load_svms('Probe',True)
load_svms('DoS',True)
load_svms('R2L',True)
load_svms('U2R',True)
final_update_of_all_MSVMs_df_files()

def final_update_of_all_MSVMs_df_files():
multiclass_svm_datasets('normal',True)
multiclass_svm_datasets('DoS',True)
multiclass_svm_datasets('Probe',True)
multiclass_svm_datasets('U2R',True)
multiclass_svm_datasets('R2L',True)
final_update_of_all_MSVMs()

def final_update_of_all_MSVMs():
from itertools import combinations 
msvms_comb = list(combinations(["N", "P", "D", "R", "U"], 3))
full_msvms_comb = ["".join(a) for a in msvms_comb]
for one_let_pred in full_msvms_comb:

top_3_pred_list = []
if one_let_pred[0] == 'N':
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one_let_pred_name1 = 'normal'
elif one_let_pred[0] == 'U':

one_let_pred_name1 = 'U2R'
elif one_let_pred[0] == 'R':

one_let_pred_name1 = 'R2L'
elif one_let_pred[0] == 'D':

one_let_pred_name1 = 'DoS'
else:

one_let_pred_name1 = 'Probe'
#print one_let_pred_name1

if one_let_pred[1] == 'N':
one_let_pred_name2 = 'normal'

elif one_let_pred[1] == 'U':
one_let_pred_name2 = 'U2R'

elif one_let_pred[1] == 'R':
one_let_pred_name2 = 'R2L'

elif one_let_pred[1] == 'D':
one_let_pred_name2 = 'DoS'

else:
one_let_pred_name2 = 'Probe'

#print one_let_pred_name2

if one_let_pred[-1] == 'N':
one_let_pred_name3 = 'normal'

elif one_let_pred[-1] == 'U':
one_let_pred_name3 = 'U2R'

elif one_let_pred[-1] == 'R':
one_let_pred_name3 = 'R2L'

elif one_let_pred[-1] == 'D':
one_let_pred_name3 = 'DoS'

else:
one_let_pred_name3 = 'Probe'

#print one_let_pred_name3
top_3_pred_list.append([one_let_pred_name1,0,0])
top_3_pred_list.append([one_let_pred_name2,0,0])
top_3_pred_list.append([one_let_pred_name3,0,0])
SVM_Data1, SVM_Data2, SVM_Data3 = 

get_svm_multiclass_data_input(top_3_pred_list,True)
#print SVM_Data1, SVM_Data2, SVM_Data3
train_multiclass_SVM(SVM_Data1, SVM_Data2, SVM_Data3,True)

if __name__ == '__main__':
final_update_of_all_MSVMs()
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A.8 Update Function

def update_svm_train_data(updated_soinn):

normal_negatives_soinns_update = []
Probe_negatives_soinns_update = []
R2L_negatives_soinns_update = []
U2R_negatives_soinns_update = []
DoS_negatives_soinns_update = []

df_pos_dumpfile_updated = path / 'dump' / 'Soinns_datasets' / 
'df_{0}_pos.dump'.format(updated_soinn)

df_neg_dumpfile_updated = path / 'dump' / 'Soinns_datasets' / 
'df_{0}_neg.dump'.format(updated_soinn)

lo_soinn_dumpfile_updated = path / 'dump' / 'SOINNs' / 
'soinn2_{0}.dump'.format(updated_soinn)

hi_soinn_dumpfile_updated = path / 'dump' / 'SOINNs' / 
'soinn100_{0}.dump'.format(updated_soinn)

if updated_soinn == 'normal':
lo_soinn_normal = joblib.load(lo_soinn_dumpfile_updated)
hi_soinn_normal = joblib.load(hi_soinn_dumpfile_updated)
try:

os.remove(str(df_pos_dumpfile_updated))
os.remove(str(df_neg_dumpfile_updated))

except:
pass

pos_values_normal = []
for pos_node in lo_soinn_normal.nodes:

pos_values_normal.append(list(pos_node))
df_normal_pos = pd.DataFrame(pos_values_normal)
df_normal_pos.loc[:,'labels'] = 1
neg_values_normal = []
for neg_node in hi_soinn_normal.nodes:

neg_values_normal.append(list(neg_node))
df_normal_neg = pd.DataFrame(neg_values_normal)
df_normal_neg.loc[:,'labels'] = 0
joblib.dump(df_normal_pos, df_pos_dumpfile_updated)
joblib.dump(df_normal_neg, df_neg_dumpfile_updated)

if updated_soinn == 'Probe':
lo_soinn_Probe = joblib.load(lo_soinn_dumpfile_updated)
hi_soinn_Probe = joblib.load(hi_soinn_dumpfile_updated)
try:

os.remove(str(df_pos_dumpfile_updated))
os.remove(str(df_neg_dumpfile_updated))
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except:
pass

pos_values_Probe = []
for pos_node in lo_soinn_Probe.nodes:

pos_values_Probe.append(list(pos_node))
df_Probe_pos = pd.DataFrame(pos_values_Probe)
df_Probe_pos.loc[:,'labels'] = 1
neg_values_Probe = []
for neg_node in hi_soinn_Probe.nodes:

neg_values_Probe.append(list(neg_node))
df_Probe_neg = pd.DataFrame(neg_values_Probe)
df_Probe_neg.loc[:,'labels'] = 0
joblib.dump(df_Probe_pos, df_pos_dumpfile_updated)
joblib.dump(df_Probe_neg, df_neg_dumpfile_updated)

if updated_soinn == 'R2L':
lo_soinn_R2L = joblib.load(lo_soinn_dumpfile_updated)
hi_soinn_R2L = joblib.load(hi_soinn_dumpfile_updated)
try:

os.remove(str(df_pos_dumpfile_updated))
os.remove(str(df_neg_dumpfile_updated))

except:
pass

pos_values_R2L = []
for pos_node in lo_soinn_R2L.nodes:

pos_values_R2L.append(list(pos_node))
df_R2L_pos = pd.DataFrame(pos_values_R2L)
df_R2L_pos.loc[:,'labels'] = 1
neg_values_R2L = []
for neg_node in hi_soinn_R2L.nodes:

neg_values_R2L.append(list(neg_node))
df_R2L_neg = pd.DataFrame(neg_values_R2L)
df_R2L_neg.loc[:,'labels'] = 0
joblib.dump(df_R2L_pos, df_pos_dumpfile_updated)
joblib.dump(df_R2L_neg, df_neg_dumpfile_updated)

if updated_soinn == 'U2R':
lo_soinn_U2R = joblib.load(lo_soinn_dumpfile_updated)
hi_soinn_U2R = joblib.load(hi_soinn_dumpfile_updated)
try:

os.remove(str(df_pos_dumpfile_updated))
os.remove(str(df_neg_dumpfile_updated))

except:
pass

pos_values_U2R = []
for pos_node in lo_soinn_U2R.nodes:

pos_values_U2R.append(list(pos_node))
df_U2R_pos = pd.DataFrame(pos_values_U2R)
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df_U2R_pos.loc[:,'labels'] = 1
neg_values_U2R = []
for neg_node in hi_soinn_U2R.nodes:

neg_values_U2R.append(list(neg_node))
df_U2R_neg = pd.DataFrame(neg_values_U2R)
df_U2R_neg.loc[:,'labels'] = 0
joblib.dump(df_U2R_pos, df_pos_dumpfile_updated)
joblib.dump(df_U2R_neg, df_neg_dumpfile_updated)

if updated_soinn == 'DoS':
lo_soinn_DoS = joblib.load(lo_soinn_dumpfile_updated)
hi_soinn_DoS = joblib.load(hi_soinn_dumpfile_updated)
try:

os.remove(str(df_pos_dumpfile_updated))
os.remove(str(df_neg_dumpfile_updated))

except:
pass

pos_values_DoS = []
for pos_node in lo_soinn_DoS.nodes:

pos_values_DoS.append(list(pos_node))
df_DoS_pos = pd.DataFrame(pos_values_DoS)
df_DoS_pos.loc[:,'labels'] = 1
neg_values_DoS = []
for neg_node in hi_soinn_DoS.nodes:

neg_values_DoS.append(list(neg_node))
df_DoS_neg = pd.DataFrame(neg_values_DoS)
df_DoS_neg.loc[:,'labels'] = 0
joblib.dump(df_DoS_pos, df_pos_dumpfile_updated)
joblib.dump(df_DoS_neg, df_neg_dumpfile_updated)

for normal_negative in normal_negatives:
df_soinn_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 

'df_{0}_neg.dump'.format(normal_negative)
normal_df_neg = joblib.load(df_soinn_neg_dumpfile)
normal_negatives_soinns_update.append(normal_df_neg)

df_soinn_pos_normal_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_normal_pos.dump'

df_normal_pos = joblib.load(df_soinn_pos_normal_dumpfile)
df_svm_normal = df_normal_pos.append(normal_negatives_soinns_update)
df_svm_normal_labels = df_svm_normal['labels']
df_svm_normal = df_svm_normal.drop(columns='labels')
df_svm_normal = df_svm_normal.reset_index(drop=True)
df_svm_normal_labels = df_svm_normal_labels.reset_index(drop=True)
df_svm_dumpfile_normal = path / 'dump' / 'svms_datasets' / 

'df_svm_normal.dump'
df_svm_labels_dumpfile_normal = path / 'dump' / 'svms_datasets' / 

'df_svm_normal_labels.dump'
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os.remove(str(df_svm_dumpfile_normal))
os.remove(str(df_svm_labels_dumpfile_normal))
joblib.dump(df_svm_normal, df_svm_dumpfile_normal)
joblib.dump(df_svm_normal_labels, df_svm_labels_dumpfile_normal)

for Probe_negative in Probe_negatives:
df_soinn_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 

'df_{0}_neg.dump'.format(Probe_negative)
Probe_df_neg = joblib.load(df_soinn_neg_dumpfile)
Probe_negatives_soinns_update.append(Probe_df_neg)

df_soinn_pos_Probe_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_Probe_pos.dump'

df_Probe_pos = joblib.load(df_soinn_pos_Probe_dumpfile)
df_svm_Probe = df_Probe_pos.append(Probe_negatives_soinns_update)
df_svm_Probe_labels = df_svm_Probe['labels']
df_svm_Probe = df_svm_Probe.drop(columns='labels')
df_svm_Probe = df_svm_Probe.reset_index(drop=True)
df_svm_Probe_labels = df_svm_Probe_labels.reset_index(drop=True)
df_svm_dumpfile_Probe = path / 'dump' / 'svms_datasets' / 

'df_svm_Probe.dump'
df_svm_labels_dumpfile_Probe = path / 'dump' / 'svms_datasets' / 

'df_svm_Probe_labels.dump'
os.remove(str(df_svm_dumpfile_Probe))
os.remove(str(df_svm_labels_dumpfile_Probe))
joblib.dump(df_svm_Probe, df_svm_dumpfile_Probe)
joblib.dump(df_svm_Probe_labels, df_svm_labels_dumpfile_Probe)

for R2L_negative in R2L_negatives:
df_soinn_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 

'df_{0}_neg.dump'.format(R2L_negative)
R2L_df_neg = joblib.load(df_soinn_neg_dumpfile)
R2L_negatives_soinns_update.append(R2L_df_neg)

df_soinn_pos_R2L_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_R2L_pos.dump'

df_R2L_pos = joblib.load(df_soinn_pos_R2L_dumpfile)
df_svm_R2L = df_R2L_pos.append(R2L_negatives_soinns_update)
df_svm_R2L_labels = df_svm_R2L['labels']
df_svm_R2L = df_svm_R2L.drop(columns='labels')
df_svm_R2L = df_svm_R2L.reset_index(drop=True)
df_svm_R2L_labels = df_svm_R2L_labels.reset_index(drop=True)
df_svm_dumpfile_R2L = path / 'dump' / 'svms_datasets' / 

'df_svm_R2L.dump'
df_svm_labels_dumpfile_R2L = path / 'dump' / 'svms_datasets' / 

'df_svm_R2L_labels.dump'
os.remove(str(df_svm_dumpfile_R2L))
os.remove(str(df_svm_labels_dumpfile_R2L))
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joblib.dump(df_svm_R2L, df_svm_dumpfile_R2L)
joblib.dump(df_svm_R2L_labels, df_svm_labels_dumpfile_R2L)

for U2R_negative in U2R_negatives:
df_soinn_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 

'df_{0}_neg.dump'.format(U2R_negative)
U2R_df_neg = joblib.load(df_soinn_neg_dumpfile)
U2R_negatives_soinns_update.append(U2R_df_neg)

df_soinn_pos_U2R_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_U2R_pos.dump'

df_U2R_pos = joblib.load(df_soinn_pos_U2R_dumpfile)
df_svm_U2R = df_U2R_pos.append(U2R_negatives_soinns_update)
df_svm_U2R_labels = df_svm_U2R['labels']
df_svm_U2R = df_svm_U2R.drop(columns='labels')
df_svm_U2R = df_svm_U2R.reset_index(drop=True)
df_svm_U2R_labels = df_svm_U2R_labels.reset_index(drop=True)
df_svm_dumpfile_U2R = path / 'dump' / 'svms_datasets' / 

'df_svm_U2R.dump'
df_svm_labels_dumpfile_U2R = path / 'dump' / 'svms_datasets' / 

'df_svm_U2R_labels.dump'
os.remove(str(df_svm_dumpfile_U2R))
os.remove(str(df_svm_labels_dumpfile_U2R))
joblib.dump(df_svm_U2R, df_svm_dumpfile_U2R)
joblib.dump(df_svm_U2R_labels, df_svm_labels_dumpfile_U2R)

for DoS_negative in DoS_negatives:
df_soinn_neg_dumpfile = path / 'dump' / 'Soinns_datasets' / 

'df_{0}_neg.dump'.format(DoS_negative)
DoS_df_neg = joblib.load(df_soinn_neg_dumpfile)
DoS_negatives_soinns_update.append(DoS_df_neg)

df_soinn_pos_DoS_dumpfile = path / 'dump' / 'Soinns_datasets' / 
'df_DoS_pos.dump'

df_DoS_pos = joblib.load(df_soinn_pos_DoS_dumpfile)
df_svm_DoS = df_DoS_pos.append(DoS_negatives_soinns_update)
df_svm_DoS_labels = df_svm_DoS['labels']
df_svm_DoS = df_svm_DoS.drop(columns='labels')
df_svm_DoS = df_svm_DoS.reset_index(drop=True)
df_svm_DoS_labels = df_svm_DoS_labels.reset_index(drop=True)
df_svm_dumpfile_DoS = path / 'dump' / 'svms_datasets' / 

'df_svm_DoS.dump'
df_svm_labels_dumpfile_DoS = path / 'dump' / 'svms_datasets' / 

'df_svm_DoS_labels.dump'
os.remove(str(df_svm_dumpfile_DoS))
os.remove(str(df_svm_labels_dumpfile_DoS))
joblib.dump(df_svm_DoS, df_svm_dumpfile_DoS)
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joblib.dump(df_svm_DoS_labels, df_svm_labels_dumpfile_DoS)

A.9 Main Function - Initialization

from svm_n_soinn import get_scores, final_update_of_all_BSVMs, 
top3_test_prediction_score_def_to_main
import joblib
from pathlib import Path
import os 
import os.path
global path
from data import soinn_train_data, test_dataset, train_dataset
from ui_n_soinn import create_soinns
import time
import itertools
from n_soinn import Soinn
from n_soinn_svm_data import load_svms, 
multiclass_svm_datasets,update_svm_train_data
from sklearn.linear_model import Perceptron
start_time = time.time()

dir_path = os.path.dirname(os.path.realpath(__file__))
path = Path(dir_path)
attacks = ['normal','R2L','U2R','Probe','DoS']

def update_soinns(category_label, train_rows):

n_soinn_list = [2,100]

for n_number in n_soinn_list:
n_soinn = n_number
dumpfile = path / 'dump' / 'SOINNs' / 

'soinn{0}_{1}.dump'.format(n_soinn,category_label)
soinn_i = joblib.load(dumpfile)
print 'Category Label - {0} Total Nodes before update: 

{1}'.format(category_label,len(soinn_i.nodes))
for train_row in train_rows:

soinn_i.input_signal(train_row)
print 'Category Label - {0} Total Nodes after update: 

{1}'.format(category_label,len(soinn_i.nodes))
soinn_i.save(dumpfile)

def operate_machine(test_data,test_labels,updating=False,check_soinns=False):
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if check_soinns == True:
for attack in attacks:

n_soinn_list = [2,100]
for soinn_number in n_soinn_list:

n_soinn = soinn_number
dumpfile = path / 'dump' / 'SOINNs' / 

'soinn{0}_{1}.dump'.format(n_soinn,attack)
try:

dumpfile.resolve()
#print 'soinn{0}_{1} exist'.format(x,attack)

except:
data = soinn_train_data(attack)
n_soinn_number = soinn_number
category = attack
delete_period = 100
max_age = 30
create_soinns(data, n_soinn_number, category, 

delete_period, max_age)

if updating == True:
get_predictions(test_data,test_labels,True)

else:
get_predictions(test_data,test_labels,False)

def get_predictions(data,labels,updating=False):
 

zipped_data_labels = zip(data,labels)
score_list = []
failed_predict_list = []
correct_predict_list = []
keep_track_list = []
count = 0

for zipped_data_row in zipped_data_labels:
data_row = zipped_data_row[0]
label_row = zipped_data_row[-1]
count += 1
score_attack_name_list, single_score, single_prediction = 

get_scores(data_row,label_row,count,True)
score_list.append(single_score)
if single_score != 1:

#print 'label_row', label_row
failed_predict_list.append(zipped_data_row)

else:
correct_predict_list.append(zipped_data_row)

if updating == True:
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normal_failed_pred = []
Probe_failed_pred = []
DoS_failed_pred = []
U2R_failed_pred = []
R2L_failed_pred = []

for x in failed_predict_list:
update_data_row = x[0]
real_category_label_list = x[-1]
real_category_label = real_category_label_list[0]
if real_category_label == 0:

category_label = 'normal'
normal_failed_pred.append(update_data_row)

elif real_category_label == 1:
category_label = 'U2R'
U2R_failed_pred.append(update_data_row)

elif real_category_label == 2:
category_label = 'R2L'
R2L_failed_pred.append(update_data_row)

elif real_category_label == 3:
category_label = 'DoS'
DoS_failed_pred.append(update_data_row)

else:
category_label = 'Probe'
Probe_failed_pred.append(update_data_row)

#print '{0}_th real_category_label = '.format(keep_track), 
category_label

for attack in attacks:
attack_pred_list = eval('{0}_failed_pred'.format(attack))
if attack_pred_list:

update_soinns(attack, attack_pred_list)

for attack in attacks:
attack_pred_list = eval('{0}_failed_pred'.format(attack))
if attack_pred_list:

update_svm_train_data(attack)

final_update_of_all_BSVMs()

top3_test_prediction_score = top3_test_prediction_score_def_to_main()
top3_test_prediction_score_perc = top3_test_prediction_score * 100
print 'Top 3 Achievement Percentage = ', 

top3_test_prediction_score_perc ,'%'
num_achieved_top_3 = int(top3_test_prediction_score * count)
num_failed_top_3 = count - num_achieved_top_3
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print 'Top 3 Achievement missed {0} labels out of 
{1}'.format(num_failed_top_3,count)

num_failed_labels = len(failed_predict_list)
num_labels = len(zipped_data_labels)
#for i, score_num in enumerate(score_list):
# if score_num == 0:
# print '{0}th Prediction failed '.format(i+1)
num_labels = len(zipped_data_labels)
cum_prediction_score = reduce(lambda x, y: x + y, score_list) / 

float(len(score_list))
cum_prediction_score_perc = cum_prediction_score * 100
print 'MSVMs Prediction = ', cum_prediction_score_perc ,'%'
print 'MSVMs missed {0} labels out of 

{1}'.format(num_failed_labels,num_labels)
print 'Prediction from a dataset of {0} rows'.format(num_labels)
print("time cost =  %s seconds" % (time.time() - start_time))

def sub_sample_data():

from sklearn.model_selection import StratifiedKFold
train_df, df_train_labels = train_dataset()
train_df = train_df.as_matrix()
train_df = train_df.astype('float')
df_train_labels = df_train_labels.as_matrix()
df_train_labels = df_train_labels.astype('float')
#df_train_labels = df_train_labels.tolist()

X = train_df
y = df_train_labels # subsamples will be stratified according to y
n = 5
skf = StratifiedKFold(n, shuffle = True)

ith = 0

for _, batch in skf.split(X, y):
#train_df_sliced = pd.DataFrame(X[batch])
#df_train_labels_sliced = pd.DataFrame(y[batch])
#print train_df_sliced.describe()
#print df_train_labels_sliced.describe()
test_data = X[batch]
test_labels = y[batch]
operate_machine(test_data,test_labels,True,True)
#ith += 1
#print ith
#if ith == 5:
# operate_machine(test_data,test_labels,False,False)
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if __name__ == '__main__':

#sub_sample_data()
test_df, df_test_labels = train_dataset()
#test_data = test_df.loc[8000:9029]
#test_labels = df_test_labels.loc[8000:9029]
test_data = test_df
test_labels = df_test_labels
test_data = test_data.as_matrix()
test_data = test_data.astype('float')
test_labels = test_labels.as_matrix()
test_labels = test_labels.astype('float')
test_labels = test_labels.tolist()
operate_machine(test_data,test_labels,False,False)
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