Kypseli Logo
    • Ελληνικά
    • English
  •  Home
  •  Browse 
    • Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • By Issue number
  • Language elLanguage en
  •  Login 
    • Sign in
    View Item 
    • Home
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Πληροφοριακά και Επικοινωνιακά Συστήματα (ΕΛΛ) / Information and Communication Systems (in Greek)
    • View Item
    •   Home
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Πληροφοριακά και Επικοινωνιακά Συστήματα (ΕΛΛ) / Information and Communication Systems (in Greek)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Αναγνώριση κτηρίων, πισίνων και παλιών εγκαταλελειμμένων σπιτιών χωρίς οροφή, μέσω εικόνων δορυφόρου, με τη χρήση Βαθιάς Μάθησης

    Thumbnail
    View/Open
    ΠΕΣ-2022-00324.pdf (1.636Mb)
    Date
    2022-05
    Author
    Παπουτέ, Μικαέλα
    Metadata
    Show full item record
    Abstract
    Στην παρούσα μεταπτυχιακή διατριβή έγινε μια προσπάθεια εφαρμογής μεθόδων βαθιάς μάθησης για την αναγνώριση κτηρίων, πισίνων και παλιών/ εγκαταλελειμμένων σπιτιών χωρίς οροφή, με τη βοήθεια εικόνων δορυφόρου. Πρόκειται για μια πολύπλοκη διαδικασία, η οποία εξαρτάται από την πολυπλοκότητα της δόμησης της περιοχής και της διαφορετικής δομής και κατασκευής των διάφορων κτηρίων και πισίνων. Το πρόβλημα χρησιμοποιεί την αναγνώριση μοτίβων με σκοπό την κατηγοριοποίηση ενός συνόλου δεδομένων, για τη δημιουργία χαρτών δόμησης, οι οποίοι μπορούν να αξιοποιηθούν σε διάφορους τομείς της μηχανικής και της έρευνας. Για τον εντοπισμό κτηρίων και πισίνων, παλαιότερα οι άνθρωποι χρησιμοποιούσαν εξοπλισμό, όπως αισθητήρες. Αυτό απαιτούσε καλή προ επεξεργασία, ώστε να είμαστε σίγουροι ότι η διαδικασία εξαγωγής γινόταν με το σωστό τρόπο κατά την αυτοματοποίηση, και είχε πολύ υψηλό κόστος. Για την αντιμετώπιση του πιο πάνω προβλήματος, στην περίπτωση μας, χρησιμοποιήθηκε η διαδικασία βαθιάς μάθησης, η οποία μιμείται τον τρόπο που μαθαίνει ο εγκέφαλος του ανθρώπου και με τη χρήση εικόνων δορυφόρου, επιτυγχάνεται ο αυτόματος εντοπισμός σπιτιών, πισίνων και παλιών εγκαταλελειμμένων κτηρίων χωρίς οροφή. Συγκεκριμένα, στην παρούσα μεταπτυχιακή διατριβή, χρησιμοποιήθηκε η αρχιτεκτονική του δικτύου U-Net, η οποία με την επεξεργασία των δεδομένων, αναγνωρίζει τις συγκεκριμένες κατηγορίες και κάνει χαρτογράφηση(mapping) στις υφιστάμενες εικόνες. Αρχικά το δίκτυο αναγνωρίζει τι είναι το αντικείμενο (κτήριο, παλιό κτήριο ή πισίνα) και στη συνέχεια μαθαίνει να το χαρτογραφεί. Για να αξιολογηθεί το δίκτυο, χρησιμοποιήθηκαν εικόνες δορυφόρου, οι οποίες συλλέχθηκαν από αξιόπιστη πηγή, η οποία είναι το Κτηματολόγιο της Κύπρου. Συγκεκριμένα χρησιμοποιήθηκαν 5131 εικόνες δορυφόρου προς εκπαίδευση από διάφορες περιοχές της Κύπρου. Τα πειραματικά αποτελέσματα του, δείχνουν πως το μοντέλο έχει την ικανότητα να εντοπίζει σπίτια με ακρίβεια 81%, παλιά εγκαταλελειμμένα κτήρια χωρίς οροφή με ακρίβεια 94%και πισίνες με ακρίβεια 87%
    URI
    http://hdl.handle.net/11128/5233
    Collections
    • Πληροφοριακά και Επικοινωνιακά Συστήματα (ΕΛΛ) / Information and Communication Systems (in Greek)

    Open University of Cyprus

    PO Box 12794,

    2252, Latsia

    Cyprus

    Tel.: +357 22 411600

    Fax.: +357 22 411601

    • Help
    • Contact Us
    • Open University of Cyprus
    • OUC Library
    • Policies
    • Accessibility and Data Protection

    Find us on:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    The eUniversity Project is co-founded by the European Regional Development Fund and National Funds in the Programmatic Period 2007-2013

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Issue numberThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Issue number

    My Account

    Sign inRegister

    Open University of Cyprus

    PO Box 12794,

    2252, Latsia

    Cyprus

    Tel.: +357 22 411600

    Fax.: +357 22 411601

    • Help
    • Contact Us
    • Open University of Cyprus
    • OUC Library
    • Policies
    • Accessibility and Data Protection

    Find us on:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    The eUniversity Project is co-founded by the European Regional Development Fund and National Funds in the Programmatic Period 2007-2013