Εμφάνιση απλής εγγραφής

dc.contributor.advisorΛιμνιώτης, Κωνσταντίνος
dc.contributor.authorΒαρέλιας, Ανδρέας
dc.contributor.otherVarelias, Andreas
dc.coverage.spatialΚύπροςel_GR
dc.date.accessioned2021-07-16T08:06:43Z
dc.date.available2021-07-16T08:06:43Z
dc.date.copyright2021-07-16
dc.date.issued2021-05
dc.identifier.otherΑΥΔ/2021/00086el_GR
dc.identifier.urihttp://hdl.handle.net/11128/4928
dc.descriptionΠεριέχει βιβλιογραφικές παραπομπές.el_GR
dc.description.abstractΑυτή η διατριβή επικεντρώνεται στην ακολουθία De Bruijn, ως ερευνητικό θέμα αυξανόμενου ενδιαφέροντος, το οποίο «αναβιώνει» τα τελευταία χρόνια ακριβώς επειδή τα NLFSR χρησιμοποιούνται μαζικά για τη δημιουργία ισχυρών κρυπτογραφικών αλγορίθμων. Πιο συγκεκριμένα, οι συναρτήσεις Boolean που δημιουργούν ακολουθίες De Bruijn μελετώνται σε αυτή τη διατριβή, όσον αφορά τη διερεύνηση των αντίστοιχων κρυπτογραφικών ιδιοτήτων για συναρτήσεις που δημιουργούν "παρόμοιες" ακολουθίες De Bruijn. Συγκεκριμένα, έχοντας ως αφετηρία κάποια πρόσφατα αποτελέσματα για τον προσδιορισμό ζευγών αλληλουχιών De Bruijn [1]που μοιράζονται τη μεγαλύτερη κοινή ακολουθία, παρουσιάζουμε πρώτα έναν νέο αλγόριθμο προσέγγισης, χρησιμοποιώντας τους (αντίστροφους) πίνακες επιθήματος των ακολουθιών, για να υπολογίσουμε αποτελεσματικά ζεύγη τέτοιων De Bruijn ακολουθιών επεκτείνοντας έτσι περαιτέρω τα πρόσφατα ερευνητικά αποτελέσματα σε αυτόν τον τομέα. Στη συνέχεια, χρησιμοποιώντας κατάλληλα εργαλεία λογισμικού, εξετάσαμε τις ιδιότητες των αντίστοιχων Boolean λειτουργιών τους, όπως αλγεβρικός βαθμός, μη γραμμικότητα και αλγεβρική ανοσία - ενώ μελετάμε επίσης πώς συμπεριφέρεται η γραμμική πολυπλοκότητα για οποιοδήποτε τέτοιο ζεύγος «παρόμοιων» ακολουθιών De Bruijn. Δείχνουμε ότι, αν και στην πλειονότητα των περιπτώσεων αυτές οι ιδιότητες παραμένουν αμετάβλητες, ενδέχεται να έχουμε κάποιες διαφορές που θα μπορούσαν να είναι κρυπτοαναλυτικής αξίας, δημιουργώντας έτσι μια νέα ιδιότητα που πρέπει να ελεγχθεί όταν εξετάζουμε την κατασκευή γεννητριών De Bruijn.el_GR
dc.format.extentvi, 62 σ. 30 εκ.el_GR
dc.languagegrel_GR
dc.language.isogrel_GR
dc.publisherΑνοικτό Πανεπιστήμιο Κύπρουel_GR
dc.rightsinfo:eu-repo/semantics/closedAccessel_GR
dc.subjectΚρυπτογραφικοί αλγόριθμοιel_GR
dc.subjectCryptographic algorithmsel_GR
dc.subjectΚρυπτογραφικοί αλγόριθμοι -- De Bruijnel_GR
dc.subjectCryptographic algorithms -- De Bruijnel_GR
dc.titleΑνάλυση ακολουθιών De Bruijnel_GR
dc.typeΜεταπτυχιακή Διατριβήel_GR
dc.description.translatedabstractThis dissertation focuses on the De Bruijn sequence, being a research topic of increasing interest, which has been "reviving" in recent years precisely because NLFSRs are massively being used to build powerful cryptographic algorithms. More specifically, Boolean functions generating De Bruijn sequences are studied in this thesis, in terms of investigating the corresponding cryptographic properties for functions generating ``similar'' De Bruijn sequences. In particular, having as a starting point some recent results on identifying pairs of De Bruijn sequences sharing the longest common subsequence, we first present a new approximation algorithm, utilizing the (inverse) suffix arrays of the sequences, to efficiently compute pairs of such De Bruijn sequences, thus further extending recent research results on this field. Subsequently, using appropriate software tools, we examined properties of their corresponding Boolean functions such as algebraic degree, nonlinearity, and algebraic immunity – whilst we also study how the linear complexity behaves for any such pair of “similar” De Bruijn sequences. We show that, although in the majority of the cases these properties remain invariant, we may have some differences which could be of cryptanalytic value, thus establishing a new property that is of importance to be checked when we consider the construction of De Bruijn generators.el_GR
dc.format.typepdfel_GR


Αρχεία σε αυτό το τεκμήριο

Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής