Kypseli Logo
    • Ελληνικά
    • English
  •  Home
  •  Browse 
    • Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • By Issue number
  • Language elLanguage en
  •  Login 
    • Sign in
    View Item 
    • Home
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)
    • View Item
    •   Home
    • Αποθετήριο Ανοικτού Πανεπιστημίου Κύπρου (Repository of the Open University of Cyprus)
    • Μεταπτυχιακές διατριβές / Master Τhesis
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Αντιμετώπιση εσωτερικών απειλών με χρήση τεχνητής νοημοσύνης.

    Thumbnail
    View/Open
    ΑΥΔ-2019-00041.pdf (3.678Mb)
    Date
    2019-05
    Author
    Πελτέκης, Νικόλαος
    Metadata
    Show full item record
    Abstract
    Ένας οργανισμός κατέχει ένα πλήθος αγαθών τα οποία φροντίζει να προστατεύει από φθορά. Υπάρχουν διάφορες αιτίες οι οποίες οδηγούν σε αυτό το γεγονός και μία εξ’ αυτών είναι οι εσωτερικές απειλές: υπάλληλοι, μέλη ή συνεργάτες του οργανισμού (ή αλλιώς εσωτερικοί χρήστες) οι οποίοι έχουν πρόσβαση σε αυτά, να προσπαθήσουν να εκμεταλλευτούν αδυναμίες του Πληροφοριακού Συστήματος του οργανισμού και να προξενήσουν ζημιά στα αγαθά. Η αντιμετώπιση εσωτερικών απειλών, γίνεται είτε με τη χρήση πολύπλοκων συστημάτων ή με πολύ περιοριστικές πολιτικές χρήσης ή δεν γίνεται καθόλου. Αρωγός σε αυτή την προσπάθεια μπορεί να είναι η Τεχνητή Νοημοσύνη (Deep/Machine Learning – DL/ML) και πιο συγκεκριμένα η χρήση Νευρωνικών δικτύων (NN, CNN, DNN, RNN). Το κλειδί σε αυτή τη στρατηγική είναι η χρήση συγκεκριμένων αλγορίθμων οι οποίοι, αφού εκπαιδευτούν κατάλληλα, θα χρησιμοποιηθούν ώστε να εξαχθούν συμπεράσματα σχετικά για την ύπαρξη ή όχι εσωτερικής απειλής. Στόχος της παρούσας μεταπτυχιακής διατριβής είναι η υλοποίηση και δοκιμή τριών (3) πολύ γνωστών αλγορίθμων και δοκιμή αυτών με συγκεκριμένο dataset (Cert) για την εξαγωγή συμπερασμάτων αποτελεσματικότητας ώστε να αναγνωριστούν πιθανές εσωτερικές απειλές, καθώς και η εύρεση ευπαθειών στα συστήματα του οργανισμού. Το dataset περιέχει log files από ένα Πληροφοριακό Σύστημα και το καθένα παρέχεται σε μορφή csv, τα οποία αφού υποστούν κατάλληλη επεξεργασία, εισάγονται στο DL/ML σύστημα μας (στο Azure ML Studio) με σκοπό την επεξεργασία και ανάλυση με τη χρήση των Linear Regression, One-class Vector και PCA αλγορίθμων.
    URI
    http://hdl.handle.net/11128/4342
    Collections
    • Ασφάλεια Υπολογιστών και Δικτύων (ΕΛΛ) / Computer and Network Security (in Greek)

    Open University of Cyprus

    PO Box 12794,

    2252, Latsia

    Cyprus

    Tel.: +357 22 411600

    Fax.: +357 22 411601

    • Help
    • Contact Us
    • Open University of Cyprus
    • OUC Library
    • Policies
    • Accessibility and Data Protection

    Find us on:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    The eUniversity Project is co-founded by the European Regional Development Fund and National Funds in the Programmatic Period 2007-2013

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Issue numberThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Issue number

    My Account

    Sign inRegister

    Open University of Cyprus

    PO Box 12794,

    2252, Latsia

    Cyprus

    Tel.: +357 22 411600

    Fax.: +357 22 411601

    • Help
    • Contact Us
    • Open University of Cyprus
    • OUC Library
    • Policies
    • Accessibility and Data Protection

    Find us on:

    • FacebookFacebook
    • EU Flag
    • Republic of Cyprus
    • Structural Funds
    • e University
    • Open University of Cyprus

    The eUniversity Project is co-founded by the European Regional Development Fund and National Funds in the Programmatic Period 2007-2013