Repository logo
  • English
  • Ελληνικά
  • Log In
    Have you forgotten your password?
Repository logo
  • Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Ελληνικά
  • Log In
    Have you forgotten your password?
  1. Home
  2. Ψηφιακό Αποθετήριο ΚΥΨΕΛΗ / Kypseli Digital Repository
  3. Theses / Διατριβές και Πτυχιακές Εργασίες
  4. Μεταπτυχιακές Διατριβές / Master Τheses
  5. Εφαρμοσμένη Πληροφορική της Υγείας & Τηλεϊατρική (ΕΛΛ) / Applied Health Informatics and Telemedicine (in Greek)
  6. Αναγνώριση δραστηριοτήτων ηλικιωμένων ανθρώπων με τη βοήθεια φορετών αισθητήρων χωρίς μπαταρίες
 
  • Details
Options

Αναγνώριση δραστηριοτήτων ηλικιωμένων ανθρώπων με τη βοήθεια φορετών αισθητήρων χωρίς μπαταρίες

Author(s)
Δράκος, Ανδρέας
Date Issued
2019-11
Faculty
Σχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences 
Abstract
Η νοσηλεία ηλικιωμένων χωρίς παρακολούθηση προκαλεί πτώσεις ασθενών, οι οποίες θεωρούνται βασική αιτία σοβαρών τραυματισμών. Εκτός από τους σωματικούς τραυματισμούς, έχουν επίσης ψυχολογικές συνέπειες, καθώς επίσης συνδέονται και με ιατρικές δαπάνες. Η επιτήρηση, με φυσική παρουσία ανθρώπων, που είναι η κύρια λύση για την αποφυγή πτώσεων, είναι δαπανηρή. Για το λόγο αυτό, πολλές προσπάθειες ερευνητών, με διάφορες τεχνολογικές λύσεις, επικεντρώθηκαν στον τομέα της ανίχνευσης και πρόληψης πτώσης. Παραδείγματα τέτοιων τεχνολογικών λύσεων αφορούν μια ποικιλία αισθητήρων που συνδέονται με το σώμα, το κρεβάτι ή το πάτωμα. Αυτή η διπλωματική διατριβή βασίστηκε στη χρήση ασύρματου, φορετού, χωρίς μπαταρίες, χαμηλής ισχύος και χαμηλού κόστους αισθητήρα (Wearable Wireless Identification and Sensing Platform, W2ISP). Τα σύνολα δεδομένων για την ερμηνεία, προκειμένου να αναγνωριστούν οι διάφορες δραστηριότητες, παράχθηκαν από ένα τρισδιάστατο επιταχυνσιόμετρο και τη μεταδιδόμενη ισχύ σήματος από το W2ISP. Τα δεδομένα επίσης αφορούσαν υγιείς ηλικιωμένους που φορούσαν το W2ISP, εφαρμοσμένο στα ρούχα τους, στο επίπεδο του στέρνου, αναλαμβάνοντας μια σειρά δραστηριοτήτων σε δύο κλινικές αίθουσες. Σε αυτή τη μεταπτυχιακή διατριβή, για την αξιολόγηση της προσέγγισής μας και την επιτυχή διάκριση της αναγνώρισης των δραστηριοτήτων, παρουσιάζεται μια σύγκριση επιδόσεων μεταξύ μερικών από τους πιο δημοφιλείς αλγόριθμους εποπτευόμενης μηχανικής μάθησης που χρησιμοποιήθηκαν σε συστήματα ανίχνευσης πτώσης. Αυτοί είναι οι: Random Forest (RF), Support Vector Machine (SVM), K nearest neighbor (k-NN) και neural network MultiLayer Perceptron (MLP). Για την ταξινόμηση δεδομένων χρησιμοποιήθηκε η μέθοδος αξιολόγηση k-fold cross validation με 10 folds. Χρησιμοποιήθηκαν διαφορετικές στατιστικές μετρήσεις για την αξιολόγηση των παραγόμενων μοντέλων, όπως η ακρίβεια, η ανάκληση, η F-measure και η Kappa Statistic. Τα ευρήματα δείχνουν ότι τα καλύτερα αποτελέσματα προέρχονται από τον αλγόριθμο RF. Το μοντέλο πέτυχε αποτελέσματα ακρίβειας (precision) πάνω από 98% (Room 1) και 93% (Room 2), η ανάκληση (Recall) ήταν > 96,5% και 90,9% αντίστοιχα, ενώ η F-measure ήταν > 97% και 91,9% αντίστοιχα. Τα υψηλά αποτελέσματα επιβεβαιώνουν την εγκυρότητα της προσέγγισής μας και η απόδοση της ξεπερνά τις προηγούμενες παρόμοιες μελέτες.
Publisher
Ανοικτό Πανεπιστήμιο Κύπρου
Format
vii, 70 σ. 30 εκ.
Subjects

Φορετοί αισθητήρες --...

Wearable wireless ide...

File(s)
Loading...
Thumbnail Image
Name

ΕΠΤ-2019-00019.pdf

Size

1.69 MB

Format

Adobe PDF

Checksum

(MD5):fc90cc2685815d13660902b56dc49db0

  • Contact Us
  • Cookie settings
  • Open University of Cyprus
  • OUC Library
  • Policies
  • Accessibility and Data Protection

Find us on:

FacebookFacebook

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science - Powered by Dataly