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Summary 
The present dissertation goal was to research the development of an adaptive e-

learning web application environment based on the user’s mental states and provide 

a positive user experience. The mental state that was selected was that of relaxation 

and concentration. These states will be calculated using a low-cost EEG device that 

the user will wear throughout his/her interaction with the environment. These 

mental states will correspond to the Available and Busy statuses of the system and will 

be changed automatically by the system to match with the detected mental states. 

Also, these status changes will also enable/disable system Notifications accordingly. 

Then a system evaluation will be deployed using 10 participants. The evaluation 

showed that such a system would indeed have a positive user experience. 

 

Keywords: adaptive and interactive systems, e-learning, EEG, machine learning, 

brain-computer interfaces, mental states, relaxation, concentration. 
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Περίληψη  
Η παρούσα διπλωματική εργασία είχε ως στόχο να ερευνήσει την ανάπτυξη ενός 

adaptive e-learning web περιβάλλοντος βασιζόμενο στην νοητική κατάσταση του 

χρήστη και να δώσει ένα θετικό user experience. Από τις διάφορες νοητικές 

καταστάσεις επιλέχθηκαν αυτές της χαλάρωσης και της συγκέντρωσης. Αυτές οι 

καταστάσεις υπολογίζονται χρησιμοποιώντας μια συσκευή 

ηλεκτροεγκεφαλογράφου χαμηλού κόστους όπου θα φοράει ο χρήστης καθ’ όλη του 

την αλληλεπίδραση με το σύστημα.  Αυτές οι νοητικές καταστάσεις ανταποκρίνονται 

στα αντίστοιχα statuses Available και Busy του συστήματος και θα αλλάζουν 

αυτόματα από το σύστημα έτσι ώστε να αντιστοιχούν με τις νοητικές καταστάσεις 

του χρήση όπου υπολογίστηκαν προηγουμένως. Ακόμα, αυτή η εναλλαγή του status 

θα ενεργοποιεί/απενεργοποιεί και τις ειδοποιήσεις του συστήματος. Στην συνέχεια, 

θα πραγματοποιηθεί η αξιολόγηση του συστήματος από 10 χρήστες. Αυτή η 

αξιολόγηση έδειξε ότι ένα τέτοιο σύστημα μπορεί όντως να δώσει ένα θετικό user 

experience στον χρήστη. 
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Chapter 1 
Introduction 

E-learning systems are now gaining a huge popularity due to COVID-19 era where 

everything is forced to go online. Traditionally, e-learning systems were designed 

using the so called ‘one-size-fits-all’ approach. The learning content and system 

functionality was the same for all students. This is problematic for the learning 

process though: every student has individual differences and needs. With the rise 

of adaptive systems, the learning content, presentation, navigation, or system 

functionality can now be adapted based on the users’ needs or preferences and 

increase the learning outcomes (Hammad et al., 2018). 

Creating and maintaining a user model is necessary for the system to adapt and 

can be accomplished explicitly, or implicitly (Papatheocharous et al., 2014). 

Learning is a cognitive process that relies on the student’s current internal states 

like emotions, mental engagement, mental workload etc. Mental engagement is 

the level of someone’s alertness and mental workload is the mental effort that is 

put on a task (Chaouachi & Frasson, 2012). Electroencephalography (EEG) 

appears to be the most accurate physiological method to estimate someone’s 

mental state, with a temporal resolution of milliseconds (Chaouachi et al., 2015). 

As a result, there is now a growing number of studies that have used EEG in 

adaptive learning environments in order to improve user experience, 

performance, or both. 
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1.1 Purpose and necessity of the research 
EEG is a non-invasive method to detect the electrical activity of the brain when 

neurons fire in synchrony (Light et al., 2010). EEG devices used to be cumbersome 

in the past and were used for medical or research purposes, with a difficult setup 

and high cost. Nowadays, these devices are getting cheaper and more accessible. 

These are even used commercially for games and neurofeedback. Still, no EEG 

device is used in any actual e-learning system.  

The purpose of this research is to create an adaptive e-learning web application 

environment that adapts its functionality based on the learner’s mental state and 

provide a positive user experience. Mental state is an umbrella term for: 

attention/engagement, cognitive workload, affective state, mental fatigue, 

emotions (Gerjets et al., 2014), relaxation, concentration etc (Frasson & Chalfoun, 

2010). The mental state of the user will be calculated from EEG physiological data 

using an EEG device that he/she will be wearing while using the system. The 

specific adaptation that was chosen will be discussed.  Then, an evaluation of the 

system will be deployed. 

As mentioned before, due to COVID-19 outbreak, most schools and universities 

were forced to deploy online lessons. This sudden and huge step towards online 

learning makes it imperative to keep students motivated and maximize their 

learning performance or/and user experience when using these online platforms 

to support their learning. 

With this research we also aim to contribute to the few relevant studies available 

for real-time adaptations in e-learning systems using EEG. We noticed that most 

research papers were not focusing on web applications architecture. Also, we 

found many EEG classification studies but only few of them used these classifiers 

in a realistic environment with adaptations. Also, all the problems that were faced 

at the design/development process will be discussed. With this we wish to make 

future implementations of such systems less intimidating and easier. Finally, with 
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the use of a low-cost and commercially available EEG device in this system we 

make a step forward to make these systems more accessible in the future.  

The structure of this dissertation is as follows: First, the interdisciplinary 

background is discussed: brain fundamentals, EEG, Brain Computer Interfaces, 

adaptive systems, e-learning systems, machine learning etc. Then, the architecture 

and the components of the created system is presented. Last, the evaluation of the 

system is presented and discussed leading to the conclusion of the dissertation. 
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Chapter 2 
Background 

2.1 Brain Fundamentals 
To better understand EEG a brief introduction to the electrophysiology of the 

human brain will be presented. The human brain consists of three main parts: the 

cerebrum, the cerebellum and the brainstem. The cerebrum is the area that mainly 

controls high-level functions such as complex thinking. The cerebellum is 

responsible for balance and muscles coordination while brainstem controls 

involuntary functions such as breathing, heart and hormone regulation (Sanei & 

Chambers, 2007).  

The cerebrum can be further divided into four main lobes, each one with a 

different main function. The frontal lobe for example is responsible for problem 

solving, emotions, movement, and speech. The parietal lobe is also involved in 

problem solving but also in pain and taste. The temporal lobe is responsible for 

hearing and memory, and finally the occipital lobe for seeing (Kamel & Malik, 

2014). Also, the cerebral cortex is a convoluted surface layer of neural tissue at the 

cerebrum (Sanei & Chambers, 2007). We will see later on that the location plays 

an important role in EEG tasks. 

Inside these structures around 100 billion of nerve cells called neurons are 

contained. Each neuron consists of its cell body, an axon that relays information to 

other neurons and dendrites that receive information from other neurons. Each 

neuron is connected to around 10.000 other neurons through their dendrites and 

pass information to other neurons in an area called the synapse using 

neurotransmitters (Sanei & Chambers, 2007). 
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The neurons have electrochemical properties and at their resting state they are 

polarized at -70mV, called the resting potential or membrane potential. If the 

membrane potential exceeds a threshold of -55mV then an action potential is 

triggered through the axon lasting approximately 1ms. Neurotransmitters are 

released at the synapse making the next neuron to depolarize (excitatory post-

synaptic potential, EPSP) and the extracellular space to be more negative or 

hyperpolarize (inhibitory post-synaptic potential, IPSP). IPSPs and EPSPs are 

summed up temporally making the membrane potential more or less likely to 

create an action potential (Kirschstein & Köhling, 2009; Tivadar & Murray, 2019).  

2.2 Measurement 
As already discussed, Electroencephalography (EEG) is a non-invasive method for 

measuring the electrical activity of the brain when large population of neurons fire 

in synchrony. This activity is detected by electrodes placed on the scalp (Light et 

al., 2010). EEG was first used in humans by Hans Berger in 1920 and after some 

years it was mainly used for neurological condition or brain function assessments 

such as seizures (Kamel & Malik, 2014). The recording of the brain activity is called 

an electroencephalogram which is also abbreviated as “EEG” (Li et al., 2020).  

There are some conditions that must be met so that EEG can be successfully 

measured. First, a large population of neurons must fire in synchrony and more 

specifically around 10.000 to 50.000 neurons (Li et al., 2020). Second, these 

neurons must be close enough to the scalp so that their activity can be grasped by 

the electrodes. Last, only a specific orientation and type of neurons can be 

measured and specifically parallel pyramidal neurons, otherwise their activity will 

be canceled out. This means that mainly the activity of the cerebral cortex can be 

measured that has all the above characteristics (Sanei & Chambers, 2007). 

Nonetheless, not all electrical neuronal activities can be detected by EEG. Due to 

the nature of pyramidal neurons, only EPSPs and IPSPs create a dipole that can be 

measured from the scalp when post-synaptic potential is summed up (Jackson & 

Bolger, 2014; Kirschstein & Köhling, 2009; Tivadar & Murray, 2019).  Another 

reason is due to their longer duration than that of action potentials (Kirschstein & 
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Köhling, 2009). This activity varies with time, and it can be measured almost 

instantly right after occurring. Hence, EEG has an excellent temporal resolution 

(Hajare & Kadam, 2021). On the other hand, we cannot safely distinguish the 

neural location of the signal because the activity is a sum of all EPSPs and IPSPs 

from many different sources, and their dipole influences the charge in many 

different directions. Thus, EEG has a very low spatial resolution, regardless of the 

number of electrodes used (Xia & Hu, 2019).  

Regarding this activity, there are two types of EEG activity: The spontaneous 

activity of the brain, called spontaneous EEG and evoked potentials (EPs) where 

the brain activity is associated with a specific event (psychological or physical) (Lu 

& Hu, 2019). Steady-state visual evoked potentials (SSVEPs) and P300 are two 

very popular examples of EPs. SSVEPs is the brain activity measured at the 

occipital lobe when a visual stimulus like a flashing light is repeating itself at a 

specific frequency. The P300 is a positive potential detected 300ms after an odd 

stimulus is presented among regular ones (oddball paradigm) (Portillo-Lara et al., 

2021). 

In all the above cases, when an event occurs there are small voltage differences in 

the EEG signal that can be extracted by repeating the stimulus in a precise time-

locked manner, and averaging all the trials (Teplan, 2002). This technique is very 

popular among researchers, and it is called Event Related Potentials (ERPs) (Lu & 

Hu, 2019). In this dissertation we will be focusing on spontaneous EEG as this is 

more relative to grasping a user’s mental state. 

2.3 Sensors 
There are several items that are needed to measure EEG. A set of electrodes to 

grasp the neuronal electrical activity from the scalp, an analog-to-digital (A/D) 

converter that converts the analog signal to a digital one, an amplifier to magnify 

the signal so that it can be successfully digitized by the A/D converter and a 

recording unit / PC to store this information (Teplan, 2002).  
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So, using the most minimal setting, three electrodes are needed for the 

measurement: A signal (or active) electrode, a reference electrode, and a ground 

electrode. The actual activity is the difference in potential between the active and 

the reference electrode, that’s why the reference electrode should be positioned 

at a place with 0 voltage, even though this is practically impossible. Finally, the 

ground electrode is needed for power line noise removal (Xia & Hu, 2019).  

Luckily, there are many differences between modern EEG devices and older ones. 

EEG devices do not longer require long electrode wires that must be connected to 

the recording devices. Also, these devices used to be separate devices that the user 

had to keep somewhere. Today, the EEG devices are small enough to be worn 

directly in the head, have integrated electrodes without external wires and send 

the signal wirelessly to nearby devices real-time. This is highly important as the 

signal quality is compromised from the length of the wire and even more from the 

wired being moved or tangled (Casson, 2019). 

Usually, a conductive substance, such as a gel, is applied between the electrode 

and the scalp to reduce the contact resistance (impedance) between skin-

electrode and to improve the signal quality. These electrodes that require gel are 

called wet electrodes, they are usually made from silver (Ag) and silver chloride 

(AgCl) and have a shape of a cup / disc. Wet electrodes have the following 

disadvantages: Gel application requires skin preparation (skin cleaning) that is 

time consuming (di Flumeri et al., 2019). This procedure may cause skin irritation, 

infection (Teplan, 2002) or allergies (Hajare & Kadam, 2021) and it is generally 

uncomfortable as these products are sticky. Moreover, if the gel is spread to 

nearby electrodes, it may cause them to short. Also, when time passes by the gel 

may dry up, causing impedance instability that can influence the recordings. 

Lastly, impedance must be checked to be under certain values that also takes time 

(di Flumeri et al., 2019). Even after the EEG recording is finished, the gel removal 

is difficult, time consuming and usually requires hair wash (Zander et al., 2011). 

Obviously, the application of this conductive gel must be made for each electrode 

that can be up to 256 electrodes. Fortunately, a much smaller number of 
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electrodes is generally preferred (Xia & Hu, 2019). As a result, a specialist is 

needed to take care of the above steps (Casson, 2019). Regardless of all the 

drawbacks mentioned, wet electrodes are considered the gold-standard in clinical 

or research settings because they provide high signal quality (Portillo-Lara et al., 

2021). 

Instead, one can use dry electrodes which are directly contacted with the skin, 

with no conductive substances in between. As a result, the drawbacks related to 

the gel do not longer apply. In this case, the time needed for the electrode setup is 

reduced significantly. At hairy parts, the contact between the electrodes and the 

skin is ensured by the pins of the electrode that can successfully sit behind the hair 

(Casson, 2019). Therefore, no hair wash is needed after EEG usage and no 

irritation or allergy is caused by this procedure. All of the above make dry 

electrodes more appropriate for usage outside of the lab, in real-world scenarios 

where the user could use the device with no technical help. 

There are times, however, that the EEG recording is contaminated, and the signal 

does not come from the brain. Usually, this signal has a higher amplitude and a 

different shape than that of a normal brain signal. This contamination is called 

artifacts (Teplan, 2002) and someone must be very careful about accidentally 

taking into account artifacts at his/her further analysis. There are two types of 

artifacts: physiological and non-physiological. Physiological artifacts may be 

caused by the heart pulse, by breathing, sweating, blinking or from eye 

movements in general, by muscle contractions like movement in general or tongue 

movement, talking or chewing (Louis et al., 2016). Non-physiological artifacts may 

be caused by AC power line noise, low battery of the EEG device, electrode or wire 

movements, wire connectivity issues or shortages, excess quantity or drying of the 

paste or gel. Detecting these artifacts can be accomplished manually (offline) by 

the researcher or automatically (online) by the system. Finally, using specific 

electrodes for detecting eye or muscle movement and cardiac pulse further helps 

detecting these physiological artifacts (Teplan, 2002). 
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At the clinical and research settings a standardized position of electrodes is 

required. For this reason, a system for electrode placement was proposed in 1947 

by H.H. Jasper. More specifically, this system uses 10% or 20% interelectrode 

distance from standard skull landmarks such as nasion-inion (anterior-posterior 

plane) and left-right preauricular points (lateral plane). Also, depending on the 

lobes that they correspond to these positions are prefixed with: Fp (Fronto-polar), 

F (Frontal), P (Parietal), O (Occipital), T (Temporal). Additionally, there is also the 

C (Central) point that is named after the central sulcus. These names are followed 

by a number. Odd numbers are used for left hemisphere and even numbers for the 

right hemisphere. For example, O1 means the first electrode position of the 

occipital area at the left hemisphere. This system originally used 19 points with 2 

extra points at the earlobes A1 and A2 where A is taken from the word auricular 

(Klem et al., 1999). 

Finally, there are also two alternative methods for measuring brain activity that 

unlike EEG, are invasive ones. They both require a surgical procedure to place 

electrodes/array of electrodes inside or above the cortex itself. The latter is called 

Electrocorticogram (ECoG). Due to their close distance to the signal source, their 

signal quality is much higher compared to that of EEG and they even have the 

potential to measure the activity of a single neuron. Therefore, they present an 

excellent spatial and temporal resolution, but at the same time they have some 

serious drawbacks. Apart from the surgical procedure itself, problems may arise 

involving foreign body reaction / infection, stability of the electrodes, small area 

covered and inability to move electrodes to another area. For this reason, they are 

only used by people with epilepsy, tetraplegia, or other disabilities (Abdulkader et 

al., 2015). 

2.4 EEG Devices 
There are many available EEG devices with a varying number, type and placement 

of electrodes, sampling rate, recommended application and price. Additionally, 

some devices also provide an extra set of sensors that measure heart rate activity, 

muscle activity or eye movements (Soufineyestani et al., 2020). Low-cost devices 
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that use 1 to 4 channels include: NeuroSky MindWave Mobile 2, Muse 2 and 

MyndPlay Myndband, all of which have dry electrodes and cost under $300. These 

devices are commercial in the field of neurofeedback. Due to their type of 

electrodes these devices have a quick setup and amongst them, Muse is the most 

popular choice. In contrast, expensive devices include: Emotiv Epoc X, OpenBCI, 

Neuroelectrics Enobio, etc that have many more channels and they are more 

research-based. Their cost ranges from $850 to even $25000 (Portillo-Lara et al., 

2021).  

 

Figure 1: Muse 2016 device (Krigolson et al., 2021). 

Muse is a wearable headband by InterAxon Inc. that has 2 frontal electrodes at the 

position AF7, AF8 and two temporal electrodes at TP9 and TP10 (Krigolson et al., 

2021). It has 3 reference electrodes at the center and also includes a 3-axis 

accelerometer (Abujelala et al., 2016) and a heart-rate sensor (Sawangjai et al., 

2020) with a streaming rate of 256Hz through Bluetooth protocol. Muse has 3 

versions: Muse (released in 2014), Muse 2 (released in 2016), (Sawangjai et al., 

2020) and Muse S (Soufineyestani et al., 2020) and its battery lasts for 5 hours 
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(Sawangjai et al., 2020). Muse’s application is in the field of neurofeedback that 

acts as an aid for meditation and has its own commercial Android/iOs app for this 

purpose (Sawangjai et al., 2020). However, its data can also be collected outside of 

this application (Sawangjai et al., 2020), making it an excellent candidate for 

research or custom applications due to its low cost and quick setup. Besides, 

research also shows that Muse is a reliable and accurate tool that can be used in 

ERP and EEG experiments successfully (Krigolson et al., 2021).  

Another EEG device is OpenBCI, which is an open-source device that started as a 

low-cost Kickstarter campaign.  It consists of a printed circuit board (PCB) and a 

software for visualizing and collecting data. An extra set of electrodes (dry or wet) 

must be purchased and placed in the head in the desirable location by the user 

(Sawangjai et al., 2020). Several years after its launch their e-shop included some 

bundles with several different solutions based on each user’s needs and budget. 

For example, ‘All-in-one EEG electrode cap started kit’ bundle includes: 16-

channel OpenBCI board, Ag/AgCl electrodes and an electrode cup that costs 

$2449.99 (OpenBCI, n.d.-a). But, due to customizations needed and extra products 

that must also be purchased, it is more appropriate for users with engineering 

background, making it less a popular choice (Sawangjai et al., 2020). 

 

Figure 2: OpenBCI 4-channel Ganglion board (OpenBCI, n.d.-b). 
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2.5 Applications, Brain-Computer Interfaces 
There are many different applications where EEG can be used by scientists, 

clinicians, engineers, simple end-users etc. Generally, we can distinguish the 

applications in some broad categories like medical, research and Brain-Computer 

Interfaces (BCI). 

At the medical field applications include detection of abnormal brain functioning 

or cognitive impairments. This could be seizures, strokes, traumatic brain injuries, 

Parkinson’s disease, attention deficit hyperactivity disorder (ADHD), sleep 

disorders, language disorders, autism, anxiety, post-traumatic stress disorder 

(PTSD), memory impairments, coma (Soufineyestani et al., 2020), brain tumors 

(Bera, 2021), etc.  Moreover, in some cases it may even predict seizures (Slimen et 

al., 2020) or strokes (Kaur et al., 2022). 

At the research field scientists utilize EEG to better understand how the brain 

works when performing tasks under different emotional or mental states such as 

stress, drowsiness, fatigue, suicidal states, insight, etc. These tasks may include 

surgeries, driving/piloting, working, drinking, decision-making, learning, etc 

(Soufineyestani et al., 2020). Engagement and workload are also important factors 

that can be measured using EEG. These are mostly used in learning contexts due 

to their correlation with the learning outcomes (Khedher et al., 2019). 

Brain Computer Interfaces (BCIs) are systems that provide a communication 

channel between one’s brain with a software or hardware (Portillo-Lara et al., 

2021) and it is the most popular application area of EEG (Soufineyestani et al., 

2020), called EEG-based BCIs (eBCIs) (Portillo-Lara et al., 2021). BCIs can be 

distincted based on their invasiveness into invasive and non-invasive and based 

on the brain signal type into active, passive and reactive BCIs.  

Active BCIs require the user to intentionally do something that exerts specific EEG 

patterns that can be recognized by the system. The ultimate goal is to control a 
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device by the proper analysis of the EEG data. This recognized EEG pattern could 

be motor imagery, mental arithmetic, etc (Portillo-Lara et al., 2021). Using motor 

imagery, users of such systems imagine to move their limbs without actually 

performing any motor output (Portillo-Lara et al., 2021).  This signal is then 

processed, and the users are able to control mechanical parts like robotic arms 

using their brain only. This is particularly useful for people with motor disabilities. 

Moreover, people with speech impairments, are able to communicate with the 

outside world (Soufineyestani et al., 2020) using the so-called “spellers” where 

they choose letters/words using their brain only (Thompson, 2019). Of course, the 

response time is much lower than that of the input devices (mouse, keyboard etc) 

that would be used instead (Shishkin, 2022), the accuracy can be low and user 

training is needed that can take much effort and time (Portillo-Lara et al., 2021). 

Passive BCIs on the other hand, do not require the user to do anything in 

particular. Therefore, passive BCIs are mainly used to grasp the user’s current 

mental states (attention, fatigue etc) (Portillo-Lara et al., 2021) and it is mostly 

used by healthy individuals (Zander & Kothe, 2011). The goal is to send user 

information to the system without any extra user effort (implicitly), making these 

systems a great candidate for adaptive systems (Zander & Kothe, 2011). Finally, 

reactive BCIs rely on external stimulus that are known to generate very specific 

brain responses such as P300 EP (Douibi et al., 2021), in order to control 

something (Zander & Kothe, 2011). 

It should be noted here that there is a phenomenon related with the training of the 

user to use active BCIs. This term is called BCI illiteracy, which is the inability of 

15-30% of the users to control a system (Vidaurre & Blankertz, 2010) even though 

they have received the same training as successful individuals (Thompson, 2019). 

More specifically, one can be unsuccessful using a specific recognizable pattern 

(for example motor imagery) but successful in another. BCI illiteracy is not always 

considered a permanent situation. Differences in BCI training and in actual use of 

the system such as mood, attention, caffeine consumption and sleep may result in 

the user’s illiteracy. However, this term is criticized by many researchers as the 
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BCI design may be more to blame than the user’s inability. Therefore, 

individualized BCIs may be the solution to this problem (Thompson, 2019). 

BCIs have applications in medical, research, security, education, marketing 

(Portillo-Lara et al., 2021), gaming, art, Augmented / Virtual Reality (AR/VR) and 

Autonomous-driving vehicles fields (Shishkin, 2022). In BCI applications, EEG 

data is processed real-time (online) by the system to achieve its goal. Some 

examples include: device control, mental states (workload / fatigue / stress) 

monitoring for operator’s safety, learning adaptive systems based on workload or 

vigilance (Douibi et al., 2021), gaming with or without the use of VR/AR (Shishkin, 

2022), user identification, rehabilitation, decision-making examination when 

purchasing, neurofeedback (Portillo-Lara et al., 2021). Neurofeedback is a form of 

biofeedback where the user gets an immediate auditory or visual response based 

on the desired brain activity (Teplan, 2002) that lead to specific behavioral 

responses. Neurofeedback has many applications, for example treatment of 

attention deficit hyperactivity disorder (ADHD) or seizure regulation where the 

user implicitly learns to avoid brain activity that leads to seizures (Portillo-Lara et 

al., 2021), meditation aid as mentioned earlier, etc. 

2.6 Neural Oscillations 
The brain’s electrical activity described earlier shows a rhythmic pattern called 

brain oscillations or brainwaves that are classified into five major frequencies. 

Slow frequency waves such as alpha (α), theta (θ) and delta (δ) and high frequency 

waves such as beta (β) and gamma (γ). Some of them are more present in specific 

brain regions than others (Kamel & Malik, 2014). Also, the lowest or highest ends 

of those frequencies are not always consistent among researchers usually having 

1-2 Hz deviation.  

Generally, each wave is associated with specific cognitive states even though the 

wave’s frequency is only a part of this puzzle. The amplitude, phase or coherence 

may also play their role (Herrmann et al., 2016). 



15 
 

Delta waves are the lowest waves ranging from 0.5 to 4Hz. In contrast, the 

amplitudes of these waves are the highest and these waves are associated with 

deep sleep (Kamel & Malik, 2014). For awake individuals, it is associated with 

cortical plasticity and are indicators of cognitive processing, as shown in the P300 

in ERP experiments (Malik & Amin, 2017).  

Theta waves range from 4-8Hz and are associated with meditation and 

drowsiness and these are mostly evident at children. However, having high delta 

activity may indicate brain disorders (Kamel & Malik, 2014). Also, theta waves are 

associated with attention and memory processes (Malik & Amin, 2017).  

Alpha waves range from 8-13Hz, they are more dominant in the occipital lobe and 

are associated with creativity, wakefulness, relaxation, having the eyes closed 

(Kamel & Malik, 2014), memory and attention (Herrmann et al., 2016). 

Additionally, it is shown that alpha waves are present when someone inhibits 

task-irrelevant information. Beta waves range from 14-26 Hz, they are more 

present in the frontal and central regions and are associated with active attention 

and thinking, problem solving (Kamel & Malik, 2014), motion tasks or tasks with 

sensorimotor interaction (Herrmann et al., 2016).  

Gamma waves range from 25Hz and up, they are associated with cortical 

activation, attention, working memory, long-term memory and conscious 

perception. Gamma waves can be easily confounded with muscle artifacts, that’s 

why research on those is limited comparing to other brainwaves (Malik & Amin, 

2017). 

2.7 EEG Processing Pipeline 
EEG-based BCIs must translate the signal to desired commands or classes (in our 

case, mental states). This is a complex and difficult task and in order to do so, the 

signal must first be processed and analyzed with the help of machine learning 

(Lotte, 2014). This includes the following sub-tasks: EEG signal acquisition, 

preprocessing, feature extraction and classification. 
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Figure 3: BCI signal processing pipeline for motor-imagery BCI (Lotte, 2014). 

The signal acquisition is made through the EEG device and the recording device as 

described earlier. EEG signal preprocessing removes noise and artifacts in order 

to increase signal quality. This is usually done with signal filtering, data 

segmentation, removal of bad segments or more advanced techniques (Li et al., 

2020). Signal filtering is done by applying low-pass, high-pass, band-pass or band-

stop filters to the signal. Low / high pass filters keep the signal below/above a 

certain frequency and attenuate the rest of signal. Band pass / band stop filters 

keep / attenuate the signal in a specific range of frequencies (Peng, 2019). The 

most common filtering scenario is to apply a filter in order to remove frequencies 

below 0.1 Hz and also remove the power line noise, which is 50Hz in Asia and 

Europe, and 60Hz in Unites States (Li et al., 2020). While someone may apply a 

low-pass of 30Hz for example, there is still the need to filter power line noise 

because it could be extremely powerful that could still contaminate the signal (Li 

et al., 2020). 

As mentioned earlier, another part of preprocessing is data segmentation. Data 

segmentation is a standard procedure at ERP experiments due to their nature. The 
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continuous EEG recording must be separated into smaller segments that start with 

the stimulus onset (Peng, 2019). On the other hand, even though at resting-state 

potentials EEG there is no specific event happening, there is still a 

recommendation to segment the data into smaller pieces (Li et al., 2020). These 

segments are often called windows (Candra et al., 2015). Unfortunately, there is 

no standard window size. Scientists use different sizes starting from 1s 

(Chaouachi & Frasson, 2012), to 40s (Wang et al., 2012), that usually overlap by 

50% (Li et al., 2020). Additionally, if a data segment is detected to have a lot of 

artifacts it can be discarded manually or automatically with advanced techniques 

such as Independent Component Analysis (ICA) that can detect eye blinks or 

muscle movements (Li et al., 2020). 

After preprocessing is completed, the processed signal that describes best what 

we want to recognize called features, must be collected into a vector called feature 

vector (Lotte, 2014). However, the features must be selected wisely as more 

features will lead to computational complexity (Tambe & Khachane, 2017). 

Specifically for EEG, the Power Spectral Density (PSD) is the most frequent and 

important feature. This is the power distribution of the signal amongst several 

frequencies. In other words, it is the transformation of the signal from time-

domain to frequency-domain (Zhang, 2019). The frequencies that are included are 

part of the brain oscillations and more specifically they depend on the task at hand.  

For example, You (You, 2021) used the frequencies from 9-43Hz (with 4Hz bin) as 

it lead to better classification results when classifying relaxation/concentration 

mental states, whereas for motor imagery classification the frequencies from 8Hz 

to 24Hz are more common (Lotte, 2014).  Therefore, the feature vector from the 

concentration/relaxation example that was described is number of channels x 

feature for each EEG window so if we have a 4-channel EEG device and divide the 

frequencies of 9-43Hz into a 4Hz bin (band width) the result would be a 4x8 

dimensions for each window.  

Machine learning is the ideal tool to decode information from such high 

dimensions because statistical models are not capable of doing so (Li et al., 2020) 
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and classifiers learn to identify the appropriate class from a feature vector 

(supervised learning). So, the next step after having a feature vector is to define a 

class (for example concentration and relaxation), split the available dataset into 

training set and test set and train the selected ML algorithm with the labeled 

training set. Finally, using the test set someone is able to evaluate the accuracy of 

the algorithm (Li et al., 2020). So, overall, the pipeline is the following: Acquire 

enough labeled raw EEG data for all desirable classes (concentration, relaxation). 

Preprocess the EEG signal, find the features (so calculate the PSD) and form a 

feature vector. Then, select the appropriate ML algorithm. Split the dataset into 

training set and test set, train the data with the training set and evaluate its 

performance with the test set. If the results are acceptable, use this ML classifier 

to the BCI system. The algorithm will be able to predict the class of a new dataset. 

More details about machine learning will be presented in the following chapter. 

 

Figure 4: Signal in time-domain and it’s representation in delta, theta, alpha, beta and 
gamma frequencies (Zhang, 2019). 
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Figure 5: The spectrum of the same signal. Alpha is the most powerful frequency (Zhang, 
2019). 

 

2.8 Machine Learning 
The relationship between inputs and outputs of data can be successfully created 

from mathematical models in some simple occasions. This means that a prediction 

can be made possible when given an input. However, this is not directly possible 

when the complexity of this relationship is high. Machine Learning (ML) is a set of 

techniques that can automatically create a mathematical model in such complex 

scenarios (Baştanlar & Özuysal, 2014). In other words, ML can learn without being 

specifically programmed to with rules or instructions (Sarker, 2021). This is 

accomplished using large amounts of data called training data, so recent advances 

in data storing was a huge contribution to ML (Baştanlar & Özuysal, 2014). This 

training data includes a feature vector as described earlier, which is a vector 

containing the most salient information about the data at hand. These features can 

be numerical, categorical, or ordinal (values with an order). However, one must 

not use too many features because it could lead to several issues such as 

performance costs, etc (curse of dimensionality). For this reason, there are some 

available techniques to minimize the feature length (dimensionality reduction).  

(Badillo et al., 2020). 
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ML algorithms can be distinguished in the following categories: supervised 

learning, unsupervised learning, semi-supervised learning, and reinforcement 

learning (Sarker, 2021) based on the availability of the output data (Baştanlar & 

Özuysal, 2014). At supervised learning, inputs are always followed by outputs and 

common tasks include classification and regression. Classification predicts 

discrete output values based on data inputs (Sarker, 2021) while regression will 

map the inputs to a continuous output variable (Baştanlar & Özuysal, 2014). On 

the other hand, unsupervised learning does not need outputs. Its goal is to find 

groups of similar items. Common tasks include clustering, density estimation, 

feature learning, dimensionality reduction etc (Sarker, 2021). For example, 

finding social accounts based on similar activity (Baştanlar & Özuysal, 2014). 

Semi-supervised is a hybrid learning category between supervised and 

unsupervised learning as it uses pairs of inputs-outputs, but some outputs can be 

omitted. Last, reinforcement learning is based on rewards or penalties that are 

used to improve the systems efficiency (Sarker, 2021). In this chapter we will 

focus on supervised learning algorithms used specifically for classification as this 

is the systems goal.  

Supervised learning algorithms have the ability to evaluate their performance 

using various data-splitting techniques. Usually, the collected data is divided in a 

training set and a validation set. The training set creates models with multiple ML 

parameters that are tried on the validation set in order to find the optimum ones. 

The best model is then selected and tried on another set called the test set that 

calculates its performance. The performance can be affected by the total data 

length, overlapping data and the algorithm selected itself (Xu & Goodacre, 2018). 

Such evaluation is highly important because ML algorithms may fall into one of the 

following problems: overfitting or underfitting. Overfitting is when the algorithm 

performs very well when evaluated on the training data, but its predictions are 

not accurate on data that the algorithm has never seen (Xu & Goodacre, 2018). 

This means that the algorithm is not able to generalize. Underfitting on the other 
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hand, is when the created model is too simple to make the appropriate mappings 

between inputs and outputs (Baştanlar & Özuysal, 2014). 

Naïve Bayes is a simple supervised learning algorithm based on Bayes Theorem 

that uses conditional probability. It creates a probability table that is updated with 

the training data. The reason why it is called “Naïve” is due to the assumption that 

every feature is independent from another. Due to its simplicity, other ML 

algorithms may perform better than Naïve Bayes. However, it can be used for 

clustering or classification of two or more classes, it has good performance, and it 

does not need a large dataset (Ray, 2019). One of its common usages is text 

categorization (Hosseini et al., 2021) but it can also be used in EEG tasks such as 

emotion recognition, seizure detection and motor imagery (Saeidi et al., 2021). 

K-Nearest Neighbors (KNN) is a supervised learning algorithm that is used for 

classification and regression (Hosseini et al., 2021). It depicts all training data in 

the n-dimensional space and tries to classify unseen data using Euclidean distance 

function from the k nearest neighbors of each point based on their similarity 

(Sarker, 2021). The number k is selected based on the amount of the dataset 

(Hosseini et al., 2021), from 1 to 20 (Sciaraffa et al., 2019). However, the selection 

of the number k is a difficult task (Sarker, 2021) and its accuracy depends on the 

quality of the data. Also, if the feature length is kept low its computational cost is 

also low (Sciaraffa et al., 2019). It is successfully used in EEG tasks with high 

accuracy (Saeidi et al., 2021). 

Random Forest is an ensemble supervised learning algorithm used for 

classification and regression. It creates a set of decision trees during training and 

takes all created trees into account to make its decision using bagging operation 

(Hosseini et al., 2021) and output randomization. When all individual decision 

trees are created, a majority voting decides the final result. Random Forest is 

accurate and can make use of large amounts of data (al Amrani et al., 2018). 

Therefore, it performs better than other ML algorithms in EEG tasks that include 

a large dataset (Saeidi et al., 2021). Moreover, is works really well on smaller 
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datasets also, due to its robustness to overfitting. Finally, its parameters do not 

need many adjustments (Badillo et al., 2020).  

 

Figure 6: Random Forest (al Amrani et al., 2018) 

 

Support Vector Machine (SVM) is a supervised algorithm created at the 1990s that 

is being used in binary classification and regression tasks. This algorithm works 

by plotting all the data points in n-dimensions and tries to find the hyper-plane 

that separates these two classes with the largest possible margin (al Amrani et al., 

2018). This separation can be linear or non-linear. Non-linear separation is 

possible due to kernel functions that transform the data into higher dimensions 

that make the separation possible (Baştanlar & Özuysal, 2014). SVM is the most 

frequent and accurate ML algorithm used in EEG tasks, possibly due to its 

simplicity and its high generalization. However, its parameters must be optimized 

because its performance is highly dependent on it (Saeidi et al., 2021). This is a 

difficult task in EEG data due to the non-stationary characteristics of EEG 

(Aggarwal & Chugh, 2022). 
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Figure 7: Support Vector Machine (Badillo et al., 2020) 

 

 

Figure 8: Non-separable data (Hosseini et al., 2021) 
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Figure 9: The same data transformed to a higher dimension (separable). (Hosseini et al., 
2021) 

 

2.9 E-Learning 
E-learning is a board term “describing any type of learning that depends on or is 

enhanced by online communication using the latest information and 

communication technologies” (Nagy, 2017). E-learning is much more flexible than 

conventional learning at classrooms and can be performed asynchronously at any 

time the student chooses to. This saves time and transportation costs that may 

apply. Also, there is a huge collection of available courses that the user can select 

from and follow at his/her own pace, offered in an interactive environment using 

rich multimedia educational material (Nagy, 2017). Additionally, there are e-

learning environments where there is also a teacher performing synchronous 

learning (Klašnja-Milićević et al., 2017). Universities or schools use e-learning 

systems to exchange educational material or assignments, perform tests and 

inform the students about their progress. E-learning is also used in domains 

outside of education, for example it is used in companies for the training of their 

employees (Klašnja-Milićević et al., 2017). Finally, e-learning is considered low-

cost compared to traditional learning because there is no need to buy textbooks 
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that can be obsolete after a short period of time. In contrast, the e-learning content 

is updated regularly (Hammad et al., 2018). Nonetheless, there is lack of 

interaction between the teacher and the students leading to student’s isolation 

(Hammad et al., 2018), lack of motivation and lack of immediate feedback from 

the students (Al-Nafjan & Aldayel, 2022).  

Regarding asynchronous learning, there are also Massive Open Online Courses 

(MOOC) that are self-paced and open for thousands of people to attend to. They 

also share a common educational material (Ceron et al., 2021). The most popular 

ones are Coursera, EdX, FutureLearn, Open EdX and Moodle (Ceron et al., 2021). 

In some of those, there is an active community where students are asking 

questions and receive feedback (Russell et al., 2013) in forums or there is a chat 

functionality available in public rooms or privately (Coetzee et al., 2014). The main 

disadvantage of MOOCs is their high drop rate that may be due to poor quality of 

the course, lack of effective time-management of the students, lack of prerequisite 

knowledge for attending the course or for reasons that were already mentioned 

generally in e-learning contexts (Ceron et al., 2021).  

2.10 Adaptive and Interactive Systems 
Most systems are designed to meet some characteristics that the majority of users 

would need, commonly called the ‘one-size-fits-all’. However, each user has 

unique characteristics, preferences, interests, and emotions that affect his/her 

interaction with the system.  Adaptive and interactive systems are systems that 

have the ability to change their content, functionality or user interface based on 

collected data about the user. The goal is to increase the system’s functionality and 

provide a positive user experience due to personalization (Papatheocharous et al., 

2014). An example of such systems is that of Google, Bing and Amazon that 

personalize the search results or provide personalized recommendation to its 

users (Papatheocharous et al., 2014).  
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In order to design such system, a user model must be created and maintained 

(Germanakos & Belk, 2016) using tools such as data mining and machine learning 

(Bezold & Minker, 2011). Then, adaptation mechanisms decide exactly what will 

be adapted. There are many different algorithms for deciding that: rule-based 

filtering, collaboration filtering, content-based filtering etc. Rule-based filtering is 

the simplest approach of using rules for this decision (Germanakos & Belk, 2016). 

A user model represents relevant information about the user, able to make 

personalization possible (Germanakos & Belk, 2016). This information could be 

static, about the user himself/herself such as gender, date of birth etc or dynamic 

information such as knowledge, interests, goals, background and individual traits.  

On the other hand, information about the user’s context can be his/her location, 

device or device type, interaction history, etc. This information can be provided by 

the user explicitly (questionnaires, psychometric tests) or inferred implicitly by 

the system (Germanakos & Belk, 2016). For example, in a web system a log file of 

all user actions is kept. So, a user model can be constructed by observing the user’s 

interactions and creating a high-level meaning out of these sequences. This could 

be a user preference (Bezold & Minker, 2011) or interest, the level of knowledge 

or learning goal in an e-learning system, personalized user authentication, etc 

(Papatheocharous et al., 2014). The creation of an implicit user model is a much 

more challenging task but also preferrable as no further user-interaction is 

needed that could potentially increase the user’s cognitive load. Of course, due to 

the complexity of creating this model, the model could be incorrect (Germanakos 

& Belk, 2016). Additionally, the user’s physiological data can also be included in 

the creation of the user-model by using external sensors that are connected to the 

system (Bezold & Minker, 2011). 

There are specific factors that contribute more to the user’s positive experience 

and the overall usability of the system for each domain, and according to 

Germanakos & Belk (Germanakos & Belk, 2016), the user’s personality, emotions 

and cognition may contribute to all domains having a human-computer 

interaction.  
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Specifically for the learning domain, cognitive processes that support learning 

such as creative thinking, inspiration, concentration, and motivation are affected 

by user’s emotions (Chaouachi & Frasson, 2010). And even though the recognition 

of the student’s emotions may be an easy task for conventional learning 

environments where teachers can adapt their teaching accordingly, this is not the 

case in an e-learning system (Nandi et al., 2021). Accordingly, other issues of e-

learning versus conventional learning are lack of motivation, lack of immediate 

feedback about the difficulty of the educational material (Al-Nafjan & Aldayel, 

2022), or mental states of the students (Chaouachi & Frasson, 2012).  

Therefore, we conclude that an immediate feedback about the user’s mental states 

could lead to increased user and learning experience and potentially provide 

better learning performance. This feedback, according to the system type, could 

be fed back into the system itself in order to adapt, or it could inform the teacher 

to better support learning.  

The aforementioned human factors can be elicited implicitly with the use of 

external sensors. More specifically, EEG devices are a popular solution for 

providing unobtrusive and continuous data about the users' mental states. Also, 

compared to other physiological sensors such as electrocardiographic activity 

(ECG), neural-based ones (EEG, fNIRS) are considered an even better choice (Mühl 

et al., 2014). However, mental states elicitation is a complex task that needs expert 

knowledge in many different domains such as: sensor technology, signal 

processing, neurophysiology, experimental psychology, systems design, 

engineering, and advanced machine learning algorithms (Brouwer et al., 2015). 

2.11 Related Research 
2.11.1 Adaptive E-Learning Systems 

Generally, there are many different categories of related papers. Mental states is 

the first and most important one. Then, the application of use such as e-learning, 

driving or aviation for example. Also, there are two broad categories based on the 
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method of EEG analysis: the papers that use machine learning or some that use 

only statistical methods, and the ones that use adaptations or not. Finally, the 

device that is used is very important. Papers using commercial devices of 1-4 

channels is totally different than the ones that use research or medical EEG devices 

of up to 64 channels because they have very different capabilities than the first 

ones.  

To this time, no related work is found that satisfy the above criteria: the creation 

of an e-learning system that provides adaptations on the system functionality 

based on the mental states of concentration/relaxion with online EEG processing 

using ML algorithms and EEG devices of 1-4 channels, so less relevant studies will 

be presented. 

Chaouachi and others (Chaouachi et al., 2015) created an online adaptive system 

using a 14-channel EEG device and mental states of attention (using engagement 

index (Pope et al., 1995)) and workload. The goal was to keep the students in a 

positive state in order to increase the learning experience and outcomes. The 

adaptation was on the learning activity: the system got to choose the most relevant 

learning activity from either a problem-solving task or a worked example. The 

system was compared to a version of the system that did not consider the mental 

state adaptation rules and showed that it successfully achieved its goal.  

Walter and others (Walter et al., 2017) created an online adaptive learning 

environment based on the user’s workload, using a 28-channel EEG device and ML 

algorithms. The goal was to improve learning performance. The adaptation was 

on the learning material difficulty. The system was compared to error-based 

adaptive environment and showed that it successfully achieved its goal. 

Hu and Kuo (Hu & Kuo, 2017) used 5-channel EEG device to record data while 

students watched an educational video. This data was correlated to the exam 

scores of students with a rate of 83%. The authors propose that this correlation 

could be used in an adaptive system that could propose the number of times a 

video should be watched to increase the learning performance. 
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Lin and Kao (Lin & Kao, 2018) investigated the mental states (mental 

effort/confusion levels) classification performance of a system using online 

YouTube videos and a 1-channel EEG device. Their goal was to help future e-

learning systems to inform the users about their mental state so that they could 

improve their learning experience or performance and at the same time inform 

instructors as well so that they could alter the learning material accordingly. The 

accuracy of the ML classifier reached 95% (Lin & Kao, 2018).  

Kosmyna and Maes (Kosmyna & Maes, 2019) created a prototype which recorded 

student’s EEG data and calculated their engagement index (Pope et al., 1995) 

online. 1-channel EEG device was used and provided haptic vibration feedback 

through a given wearable scarf device when engagement levels were low. Its goal 

was to increase the student’s engagement and performance that was indeed, 

achieved.  

Liu and Ardakani (Liu & Ardakani, 2022) proposed an e-learning adaptive system 

based on the student’s emotions using a 14-channel EEG device. The adaptation 

was on the learning content (funny videos vs learning material) and its goal was 

to increase the learning performance, engagement and satisfaction compared to a 

traditional e-learning environment. However, only satisfaction was improved.  

2.11.2 Concentrated and Relaxed mental states 

A study of Edla and others (Edla et al., 2018) showed that mental states of 

attention and meditation can be correctly classified with an accuracy of 75%, 

using 1-channel EEG device and Random Forest ML algorithm. The attention task 

was to try to solve a mathematical problem, for one minute. The meditation task 

was to try and relax by closing their eyes for one minute. The same conclusion 

comes from another study of Ricker and others (Richer et al., 2018) using 4-

channel Muse EEG device. At focus tasks subjects were instructed to perform 

mental arithmetic, dictation and ‘Where’s Waldo’. At relax tasks, they were asked 

just to relax by watching some nature scenes but not close their eyes. Relax and 

focus tasks were alternated with a total training time of 3x3 minute for each class. 
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Moreover, a study by Bird (Bird et al., 2018) successfully classified 3 mental states 

of relaxing, concentrating and neutral, using a 4-channel Muse EEG device and 

Random Forest ML algorithm. At the relax task, subjects were instructed to relax 

while listening to a low-tempo music with sound effects, but not close their eyes. 

The neutral task was the same as the relaxed task but with no stimuli. At the 

concentrating task, participants were instructed to follow a ball that was hidden 

under one of the three cups that were presented on the screen and then switched. 

Total training time of 1 minute for each class and the accuracy was 87%.  

Another study of You (You, 2021) used 2-channel EEG device to classify relaxation 

/ concentration mental states with an accuracy of 80% using SVM ML algorithm. 

The concentration task was a reverse 5-digit span, meaning that a 5-digit number 

was presented aloud, and the participant should silently recite the digits of that 

number in reverse. At the relaxing task participants were asked just to relax. Both 

tasks were performed with eyes closed to avoid artifacts. The total training time 

was 20x10 seconds for each class. 

From all of the above studies we can conclude that it is feasible to classify 

concentration / relaxation mental states using an EEG device of 1-4 channels. 

More specifically, using Random Forest or SVM ML algorithm with a relatively 

small total training time of less than 18 minutes. It is also important to note that 

the EEG devices that were used in those studies included at least 1 frontal 

electrode as frontal lobes are known to be associated with problem-solving tasks 

(Channon, 2004). Finally, many studies used the same EEG device as the one that 

was chosen for this dissertation (Muse). 
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Chapter 3 
Implementation 

In the current study, a prototype web adaptive system was developed, called EEG 

Learn. It can also be classified as a passive BCI, and it simulates an e-learning 

environment where users are participants in online lectures and are consumers 

of learning content in general. This system could be a Massive Open Online Course 

(MOOC) or a system used by schools or universities to complement or replace 

their lectures. This system is designed to adapt its functionality based on the user’s 

mental states using Muse 2, a low-cost EEG device.  

More specifically, a status functionality was developed. This is commonly used in 

online communication systems such as skype, slack etc and indicates whether a 

user is available. Usually, this status is changed explicitly by the user among 

several other statuses (Online, Busy, Away etc) or implicitly by the system when 

the user is idle (Away). However, the Busy indication is a status that cannot be 

changed implicitly. In the current implementation, the status of the user is 

automatically changed based on his/her mental state. The selected mental states 

were: Relaxing and Concentrating that correspond to Available and Busy statuses. 

Besides, these mental states were more suitable for detection using the specific 

EEG device.  

The structure of this chapter is the following: first the developed system will be 

presented. Then, all its components and architecture will be presented and 

discussed in detail. 
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3.1 User Interface and Functionalities 
First, the user has the ability to register an account with a username and password 

and then log into the system with these credentials. The web application has the 

following links/topics: Introduction, Device Tutorial, Prepare Device, Signal 

Quality, Train, Predict and Attributions. The following functionalities are also 

available: Notifications, Connectivity, Settings, Logout and Status. A full 

presentation of the system is available at the appendix. 

Initially, the user is instructed to go through the first link Introduction and read 

the instructions that are presented there. From there, the system will guide the 

user as to what to do next. At the Device Tutorial, a video on how to wear the Muse 

device is presented. Then, at the Prepare Device the user is asked to turn on the 

device, wear it and pair it with the system. When this is done successfully, the user 

moves on to the next step, Signal Quality, where valuable information is presented 

about the importance of the signal quality. At that point, the user can test how 

good the signal is for each of the four electrodes of the EEG device. If the signal 

quality is good for all four electrodes, the user is prompted to move on to the Train 

step and from there to the Predict step. Specifically, for Prepare Device and Signal 

Quality the user is suggested to ask for extra guidance on how to wear the device 

and check its signal because this is the most important factor of the system’s 

success. However, if needed, the user can also ask for extra guidance at any step. 

The training procedure is the most important part of the system. Two task types 

are presented in an alternated order for one minute and each one is expected to 

induce a specific mental state. Each relaxing task presents a picture (nature photos 

mostly) and asks the user to relax with eyes open while listening to a soothing 

music track with no lyrics. Each concentrating task presents two consecutive 

shapes asking the user to count how many circles/squares/rectangles are 

contained in the given shape. There are 6 sessions for each task type with a total 

training time of 12 minutes. The music and shapes are different from each other. 
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Task Type Task Length Metric 
Relaxation Listen to a music track 60 Seconds 
Concentration Count embedded shape 30 Seconds 
Concentration Count embedded shape 30 Seconds 
Relaxation Listen to a music track 60 Seconds 
Concentration Count embedded shape 30 Seconds 
Concentration Count embedded shape 30 Seconds 
Relaxation Listen to a music track 60 Seconds 
Concentration Count embedded shape 30 Seconds 
Concentration Count embedded shape 30 Seconds 
Relaxation Listen to a music track 60 Seconds 
Concentration Count embedded shape 30 Seconds 
Concentration Count embedded shape 30 Seconds 
Relaxation Listen to a music track 60 Seconds 
Concentration Count embedded shape 30 Seconds 
Concentration Count embedded shape 30 Seconds 
Relaxation Listen to a music track 60 Seconds 
Concentration Count embedded shape 30 Seconds 
Concentration Count embedded shape 30 Seconds 

 Total Time 12 Minutes 
Table 1: Training 

After the user moves on to the predict procedure, he/she is asked to select one 

task type of his/her choice in order to induce the according mental state and test 

it. For this reason, both task types are presented at the same time on the screen. If 

the user chooses to follow the relax task, then he/she can ignore the shape and try 

to relax with the relaxing photo and music. If the user chooses to follow the 

concentrating task, then he/she can mute the music (with the proper icon or using 

windows mixer) and count the shapes. A splitter between these tasks is also 

available so that the user can easily hide the irrelevant task. The user is advised to 

use it. 

There are four predict sessions lasting for 30 seconds each, and when each session 

ends the user mental state is calculated and presented on the screen. This 

calculation uses each user’s training set, so it is subject-specific. Then, the 

adaptation takes place, and the user status changes automatically (Available or 

Busy). Feedback from the user is asked as to whether the prediction was correct. 

At the same time, at Available status all system notifications are enabled and at 
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Busy status, notifications are disabled. When all four predict sessions end, the user 

is prompted to repeat the predict phase to better validate the predictions. 

Additionally, if for any reason at the train/predict step an error occurs, then the 

user can repeat the current step instead of repeating the whole procedure. Finally, 

when the predict phase is completed the system thanks the user for his/her 

participation and the evaluation questionnaire is given.  

Finally, at the Settings functionality, the user is able to change the EEG device 

between a test device and two versions of the Muse 2 device. The first version of 

Muse uses native Bluetooth connectivity and the second one needs a BLED112 

USB dongle for Bluetooth Smart / Bluetooth Low Energy communication. The 

second one was selected by default. The test device was used only for development 

purposes. 

3.2 System Analysis 
At this system, detailed instructions and the whole User Interface was created so 

that it is user-friendly and supportive for the user-student. Each step was strictly 

organized into small steps in order to make the user feel secure and comfortable.  

The connectivity functionality is the one responsible for informing the user if there 

is any connectivity issue (EEG device pairing issue, backend communication issue, 

eeg-client communication issue). Without it, the user could complete the training 

without success if any error occurred that would frustrate the user. 

A simple Notifications functionality was developed where the user is notified for 

3 basic events: the user logging into the system (a welcome) and completing the 

train and predict phases. This functionality was only developed to show that these 

notifications would be disabled at the Busy status. 
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The Status functionality that was developed emulates Busy and Available statuses 

of communication applications like skype or slack. In an e-learning system this 

would indicate that the user is concentrated in his/her studying and does not wish 

to communicate with anyone else using a chat for example. Moreover, this change 

of status also disables or enables all notifications without having to explicitly 

change the status as constantly changing the status can be cumbersome.  

The factors that contributed heavily to the decision of using the Muse device 

against others are the following: The Muse 2 headband is a low-cost EEG device 

that can be easily purchased. Its ease of use and its availability in Europe are 

important. For this reason, Muse 2 is quite popular choice among the BCI field and 

this also contributes to having a large community, libraries or content in the 

internet for this topic. Also, even though Muse 2 was the only device tested, the 

system also has the potential to work with approximately 20 other EEG devices as 

well with a small change in the code, using the Settings functionality. 

Furthermore, the participants were intentionally not asked to minimize their eye 

blinking, even though it is known to be an artifact. The reason is that the blink rate 

is associated with tasks of different level of difficulty, and this could be actually 

used as an advantage to successfully classify relaxation and concentration mental 

states (Bird et al., 2018). Also, if the users were instructed to do so, it could lead to 

their distress. Finally, they were asked to have their eyes open because in a real 

environment they would not close their eyes while navigating through the system. 

At the predict phase, the two task types were presented side by side with a splitter 

in between. This was implemented in such a way so that the user would feel more 

in control. This way the user could select any mental state he/she wishes to. Also, 

if the algorithm would choose the task type instead of the user, then he/she may 

not feel trust in the algorithm. Additionally, the splitter usage was suggested to 

hide the irrelevant task. The reason was that as already mentioned, EEG signal is 

easily contaminated with eye movements so all tasks should always be presented 

in the same way. But, if the two tasks were presented side by side, user’s eye 
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movements could contaminate the signal. However, by using the splitter the task 

would always be in the same position. 

Generally, the adaptations that were selected in this system were functional ones. 

The reason was that it would be easily noticed and evaluated by the user. Adapting 

the learning content would be a much more difficult choice and the user would not 

necessarily know that the learning content has changed among several others. 

Also, that would make the implementation of the system much more complicated 

as the learning content should be selected wisely by the adaptation algorithm. 

That would exceed the dissertation’s goal and also add an extra burden of finding 

plenty of learning content to choose from. Moreover, the user would need much 

more time in order to actually study the learning content and see the adapted 

content. 

Finally, the EEG data was collected (train) and analyzed (predict) online. No 

sophisticated signal processing techniques were used as they are more time-

consuming and some of them need offline processing. The thinking was to use the 

simplest technique that would get reasonable results. The ML algorithm and 

parameters were chosen based first on other research papers and some tests. As 

for feature selection, only PSD was used as it is the most common feature (Al-

Nafjan & Aldayel, 2022). 

3.2.1 System Architecture 

The system contains three basic components: a backend component (runs on the 

server), a web-client component (compiled at the server, run on the client) and an 

eeg-client component (runs on the client). 

The backend component is responsible for all the communication between other 

components, for saving the raw EEG data to the Database (MySQL), for predicting 

the user’s mental state (mental state algorithm) and returning it to the user. It is 

written in python using the Flask framework. Two technologies were used for the 
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communication between server and clients. WebAPI, a classic unidirectional 

Application Programming Interface (API) (Ed-douibi et al., 2017) and 

WebSockets, a very fast bi-directional communication protocol (Srinivasan et al., 

2013). WebAPI was used for operations such as saving or retrieving EEG data and 

WebSockets for operations like checking EEG connectivity, returning 

asynchronous error messages from the eeg device, start /stop recording of the eeg 

data and so on. There operations require a must faster protocol than WebAPI, 

that’s why WebSockets were used. Another reason was that only WebSockets 

could open a communication channel between the world of JavaScript (web-

client) and Python (eeg-client), due to the bi-directional ability of the protocol. 

The web-client (written in Angular JavaScript framework) contains the user 

interface. The text, images, music tracks etc. The eeg-client is a python script that 

the user must run on his/her PC in order to establish a communication channel 

between the EEG device and the backend. This is responsible for fetching and 

sending the raw data from the EEG device to the backend when it is asked for.  

The EEG data is obtained using BrainFlow (Parfenov, 2022), a python library that 

can fetch, parse and even analyze EEG / EMG / ECG data from a list of available 

devices using a unified API.  

The database that is used (MySQL) saves all necessary information unencrypted, 

such as the user’s id, username, password, and email. This information is needed 

for the authentication mechanism to work (user register/login). System 

supported EEG devices are saved under the device table. The field id is the device 

id that is needed so that brainflow library can accurately recognize and connect to 

this device. Also, the name and the sampling rate of the device is stored at that 

table. This table comes predefined with 2 records for the Muse 2 EEG device:  one 

version uses the BLED 112 USB dongle (Muse 2 with dongle), and one version that 

uses native Bluetooth (Muse 2). There is also one record for the test EEG device 

that was used for testing reasons. If more records were inserted at that table with 

their corresponding brainflow id, then the user would be able to use more EEG 

devices that are currently supported by brainflow. At the registration of a new 
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user, a new record is saved at user_setting that connects this user (user_id) with 

the default EEG device, the Muse 2 (device_id). If this device is the BLED USB 

dongle version, the dongle port will also be needed (dongle_port). However, the 

user can change the device from User Settings and/or set the current dongle port 

(COM7, COM9, etc) as seen by his/her computer settings. 

id name sampling_rate 

-1 Test 
device 250 

22 
Muse 2 
(with 
dongle) 

256 

38 Muse 2 256 
Table 2: Device table’s predefined data. 

  

   
The available mental states are saved under the table mental_state and come 

predefined with 3 records: Unknown with id = -1, Relaxed with id = 0 and 

Concentrated with id = 1. These records are useful for internal code organization 

(eeg.clasification_class, user_mental_state.mental_state_id, etc). 

id name create_time 

-1 Unknown 24/8/2022 
21:55 

0 Relaxed 24/8/2022 
21:55 

1 Concentrated 24/8/2022 
21:55 

Table 3: mental_state table’s predefined data. 

  

 

User’s train and predict EEG data are saved under the tables: eeg and 

user_eeg_train, or eeg and user_eeg_predict accordingly. The eeg table has the 

following fields: block_id, a unique guid that references the EEG block. 

brainflow_id is an integer that is used internally by brainflow library. 

electrode_1, electrode_2, electrode_3, electrode_4 are the raw EEG numeric values 
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for each electrode. classification_class describes the mental state that is to be 

classified. Their values (-1, 0, 1) are already mentioned in the mental_state table. 

Finally, brainflow_unix_time is the timestamp of the recording in unix format.  

So, when the user trains the algorithm, the tables eeg and user_eeg_train are 

saved with raw EEG data. The table user_eeg_train connects the data from the 

eeg table to a user (user_id) and with the device that was used at the time of the 

recording (device_id). The device is crucial to be included in the database at that 

point because every device has a different sampling rate that affects further 

calculations. The device_id is fetched from the table user_setting and the 

sampling rate is fetched table device. This raw data must be saved and processed 

so that it can be used as a ML feature and predict the user’s mental states. 

When the user runs the predict phase, the tables eeg and user_eeg_predict are 

saved with raw EEG data. The table user_eeg_predict connects the data from the 

eeg table with the same fields that were mentioned above, but with unknown (-

1) classification_class. When the system calculates this block’s mental state, this 

prediction is saved under the table user_mental_state for a specific user 

(user_id), with the calculated mental state-prediction (mental_state_id), for this 

specific block (block_id). Based on the user’s feedback, if this prediction was 

correct, the field is_correct will be true. This field is useful for debugging or any 

future statistical calculation. Finally, the latest record of a user’s mental state is 

used from the web-client to change the indication of Available/Busy and to 

enable/disable Notifications. 
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Figure 10: Database diagram. 
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3.2.2 Training flow 

At the train phase the web-client will send a request to the backend using 

WebSockets (“eeg-start-training"). The backend will transfer this command to the 

eeg-client so that the device can start the recording of the raw EEG data. At this 

point the web-client will present the relaxing/concentrating task to the user. 

When the task is completed, a new WebSocket event will be emitted from the web-

client (‘eeg-stop-training’) to the backend and then to eeg-client so that the EEG 

device can stop its recording and send the raw data back to the backend 

(‘send_eeg_data()‘) and eventually be saved to the database.  

 

eeg-client: The event of start / stop training will change the global variable 

“predicting” to false and “streaming” to true so that the function “eeg_stream()” can 

know when to start/stop the recording of the EEG data. This recording is done using 

Figure 11: Training flow. 
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brainflow’s functions board.start_stream(), board.get_board_data(), 

board.stop_stream(). When the recording is completed, for debugging reasons the 

data is also saved in a csv files and finally the function send_eeg_data() is called so 

that the data are saved to the database using a WebAPI call. 

@sio.on('eeg-start-training') 
async def on_training(stringObject): 
    print('I received to Start Training')   
    global streaming 
    if streaming is not True: 
        print(stringObject) 
        data = json.loads(stringObject) 
        block_id = data["blockId"] 
        classifier = data["classifier"] 
 
        await start_training(block_id, classifier) 
    else: 
        print('Already streaming so not doing anything') 
 
 
@sio.on('eeg-stop-training') 
async def on_message(): 
    print('I received to Stop Training') 
    await stop_training_or_predicting() 
 

async def start_training(block_id, classifier): 
    print("At Start Training") 
    global predicting 
    global streaming 
    predicting = False 
    streaming = True 
    await eeg_stream(block_id, False, classifier) 
 
 
async def eeg_stream(block_id, is_predict, current_classifier): 
    print('at eeg_stream, block id: %s' %block_id) 
    print('current_classifier: %s' %current_classifier) 
    global board_id, streaming 
    lock.acquire() 
    time_index = BoardShim.get_timestamp_channel(board_id) 
    # Add eeg_channels + timestamp + markers 
    time_eeg_channels = [e for i, e in enumerate(EEG_CHANNELS)] 
    # insert sample/package number 
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    package_num_channel = BoardShim.get_package_num_channel(board_id) 
    time_eeg_channels.insert(package_num_channel,package_num_channel) 
    # insert timestamp channel 
    time_eeg_channels.append(time_index) 
 
    global board 
    try: 
        if board is None or (board is not None and board.is_prepared() 
== False): 
            print('Board is not prepared! Exiting..') 
            raise Exception("Board is not prepared! Exiting..") 
        BoardShim.log_message(LogLevels.LEVEL_DEBUG.value, 'Start 
streaming..') 
        board.start_stream(499999) 
         
        while(streaming): 
            await asyncio.sleep(0.1) 
 
        print('Getting overrall board data..') 
        all_board_data = board.get_board_data() 
        board.stop_stream() 
 
        signal_length = all_board_data.shape[1] 
        print('Signal length is %s' %signal_length) 
        global sampling_rate 
        # Check signal length to make sure you got 30/60 seconds of 
data depending on the classifier 
        if(current_classifier == 0 and signal_length < (sampling_rate * 
60) - 700): 
            raise Exception("Signal length is less than 60 seconds 
(%s)! Please check Muse connectivity!" %(signal_length / sampling_rate) 
) 
        if(current_classifier == 1 and signal_length < (sampling_rate * 
30) - 700): 
            raise Exception("Signal length is less than 30 seconds 
(%s)! Please check Muse connectivity!" %(signal_length / 
sampling_rate)) 
        if(is_predict and signal_length < (sampling_rate * 30) - 700): 
            raise Exception("Signal length is less than 30 seconds 
(%s)! Please check Muse connectivity!" %(signal_length / 
sampling_rate)) 
         
        # Get only EEG and time channels 
        all_board_data = all_board_data[time_eeg_channels, :]         
 
        label_column = None 
        # block response instead of current classifier 
        # append class name next to it 
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        print('current_classifier: %s' %current_classifier) 
        if(current_classifier == 0): 
            # append column with '0' 
            label_column = np.zeros((1, 
len(np.transpose(all_board_data))),dtype=int) 
        elif(current_classifier == 1): 
            # append column with '1' 
            label_column = np.ones((1, 
len(np.transpose(all_board_data))),dtype=int)             
        else: # append column with '-1' when label is unknown 
            label_column = np.full((1, 
len(np.transpose(all_board_data))), -1, dtype=int) 
             
 
        print('Adding data...') 
        all_board_data = np.append(all_board_data, label_column, 
axis=0) 
        print('Writing raw csv...') 
        folder = 'train' 
        if(is_predict == True): 
            folder = 'predict' 
        filename = './raw/' + folder + '/' + str(block_id) + 
'.csv'         
        DataFilter.write_file(all_board_data, filename, 'a')  # use 'a' 
for append mode 
 
        print('Written') 
        print('Will send_eeg_data') 
        # Send EEG data to backend service 
        await send_eeg_data(all_board_data, is_predict, block_id) 
 
        print('will emit eeg-completed-streaming') 
        await sio.emit('eeg-completed-streaming', block_id) 
        print('Completed!') 
    except Exception as error: 
        print(error) 
        errorMessage = error.args 
        await sio.emit('eeg-streaming-error', 'eeg_stream error: %s' 
%errorMessage) 
    finally: 
        lock.release() 
        print('after lock.release') 
        # Stop indication of streaming 
        streaming = False 
 
async def send_eeg_data(eeg_data, is_predict, block_id): 
    global token 
    # Numpy is not serializable so convert it into a list 
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    print('Posting stream to server...') 
    url = SERVER_URL + '/SaveEEG?block_id=' + str(block_id) + 
'&predict=' + str(is_predict) 
    print(url) 
     
    response = requests.post(url, json=eeg_data.tolist(), 
headers={'Authorization': 'Bearer %s' %token}) 
    # Raise an error for 4xx or 5xx responses 
    #response.raise_for_status() 
    if response.status_code > 400 and response.status_code < 600: 
        data = response.json() 
        errorMessage = data.get('message') 
        raise Exception(errorMessage) 
    print('Done!') 
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3.2.3 Predict flow 

At the predict phase the web-client will send a request to the backend using 

WebSockets (‘eeg-start-predicting’). The backend will transfer this command to 

the eeg-client so that the device can start the recording of the raw EEG data. At this 

point the web-client will present both the relaxing and the concentrating tasks to 

the user. When the task is completed, a new WebSocket event will be emitted from 

the web-client to the backend (‘eeg-stop-predicting’) so that the EEG device can 

stop its recording and send the raw data back to the backend and eventually be 

saved to the database. Finally, web-client will send a new request to the backend 

to get the prediction (WebAPI call ‘PredictBlock’). The backend will calculate the 

mental state from the saved raw EEG data from the database and return the result 

to the user.  

 

Figure 12: Predict flow. 
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The mental state algorithm uses BrainFlow’s functions to add filters to the signal. 

More specifically, a bandpass between 7 and 59Hz is added and a bandstop 

between 48-52Hz is applied in order to prevent Europe’s noise line (Peng, 2019).  

Then, the Power Spectrum Density is calculated for each EEG channel using 

Welch’s method with a hamming windowing function based on (Shoorangiz et al., 

2021). Then, the relative band powers are calculated with 1 Hz band width from 

7-59Hz (alpha, beta, gamma frequencies) slightly tweaked from You’s study (You, 

2021) that used 9-43Hz with 4 Hz band width and use this result as a feature in 

the classification. This is calculated for every 7 seconds of the recorded EEG data 

with 50% overlap. This window of 7 seconds was selected arbitrarily due to the 

longer duration of the recording than that of You’s study. The 50% overlap was 

used as it is generally more common (Apicella et al., 2022; Chaouachi & Frasson, 

2012; Tremmel et al., 2019). Eventually, Random Forest algorithm used this 

feature to calculate the prediction. Random forest’s specific parameters 

(n_estimators=100, criterion="entropy", max_depth=10, min_samples_split=6) 

were taken from Bellamy’s study (Bellamy, 2021). Random Forest was selected 

because it was used when classifying concentration/relaxation on Edla’s (Edla et 

al., 2018) and Birds’ study (Bird et al., 2018). 

eeg-client: The event of start / stop predicting will change the global variable 

“predicting” to true and “streaming” to true so that the function “eeg_stream()” can 

know when to start/stop the recording of the EEG data. This is the same function for 

train/predict phase. 

@sio.on('eeg-start-predicting') 
async def on_predicting(block_id): 
    print('I received to Start predicting')   
    print('Block id: %s' %block_id) 
    global streaming 
 
    if streaming is not True: 
        await start_predicting(block_id) 
    else: 
        print('Already streaming so not doing anything') 
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async def start_predicting(block_id): 
    print("At Start Predicting") 
 
    global streaming 
    global predicting 
    predicting = True 
    streaming = True 
    await eeg_stream(block_id, True, None)    
 
 
@sio.on('eeg-stop-predicting') 
async def on_message(): 
    print('I received to Stop Predicting') 
    await stop_training_or_predicting() 
 
 
async def stop_training_or_predicting(): 
    print('At Stop Training/Predicting') 
    global streaming 
    global predicting 
    streaming = False 
    predicting = False 
    
 
 
backend’s predict WebAPI call: Given the block id and the current user, fetch current 

EEG device sampling rate (from database), get all training data of this user (from 

database), get the predict data (from database) of this block, make sure there are 

least 9 seconds of predict data and call ‘predict_block_from_db()’ function of mental 

state algorithm to predict the mental state. 

@app.route('/PredictBlock', methods=['GET']) 
@cross_origin(origin='*') 
@token_required 
def on_predict_block(current_user_id): 
  print('on_predict_block')   
  print('Current user: %s' %current_user_id) 
   
  prediction = -1 # Unknown 
  train_data_array = [] 
  predict_data = [] 
  predict_sampling_rate = 0 
  train_sampling_rate = 0 
 
  args = request.args 
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  block_id = args.get("block_id") 
   
  if(block_id is None): 
    raise InvalidAPIUsage("Block Id not found!") 
   
  try: 
    with closing(mysql.connection.cursor()) as cursor: 
      print('Fetching predict sampling rate..') 
      # Get training data sampling rate 
      cursor.execute("SELECT DISTINCT(sampling_rate) FROM 
user_eeg_predict INNER JOIN device ON device.id = 
user_eeg_predict.device_id WHERE user_id = %s AND block_id = %s", 
(current_user_id,block_id)) 
      predict_sampling_rate_sql = cursor.fetchall() 
      if predict_sampling_rate_sql is None or 
len(predict_sampling_rate_sql) == 0: 
        raise InvalidAPIUsage("Could not found prediction record!") 
 
      if len(predict_sampling_rate_sql) == 1: 
        predict_sampling_rate = predict_sampling_rate_sql[0]         
        print('Predict sampling rate: %s' %predict_sampling_rate) 
      else: 
        raise InvalidAPIUsage("Predict sampling rate has many different 
rates!") 
       
      # Tuple to int 
      predict_sampling_rate = int(predict_sampling_rate[0]) 
 
      print('Fetching predict data..') 
      cursor.execute("SELECT eeg.* FROM user_eeg_predict INNER JOIN eeg 
ON user_eeg_predict.block_id = eeg.block_id WHERE user_id = %s AND 
user_eeg_predict.block_id = %s ORDER BY eeg.id ASC", 
(current_user_id,block_id)) 
 
      # Fetch one record and return result 
      predict_eeg_data_sql = cursor.fetchall() 
      row_headers=[x[0] for x in cursor.description] #this will extract 
row headers  
      train_rows = [] 
      if predict_eeg_data_sql is not None and len(predict_eeg_data_sql) 
> 0: 
        for eeg_data in predict_eeg_data_sql: 
          eeg_train_item_data = dict(zip(row_headers,eeg_data)) 
          train_rows.append([eeg_train_item_data.get('brainflow_id'), 
eeg_train_item_data.get('electrode_1'), 
eeg_train_item_data.get('electrode_2'), 
eeg_train_item_data.get('electrode_3'), 
eeg_train_item_data.get('electrode_4'), 
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eeg_train_item_data.get('brainflow_unix_time'), 
eeg_train_item_data.get('classification_class')]) 
         
      predict_data = np.array([x for x in train_rows]).transpose() 
      print('Fetching train sampling rate..') 
      # Get training data sampling rate 
      cursor.execute("SELECT DISTINCT(device.sampling_rate) FROM 
user_eeg_train INNER JOIN eeg ON user_eeg_train.block_id = eeg.block_id 
INNER JOIN device ON device.id = user_eeg_train.device_id WHERE user_id 
= %s", (current_user_id,)) 
      train_sampling_rate_sql = cursor.fetchall() 
 
      if train_sampling_rate_sql is None or 
len(train_sampling_rate_sql) == 0: 
        raise InvalidAPIUsage("Could not found train record!") 
 
      if len(train_sampling_rate_sql) == 1: 
        train_sampling_rate = train_sampling_rate_sql[0]         
        print('Train sampling rate: %s' %train_sampling_rate) 
      else: 
        raise InvalidAPIUsage("Train sampling rate has many different 
rates!") 
 
      # Tuple to int 
      train_sampling_rate = int(train_sampling_rate[0]) 
 
      print('Fetching train data..') 
      # Get all train blocks for this user 
      cursor.execute("SELECT block_id FROM user_eeg_train WHERE user_id 
= %s", (current_user_id,)) 
      # Fetch one record and return result 
      train_eeg_blocks_sql = cursor.fetchall() 
 
      if train_eeg_blocks_sql is None or len(train_eeg_blocks_sql) == 
0: 
        raise InvalidAPIUsage("Could not found user_eeg_train 
records!") 
       
      for train_eeg_block in train_eeg_blocks_sql: 
        cursor.execute("SELECT * FROM eeg WHERE block_id = %s ORDER BY 
eeg.id ASC", (train_eeg_block[0],)) 
         
        # Get all training EEG data! 
        eeg_data_sql = cursor.fetchall() 
        row_headers=[x[0] for x in cursor.description] #this will 
extract row headers  
 
        if eeg_data_sql is None or len(eeg_data_sql) == 0: 
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          raise InvalidAPIUsage("Could not found eeg records!") 
 
        predict_rows = [] 
        for eeg_data in eeg_data_sql: 
          eeg_item_data = dict(zip(row_headers,eeg_data)) 
          row = [eeg_item_data.get('brainflow_id'), 
eeg_item_data.get('electrode_1'), eeg_item_data.get('electrode_2'), 
eeg_item_data.get('electrode_3'), eeg_item_data.get('electrode_4'), 
eeg_item_data.get('brainflow_unix_time'), 
eeg_item_data.get('classification_class')] 
          predict_rows.append(row) 
 
        nd_array = np.array([x for x in predict_rows]).transpose() 
        train_data_array.append(nd_array) 
      print('Fetched %s rows of train data' %len(train_data_array)) 
      print(predict_data.shape[1]) 
      if predict_data.shape[1] < 2000: # 9 seconds of predict data 
        raise InvalidAPIUsage("At least 9 seconds of predict data are 
required!") 
 
      print('Will run predict_block_from_db..') 
      prediction = predict_block_from_db(train_data_array, 
train_sampling_rate, predict_data, predict_sampling_rate) 
     
    print('Prediction: %s' %prediction) 
  except InvalidAPIUsage as error: 
    print('InvalidAPIUsage occured: %s' %error) 
    raise 
  except Exception as error: 
    print('An Error occured: %s' %error)     
    raise InvalidAPIUsage(error.args) 
 
  return make_response(jsonify(prediction), 201) 
 
 
mental state algorithm: Prepare the train and predict data. Remove all rows that 

have zeroes in all 4 channels (function remove_amplitude_thresholds). Also, remove 

the first 5 seconds of the predict data because the user may need some extra time to 

decide which task type to follow (concentration or relaxation). 

def predict_block_from_db(train_data, train_streaming_rate, 
predict_data, predict_streaming_rate): 
    prediction = -1 
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    train_data = prepare_train_data_db(train_data, 
train_streaming_rate) 
    new_data = prepare_new_data_db(predict_data, 
predict_streaming_rate) 
    prediction = predict_rf(train_data, new_data, False) 
    # turn numpy.int64 to plain int 
    return int(prediction) 
 

def prepare_train_data_db(all_train_data, sampling_rate): 
    try: 
        dataset_x = list() 
        dataset_y = list() 
        for data in all_train_data: 
 
            if (REMOVE_AMPLITUDES == True): 
                data = remove_amplitude_thresholds(data) 
 
            cur_pos = sampling_rate 
            length = data.shape[1] 
            while cur_pos + int(WINDOW_SIZE * sampling_rate) < length:  
                 
                data_in_window = data[DATA_INDEX, cur_pos:cur_pos + 
int(WINDOW_SIZE * sampling_rate)] 
                feature_vector = extract_features(data_in_window, 
sampling_rate) 
                dataset_x.append(feature_vector) 
                # Fetch data in that window and check the it's 
classifier. 
                # I am supposing here that for every window the 
classifier will be the same 
                classifier = int(data_in_window[CLASSIFICATION_INDEX, 
0]) 
                dataset_y.append(classifier) 
                 
                cur_pos = cur_pos + int(WINDOW_SIZE * OVERLAPS * 
sampling_rate) 
        return dataset_x, dataset_y 
    except Exception as error:    
        print('prepare_train_data_db: %s' %error) 
        raise 
 

def prepare_new_data_db(data, sampling_rate): 
    try: 
        dataset_x = list() 
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        if (REMOVE_AMPLITUDES == True): 
            data = remove_amplitude_thresholds(data) 
 
            cur_pos = sampling_rate * 5 # start after 5 seconds just to 
be sure everything is ok 
            length = data.shape[1] 
            while cur_pos + int(WINDOW_SIZE * sampling_rate) < length:  
                data_in_window = data[DATA_INDEX, cur_pos:cur_pos + 
int(WINDOW_SIZE * sampling_rate)] 
                feature_vector = extract_features(data_in_window, 
sampling_rate) 
                dataset_x.append(feature_vector) 
 
                cur_pos = cur_pos + int(WINDOW_SIZE * OVERLAPS * 
sampling_rate) 
        return dataset_x 
    except Exception as error:    
        print('prepare_new_data_db: %s' %error) 
        raise 
 
def remove_amplitude_thresholds(data): 
    # Remove if all EEG channels are 0 
    data = data[:, ~np.all(data[1:4,:] == 0, axis=0)] 
    res_data = np.copy(data, order='C') 
 
    return res_data 
 
 

mental state algorithm: Convert the list of features to a np array: 

def extract_features(data_in_window, sampling_rate): 
    band_features = extract_band_features(data_in_window, EEG_CHANNELS, 
sampling_rate, True)  
    feature_vector = np.array(band_features) 
     
    return feature_vector 
 

mental state algorithm: Use basic signal processing filtering (BrainFlow) and get 

relative band powers as a list of features: 

def extract_band_features(data, eeg_channels, sampling_rate, 
applyFilters): 
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    nfft = DataFilter.get_nearest_power_of_two(sampling_rate) 
    features = list() 
    for channel in enumerate(eeg_channels): 
        if(applyFilters): 
            # Band stop  48-52 Hz 
            DataFilter.perform_bandstop(data[channel], sampling_rate, 
48.0, 52.0, 4, FilterTypes.BUTTERWORTH.value, 0) 
            # Band pass 7 - 59 Hz                                     
            DataFilter.perform_bandpass(data[channel], sampling_rate, 
7.0, 59.0, 4, FilterTypes.BUTTERWORTH.value, 0)       
    
        psd = DataFilter.get_psd_welch(data[channel], nfft, nfft // 2, 
sampling_rate, WindowOperations.HAMMING.value)            
        sum = DataFilter.get_band_power(psd, 7, 59) 
 
        for x in range(7, 59): 
            freq = x 
            abs = DataFilter.get_band_power(psd, freq, freq + 1) 
            features.append(abs / sum) 
            freq = x + 1 
    return features 
 

mental state algorithm: Predict for every slice of data (window) using random forest 

and choose the prediction that is more dominant: 

def predict_rf(train_data, new_data, report_accuracy): 
    classifier = RandomForestClassifier(n_estimators=100, 
criterion="entropy", max_depth=10, max_features="auto", 
min_samples_split=6, random_state=137) 
    if(report_accuracy): 
        predict_accuracy(classifier, 'Random Forest', train_data) 
 
    return predict(classifier, 'Random Forest', train_data, new_data) 
 
def predict(model, modelName, train_data, new_data): 
    model.fit(train_data[0], train_data[1]) 
 
    y_pred = model.predict(new_data) 
    y = choose_best_prediction(y_pred) 
 
    return y 
 
def choose_best_prediction(prediction): 
    print(prediction) 
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    output = None 
    if prediction is not None: 
        counts = np.bincount(prediction) 
        output = np.argmax(counts) 
        print(output) 
 
    return output 
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Chapter 4 
Evaluation 

4.1 Evaluation Settings 
This dissertation was evaluated based on the User Experience (UX), which is 

considered one of the most valuable factors of a product’s / system’s quality. UX is 

the user’s emotional and psychological responses that results from the product’s 

use (Díaz-Oreiro et al., 2019).  So, a pleasant and organized User Interface, is as 

important as the system’s main idea, performance, and functionality.  

For this evaluation 10 users were asked to participate voluntarily and use the 

system that was already deployed in a local computer. Users were not asked to 

control their sleep or avoid caffeine or alcohol consumption. For each user an 

account was created by the dissertation writer that was already logged in. Before 

using the system, the users were informed about dissertations goal, adaptive 

systems, EEG, and the tasks that they should perform through the system. No 

demo was provided. The only additional help that was provided was at the steps 

of preparing, wearing and signal quality as this was the most important part of the 

system to ensure a proper train and predict phase. More specifically, the user was 

asked to follow the instructions of the platform and do the following: read the 

instructions – video, prepare and wear the EEG device and check its signal quality. 

Finally, train and test (predict) the algorithm. This corresponded to all 

chapters/links that were included in the system. When all tasks were completed, 

the user was asked to fill in a questionnaire. This step was very important to be 

performed immediately after the use of the system so that the user could 

successfully express his/her immediate response. The first section of the 

questionnaire contained demographic questions such as age, gender, occupation 
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etc. The second section contained questions about the platform’s functionalities to 

ensure that all the aforementioned tasks were completed successfully. Finally, the 

third section contained the User Experience Questionnaire (UEQ), which is one of 

the most popular standardized questionnaires of UX (Díaz-Oreiro et al., 2019). It 

contains 26 questions in randomized order with 7-stage scales, starting from -3 

(most negative) to +3 (most positive), with 0 being a neutral answer. Half of the 

questions have a positive meaning and half of them a negative one. It is shown to 

have good construct validity of scales and high scale consistency (Schrepp, 2019). 

UEQ measures UX in 6 different scales: Attractiveness, efficiency, perspicuity, 

dependability, stimulation, and novelty. Attractiveness is how pleasant the 

product is. Efficiency is how easily and fast the user accomplished the system’s 

tasks. Perspicuity is how easy it is for the user to learn and understand the 

product. Dependability is how secure and predictable (in a positive sense) the 

product is felt. Stimulation is how interesting and motivating the product is. 

Finally, novelty is how creative and innovative the product is (Schrepp, 2019). 

4.2 Results 
All ten users that participated in this evaluation used the system and evaluated it 

successfully. Approximately, 1 hour was needed for the whole process. Six users 

were female and four were male. 

 

Figure 13: Gender. 
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Most of the participants were in the age of 30-39 years old (60%), 20% of them 

were 20-29 years old, 10% of them were 40-49 years old and 10% were 50+ years 

old. All participants native language was Greek. 

 

Figure 14: Age. 

 

 

Figure 15: Native Language. 
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The 70% of the participants had a bachelor’s degree and 30% of them had a 

master’s degree. More specifically, 30% of them had a Computer Science degree, 

20% of them had a medical-related degree, 20% of them had an engineering 

degree, 10% of them had an education-related degree, 10% of them had an 

economics degree, and 10% of them was in other area. 

 

Figure 16: Education level. 

 

  

Figure 17: Degree area. 

Almost all participants (90%) had a full-time job, and one participant (10%) had 

retired. 
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Figure 18: Employment status. 

 

The 80% of the participants were married, and only the 10% of them had children. 

 

Figure 19: Marital Status. 
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Figure 20: Children. 

 

All participants were familiar with technology (100%), and 80% of them is using 

wearable devices. 

 

Figure 21: Technology familiarity. 
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Figure 22: Wearable devices. 

 

Half of the participants uses e-learning platforms frequently, 30% of them not that 

frequently, and 20% of them have never used online learning platforms. 

Additionally, only 30% of the users were already familiar with the concept of EEG. 

 

Figure 23: E-learning platforms. 
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Figure 24: EEG familiarity. 

 

All participants considered that the instructions inside the system were complete 

(90% strongly agreed, 10% agreed). 

 

Figure 25: Instructions. 

All participants agreed that the EEG device was prepared successfully (70% 

strongly agreed, 30% agreed). 
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Figure 26: Preparation of the EEG device. 

 

All participants agreed that they performed a successful signal quality check. (80% 

strongly agreed, 20% agreed). 

 

Figure 27: Signal Quality. 

All participants completed training and predict phase successfully (90% strongly 

agreed, 10% agreed). 
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Figure 28: Training procedure. 

 

Figure 29: Predict procedure. 

 

The 40% of the participants highly agreed that the predictions made by the system 

were accurate. The 30% of the participants agreed to that also. The 20% of them 

were neutral about their response and the 10% of the participants did not agree 

that the predictions were accurate.  
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Figure 30: Predictions. 

Most of the users agreed that any error that occurred in the system was clear (60% 

strongly agreed, 10% agreed). The 20% of the participants were neutral about 

their response and the 10% of them responded that the error was not clear. 

 

Figure 31: Errors. 
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Most of the users found that the adaptations of the system would be practical in a 

real environment (60% strongly agreed, 30% agreed). The 10% of the users did 

not find them practical. 

 

Figure 32: Practical adaptations. 

 

Most of the participants agreed that the EEG device was comfortable (50% 

strongly agreed, 30% agreed). The 20% of the users disagreed. 
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Figure 33: EEG device comfort. 

Finally, most of the participants claimed that they would use a system such as the 

one created in this dissertation (40% strongly agreed, 40% agreed). The 20% of 

them were neutral about this. 

 

Figure 34: Real use. 

The results of the UEQ are the following: 
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Item Mean Variance Std. Dev. Left Right Scale 
1 2,3 0,7 0,8 annoying enjoyable Attractiveness 
2 2,6 0,5 0,7 not understandable understandable Perspicuity 
3 2,1 1,0 1,0 creative dull Novelty 
4 2,4 1,2 1,1 easy to learn difficult to learn Perspicuity 
5 2,2 1,1 1,0 valuable inferior Stimulation 
6 2,1 0,8 0,9 boring exciting Stimulation 
7 2,7 0,2 0,5 not interesting interesting Stimulation 
8 1,7 1,3 1,2 unpredictable predictable Dependability 
9 2,2 0,8 0,9 fast slow Efficiency 

10 2,0 2,0 1,4 inventive conventional Novelty 
11 2,5 0,5 0,7 obstructive supportive Dependability 
12 2,6 0,5 0,7 good bad Attractiveness 
13 2,6 0,7 0,8 complicated easy Perspicuity 
14 2,7 0,2 0,5 unlikable pleasing Attractiveness 
15 2,0 1,3 1,2 usual leading edge Novelty 
16 2,6 0,3 0,5 unpleasant pleasant Attractiveness 
17 2,6 0,9 1,0 secure not secure Dependability 
18 2,8 0,2 0,4 motivating demotivating Stimulation 

19 2,4 1,6 1,3 meets expectations does not meet 
expectations Dependability 

20 2,1 1,2 1,1 inefficient efficient Efficiency 
21 2,7 0,5 0,7 clear confusing Perspicuity 
22 2,4 0,7 0,8 impractical practical Efficiency 
23 2,7 0,9 0,9 organized cluttered Efficiency 
24 2,8 0,2 0,4 attractive unattractive Attractiveness 
25 3,0 0,0 0,0 friendly unfriendly Attractiveness 
26 2,6 0,9 1,0 conservative innovative Novelty 

 

UEQ Scales (Mean and Variance) 
Attractiveness 2,667 0,12 
Perspicuity 2,575 0,60 
Efficiency 2,350 0,54 
Dependability 2,300 0,76 
Stimulation 2,450 0,25 
Novelty 2,175 0,54 
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Figure 35: UEQ Scales. 

 

Pragmatic and Hedonic Quality 
Attractiveness 2,67 
Pragmatic Quality 2,41 
Hedonic Quality 2,31 

 

All items received only positive responses on average (>0). Attractiveness was the 

scale that received the higher score (2,66), followed by perspicuity (2,57), 

stimulation (2,45), efficiency (2,35), dependability (2,3), and novelty (2,17). These 

scales can also be grouped into pragmatic quality which is task-related 

(perspicuity, efficiency, dependability) and hedonic quality (stimulation, novelty). 

Based on these qualities, attractiveness scored 2,67, pragmatic quality was 2,41 

and hedonic quality 2,31. 
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Figure 36: UEQ: Pragmatic and Hedonic Quality. 
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Figure 37: UEQ: Mean per item. 
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Chapter 5 
Discussion 

5.1 Synopsis 
Generally, all sub-tasks of the system were successfully performed by all users. 

This is the most important part because User Experience cannot be positive if a 

system cannot do what it claims to be doing. Additionally, all participants stated 

that they found the adaptations useful and that they would use such a system if it 

was real. Also, one of the drawbacks of EEG devices is that these are 

uncomfortable. However, only 20% of the participants found the specific device 

that was used uncomfortable which is a very positive result. 

More specifically, 70% of the participants strongly agreed that the EEG device was 

prepared successfully. This percentage was not 100% because 1-2 disconnections 

occurred between the EEG device and the system that forced the participants to 

prepare the device again. This disconnection showed an error in the screen that 

for the 10% of the participants was not clear. The diversity of the rest responses 

regarding the errors may be due to the fact that no errors occurred to them while 

using the system. Moreover, even though this disconnection may occurred once 

for each participant, no one seemed to be bothered about this because the 

evaluation was overall positive. More about this disconnection issue is discussed 

in the challenges chapter. 

Furthermore, regarding the accuracy of the predictions, it must be noted that the 

algorithm was only tested in one person who did not take part in the evaluation of 

the system (the writer of this dissertation), with 70% accuracy. Therefore, it is a 

huge success to see that this percentage matches the average of the participants 
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as well, without performing any more tests to other people and without using any 

advanced signal techniques for artifact removal. Nonetheless, 20% of the 

participants were neutral about the accuracy of the predictions and one 

participant stated that he/she had inaccurate results. This could be because of 

their difficulty to relax such that this relaxation could be depicted in their 

brainwaves. Alternatively, it could be because participants were not asked to 

avoid caffeine or alcohol consumption or control their sleep even though most 

research studies that can successfully predict mental states have a strict 

experimental protocol. 

To sum up, sufficient instructions, successful signal quality check, accurate 

predictions, practical adaptations, a comfortable low-cost EEG device and the 

unexpectedly positive results from the UEQ indicate that such a system would 

indeed keep an overall positive user experience. This could also mean that such a 

system would be valuable to be integrated in a real-world e-learning platform. 

5.2 Challenges 
In general, BCIs that use EEG devices present quite a few challenges and most of 

these are the challenges of the EEG devices themselves. The first one is low signal 

to noise ratio (Al-Nafjan & Aldayel, 2022) and the presence of EEG artifacts as 

already mentioned, that contaminate the signal. For this reason, participants of 

this study were asked to minimize their movement and try not to squeeze their 

teeth or clench their jaw, as far as possible. However, this may not be easy to ask 

or applicable in a real e-learning environment.  

Furthermore, a signal quality check is required to detect artifacts, but no ready-

to-use signal quality algorithm was available on the internet. Even worse, the 

signal quality can change at any time due to user movement or other conditions, 

so a continuous signal quality check is preferred, but it requires a lot of time to be 

implemented manually. In this system, a basic signal quality check procedure was 

used before collecting any EEG data. Due to no available algorithm for this 
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purpose, a custom algorithm was created based on trial-and-error. More 

specifically, if the absolute band power of 48-52 Hz (the frequencies near the 

power line noise) exceeds a specific threshold, then this channel is characterized 

as noisy. However, continuous signal quality check was not integrated. 

Another important challenge is that there is no standard protocol for predicting 

mental states using EEG yet. Every study uses different electrode locations, 

different signal processing techniques, different training data length and 

durations, different ML algorithms and features (Katmah et al., 2021) according to 

the system’s application (Edla et al., 2018). This makes it really difficult to 

implement such a system.  

Another challenge was the selection of the EEG device to use. OpenBCI and Muse 

2 devices were already purchased by the writer of the dissertation some years 

back for other reasons. Both are quite popular with a big community and libraries. 

However, OpenBCI’s setup is much more cumbersome than that of Muse. Also, 

many additional problems were encountered in OpenBCI such as some broken 

electrodes (leading to strange raw EEG values of 1000-3000 μV) that contributed 

to the decision to use Muse. Moreover, finding the proper libraries in order to fetch 

the raw EEG data was another important challenge. Initially, a JavaScript library 

called ‘musejs’ (Shaked, 2021) was evaluated. This library is using Web Bluetooth 

protocol that directly connects the Muse device with the web browser making 

their connection trivial. Using musejs, the user only had to enable Bluetooth and 

then the web browser would find and connect to the device. However, constant 

disconnections made this library impossible to use. Also, ‘musejs’ is a project that 

is no longer maintained and the only device that is supported is the Muse device.  

Then, brainflow library was evaluated. One of its strongest points is that it has a 

common API for many different EEG devices. This makes it possible to use 

different EEG devices with the same API. Also, this project is currently in active 

development and supported by OpenBCI. But even though it seemed to be the 

perfect choice, there was no JavaScript binding for the brainflow library. This 
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practically means that a web client environment cannot directly communicate 

with the EEG device. This was only possible through python (or some other 

supported by brainflow languages such as C#). That’s why WebSockets protocol 

was used, so that the web-client could talk to the backend, and the backend to the 

EEG device using a script that is run on the user’s PC (eeg-client), in python 

language. However, that made the flow of the system much more complicated and 

much more difficult to develop. But, according to brainflow’s development 

roadmap, JavaScript binding is on their future plans so this issue should be 

resolved in the near future.  

Finally, the exact mental state to choose from was itself a challenge. Initially, 

engagement or workload were chosen. The reason was that there was much more 

research on those topics. However, there was an important detail: all of those 

studies were using devices with an average of 31 electrodes that could be placed 

freely in any location desirable. That would be impossible with the Muse device. 

Additionally, the training time for workload was much longer (40 minutes 

(Miklody et al., 2017; Walter et al., 2017)) than that of concentration/relaxation 

that would also be cumbersome. Moreover, the testing of such mental state would 

also be difficult due to the training time that would be needed each time the code 

changed. Finally, most studies for workload train and test on the same tasks so 

that makes workload generalization ability limited to a few studies (Kakkos et al., 

2021).   

5.3 Limitations and Future Work 
Even though the system was positively evaluated from the users there are some 

known limitations of the system. For example, the mental state of Relaxation may 

not be an exact match of the Available status. Available students would not only be 

the ones that are relaxed, but the ones that are either relaxed or neutral. However, 

Neutral state was not successfully classified. Also, it is unclear whether the 

Concentrated state that the algorithm learned is actually a Mental Calculation state. 

Ideally, all concentrated students should be in a Concentrated state and therefore 
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in a Busy status and not only the ones that are mentally calculating something. 

More time is be needed to clarify those issues. 

Also, there were times where the EEG device would disconnect from the system. 

The reasons for this are not yet clear. It could be a problem of the brainflow library, 

a problem of Muse 2 EEG device, Bluetooth or a hardware/driver problem of the 

current PC that ran the project.  

Additionally, even though battery life is stated to last for 5 hours in Muse 2 device, 

in reality the battery drops after approximately 1 hour of use, which is not an issue 

for meditation. But for a potential student using such system, 1 hour could be quite 

a small duration. Moreover, even though most participants did not find the EEG 

device uncomfortable to wear, the actual use of the system was approximately half 

an hour. This duration may not be representative of an actual use of such system 

so a longer duration may indeed be felt uncomfortable. Nonetheless, these issues 

could be solved in the future where new EEG devices will be cheaper, more 

comfortable, and more reliable. 

Furthermore, we must not forget that Muse 2 EEG device that was used was 

designed for meditation neurofeedback. Therefore, it’s signal quality may drop 

when someone wears glasses because the glasses block the proper placement of 

the device. This, of course, is not an issue when someone is meditating because the 

glasses are no longer needed. In an e-learning environment this could be an issue 

though. Similarly, in meditation the user is not expected to move, blink or 

somehow generate artifacts, as opposed to an e-learning environment where the 

user can do so more easily. Additionally, for a productive system, constant quality 

check would be needed to ensure a good signal quality, that was not implemented 

in this system.  

Also, due to limited time, multi-user support was not fully implemented between 

the eeg-client and the web-client. More effort is needed there, so that WebSockets 
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can talk only to specific clients and not to every client that is listening at that time. 

However, if JavaScript binding of brainflow is completed, this step would no longer 

be necessary as well as the whole existence of eeg-client itself.  

It must also be noted that the users did not get in touch with the installation 

process of the eeg-client. The eeg-client was already set up for them. This step was 

omitted, because all the users that tested the system would have to come either 

way to a specific location where the system was installed and the EEG device 

would be available. Also, as already mentioned, eeg-client will no longer be 

necessary when JavaScript binding of brainflow is completed. In that case, the user 

would just have to enable the Bluetooth connection to connect his/her EEG device 

with the web environment. 

Finally, the fact that this system uses a subject-specific classifier with predefined 

parameters (7-59Hz with 1Hz bin, 7 second window and specific Random Forest 

parameters) that were not studied earlier on those participants may not be the 

best approach. These specific parameters were tested and evaluated only on one 

user (that did not participate in the evaluation) due to limited time. However, the 

current parameters that were used resulted in better accuracy results than the 

ones presented in the literature. Moreover, in a real system it would be 

cumbersome for the students not only to spend 12 minutes to train the algorithm 

but also retrain it every now and then. This retraining would be needed because 

the of the non-stationarity of the signal, the user’s fatigue, or the different levels of 

the signal quality between the training and the actual use (Qu et al., 2022). 

Moreover, different affective contexts between training and using could 

potentially affect the accuracy of the classifier (Mühl et al., 2014). Also, as stated 

earlier, strict caffeine, alcohol or sleep protocol were not asked from the 

participants to allow for a more flexible usage but that could also have an effect to 

the prediction accuracy. So, a more elaborate classifier that could generalize 

across subjects and time using new algorithms and more advanced methods could 

be used instead (Brouwer et al., 2015; Mühl et al., 2014). 
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Therefore, such generalized classifier that would be tested across time and 

subjects would be an ideal future goal. Furthermore, to add some sophisticated 

filtering and artifact removal algorithms and add more features at the 

classification algorithm to achieve an even better prediction accuracy. Also, to 

investigate neutral state and clarify whether concentrated state applies for tasks 

that do not require mental calculation. Finally, to encrypt the EEG data and the 

user’s information that is now saved in plain text in the database. That would 

increase the security of the system. 

5.4 Conclusion 
In this study an adaptive e-learning environment was created. It used a popular 

and comfortable low-cost EEG device that could implicitly grasp the user’s current 

mental state and provide useful system adaptations that could support the user’s 

learning. It used an efficient, attractive, and friendly environment leading to an 

overall positive user experience. In the future, it is expected that the cost of the 

EEG devices will be even lower. Also, with technology and algorithm 

advancements the EEG devices limitations such as artifacts could be minimized. 

That could make the usage of such devices common and trivial. Adaptive e-

learning systems with implicit adaptations that can make use of such devices 

would be a huge advantage as learners would want to support their learning 

achieving as much personalization possible. Generally, using EEG-based 

adaptations is a step towards the future. After all, Elon Musk’s and Facebook’s 

future plans is to develop a Brain-Computer Interface that could successfully read 

people’s minds (“Business Standard,” 2019). 
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Appendix A 
System Presentation 

 

Figure 38: User Registration. 
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Figure 39: User login. 
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Figure 40: Instructions. 
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Figure 41: Muse 2 Tutorial. 
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Figure 42: Prepare EEG device. 
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Figure 43: Successful EEG device preparation. 
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Figure 44: User Settings: Change EEG device. 
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Figure 45: Signal Quality instructions. 

 

Figure 46: Signal Quality check. All electrodes have good signal. 
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Figure 47: Train relax instructions. 

 

Figure 48: Train relax state. 
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Figure 49: Train concentration instructions. 

 

Figure 50: Train concentration. 
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Figure 51: Connection not established (notice the icon next to EEG Learn). Also notice 
that train, predict and other features cannot start if there is no connectivity because 

buttons are disabled. 

 

Figure 52: Predict instructions. 
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Figure 53: Predict. Choosing the task. 

 

Figure 54: Predict. Moved the splitter to the left for concentrate state. 

 

Figure 55: Predict. Moved the splitter to the right for relax state. 
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Figure 56: Predict result: Concentrate. Status changed to Busy, Notifications disabled. 

 

 

Figure 57: Predict result: Relax. Status changed to Available, Notifications enabled. 
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Figure 58: Prediction error that will repeat the current step. 

 

Figure 59: Attributions: Libraries, music tracks, photos. 



94 
 

 

Figure 60: Notification area. 

 

Figure 61: Settings and Logout options. 
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