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Summary 

Since the advent of the first industrial revolution, the need for machines that would help 

to increase production in order to fulfill market demands has increased exponentially. 

Industrial robots have sparked a lot of attention since then. In order to cope with 

industrial needs, engineers and machine designers have endeavored to construct 

machines that would work on the kinematics inspired by the human arm. With the 

developments in technology, industrial robotic arms have changed over time. Although 

the initial models were more hydraulic and hardwire driven, the recent robotic arms 

incorporate highly sophisticated mechanics, electronics, and software. With the dawn of 

the Fourth Industrial Revolution, industries have increased their technology benchmark 

and are in need of smart technology that can learn, infer, and explain their behavior. This 

has expanded the research in the Human Machine Interaction domain where scientists 

have managed to propose such systems where interacting with industrial machines has 

become easier. Building automation systems through no code or low code approaches 

has further alleviated the technology benchmarks. In this Master’s dissertation, we 

propose an approach under the shadow of the Human Machine Interaction domain to 

coach an industrial robotic arm through the PRUDENS interface that facilitates machine 

coaching through argumentation and machine-learning theories, which appear to be 

useful in monitoring the machine’s behavior and guiding it to adapt itself under 

exceptional settings. PRUDENS is a software tool that has been developed by the 

Computational Cognition Lab of the Open University of Cyprus led by Dr. Loizos Michael. 

We implement a real-time human-robot interaction system that facilitates machine 

coaching within industrial boundaries, in addition to discussing recent trends in the 

human-robot interaction domain and the implications of AI, ML, and argumentation 

techniques on it. 
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Περίληψη 

Από την έλευση της πρώτης βιομηχανικής επανάστασης, η ανάγκη για μηχανές που θα 

βοηθούσαν στην αύξηση της παραγωγής προκειμένου να ικανοποιηθούν οι απαιτήσεις της 

αγοράς έχει αυξηθεί ραγδαία. Τα βιομηχανικά ρομπότ έχουν προκαλέσει μεγάλη προσοχή 

από τότε. Προκειμένου να ανταποκριθούν στις βιομηχανικές ανάγκες, οι μηχανικοί και οι 

σχεδιαστές μηχανών προσπάθησαν να κατασκευάσουν μηχανές που θα λειτουργούσαν στην 

κινηματική, εμπνευσμένες από τον ανθρώπινο βραχίονα. Με τις εξελίξεις στην τεχνολογία, οι 

βιομηχανικοί ρομποτικοί βραχίονες έχουν αλλάξει με την πάροδο του χρόνου. Αν και τα 

αρχικά μοντέλα ήταν πιο υδραυλικά και με σκληρό καλώδιο, οι πρόσφατοι ρομποτικοί 

βραχίονες ενσωματώνουν εξαιρετικά εξελιγμένους μηχανισμούς, ηλεκτρονική και λογισμικό. 

Με τον ερχομό της Τέταρτης Βιομηχανικής Επανάστασης, οι βιομηχανίες έχουν αυξήσει το 

τεχνολογικό σημείο αναφοράς τους και χρειάζονται έξυπνη τεχνολογία που θα μπορούσε να 

μάθει, να συμπεράνει και να εξηγήσει τη συμπεριφορά του. Αυτό επέκτεινε την έρευνα στον 

τομέα της Αλληλεπίδρασης Ανθρώπων - Μηχανών που οι επιστήμονες κατάφεραν να 

προτείνουν τέτοια συστήματα στα οποία η αλληλεπίδραση με τις βιομηχανικές μηχανές έχει 

γίνει ευκολότερη. Η κατασκευή συστημάτων αυτοματισμού χωρίς κώδικα ή η προσέγγιση 

με ελάχιστο κώδικα έχει μετριάσει περαιτέρω τα τεχνολογικά σημεία αναφοράς. Σε αυτή τη 

μεταπτυχιακή διατριβή, προτείνουμε μια προσέγγιση υπό το πρίσμα του τομέα 

Αλληλεπίδρασης Ανθρώπινων Μηχανών για την καθοδήγηση ενός βιομηχανικού 

ρομποτικού βραχίονα μέσω του περιβάλλοντος PRUDENS που διευκολύνει την καθοδήγηση 

μηχανών μέσω επιχειρημάτων και θεωριών μηχανικής μάθησης, που φαίνεται να είναι 

χρήσιμες για την παρακολούθηση της συμπεριφοράς και την καθοδήγηση της μηχανής να 

προσαρμόζεται σε εξαιρετικές ρυθμίσεις. PRUDENS είναι ένα εργαλείο λογισμικού που έχει 

αναπτυχθεί από το Εργαστήριο Υπολογιστικής Νόησης του Ανοικτού Πανεπιστημίου 

Κύπρου με επικεφαλής τον Δρ Λοΐζο Μιχαήλ. Εκτός από τη συζήτηση των πρόσφατων 

τάσεων στον τομέα αλληλεπίδρασης ανθρώπου-ρομπότ και των επιπτώσεων της τεχνητής 

νοημοσύνης, μηχανικής μάθησης και τεχνικών επιχειρηματολογίας σε αυτό, εφαρμόζουμε 

ένα σύστημα αλληλεπίδρασης ανθρώπου-ρομπότ σε πραγματικό χρόνο που διευκολύνει την 

καθοδήγηση μηχανών εντός των βιομηχανικών ορίων. 
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Chapter 1 
Introduction 

 

 

 

With the advent of the 4th industrial revolution, human-machine interaction is 

increasing, and smart technologies are rapidly penetrating every aspect of our lives. 

Today, smartphones have become part of our lives, and it is natural for people to interact 

with each other anytime and anywhere using these internet enabled smartphones. With 

Industry 4.0, this situation is developing further, and the concept of the internet of things 

is being clearly adopted alongside the concept of the internet of people. As a result of all 

of this, technology will reach a point where machines and systems can talk to each other. 

Humans will play a role that is more like that of a teacher or coach, and this will allow 

machines and systems to store some knowledge so that they can learn and reason more 

like humans in an industrial setting. 

 

Under this industrial revolution, it is expected that machines will organize themselves 

around intelligent connections and distributions and try to minimize the human error 

rate. With their integrated communication capabilities, machines could make smart 

decisions and stay alert at all stages of production by being in constant connection and 

communication with their environment. These self-organization capabilities of machines 

would pave the way for complex production scenarios that could be run in the future 

where humans tend to make errors. Special products that need to be produced one by 

one with the interaction of machines could be produced flexibly and in mass without the 

need for human intervention and could be quickly released to the market. Such tasks 

under the present scenario are handled by robots, which are nothing but industrial 

machines that work in the way they are programmed. These robots could develop 

reasoning capabilities if they have previous knowledge related to the general world or 

knowledge that is task-specific, which could be learnt dynamically as they operate in the 

environment. In a broader sense, this would also enable these robots or machines to 

explain their actions and as a result they could also be coached by humans through 
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mutual argumentation. This argumentation-based reasoning capability would further 

enable humans to seek guidance from these machines under some specific scenarios.  

 

Argumentation is a process of reasoning under which conclusions are formed based on a 

theory. While explanation aims to provide reasons or arguments that support a 

conclusion against other competing conclusions, argumentation strives to provide 

reasons or arguments that support a conclusion against other conflicting conclusions 

(Craven & Toni 2016, Gaertner & Toni 2007). When given a rule "A follows from B" and 

the observed outcome "A," snatching is frequently referred to as in reverse. We can 

deduce that the rule's condition "B" is (possibly) true. A set of sentences representing an 

addictive explanation H for an observation O is returned in a logic-based setting, given a 

set of sentences representing a theory T that models a domain of interest and a sentence 

representing an observation O, such that: 1. T H |= O, 2. T H is consistent, where |= denotes 

the deductive logical entailment relation. For the same observation, there may be several 

explanations in many circumstances. Extra standards such as minimality may be applied 

for an explanation to be considered admissible. It could also be said that the 

argumentation process is used for defending a claim (such as a belief or a choice) with 

the use of some premises and an argument that connects these premises to the claim. 

Arguments in support of a claim are supposed to be accepted or legitimate in the sense 

that they can defend themselves against all other competing arguments, i.e., counter-

arguments that challenge the supporting argument. Argumentation takes place in a 

formal context inside a predetermined framework. e.g, argumentation framework, AF = 

(h, A, D), where h is a set of arguments, A is an attribute, and D is a function. Furthermore, 

D is a binary defense (or defeat) relation on h, whereas A is a binary attack relation on h. 

The role of attack relation comes into play when one argument is a counter-argument 

(i.e., opposing or challenging) to another whereas the role of defense relation comes into 

play when one argument is powerful enough to defend against another (opposing or 

challenging) argument. Under the aforementioned argumentation framework, a subset of 

arguments is acceptable under the following conditions: 

 

• The argument is conflict-free, that is, it does not comprise arguments that are 

antagonistic to one another.  
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• The argument defends itself against all additional subsets of arguments that are 

directed to it.  

 

Therefore, the goal of argumentation is to form a coalition of arguments with other 

arguments to defend it against arguments that would undermine it in some way, such as 

by questioning its premises or the appropriateness of its link between its premises.  

 

1.1 What is Human-Machine Interaction? 
The way in which a human being interacts with a machine, which could be anything that 

reduces human effort, is simply termed "Human Machine Interaction (HMI)." There are 

various aliases present for the term Human Machine Interaction, such as Human 

Computer Interaction (HCI), Human Machine Interface (HMI), Man Machine Interface 

(MMI) etc. In today’s world, Human-Machine Interaction is directly related to the high-

level machines that involve ample software usage and have sophisticated electronics. The 

need for HMI has evolved greatly over time as we can find such devices right in our 

homes, offices, shopping centers, etc. and everywhere around us in the ecosystem. 

Regarding some simple examples of HMI, we have the keyboard, which is a lifesaving 

invention derived from the typewriter. It plays a key role in the advancement of 

technology today. Then we have the mouse, the GUI panels present on the electrical home 

appliances, the KIOSKS present around us in the city, medical devices, computer gadgets, 

GUI panels in industrial machinery etc. Through HMIs, we can control the machines as 

per our desire, and with the advancement of AI and machine learning technologies, we 

could train the machines over a set of inputs. Ergonomics is important in the design and 

development of HMIs because it keeps the interaction between the human and the 

machine as simple as possible. 

 

Groundbreaking advancements in electronics technology have made the integration of 

devices such as cameras, microphones, sensors, etc., possible in order to be used as the 

interaction interface between humans and machines. 
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1.2 What is Industrial robotic Arm and Argumentation 
based Machine Coaching?  

An industrial robotic arm is a reprogrammable, autonomous, or semi-independent 

machine that functions to assist a human worker with numerous tasks in a production 

environment or is capable of working independently. It can perform mechanically 

challenging and repetitive tasks as well as manipulate objects through pre-programmed 

movements. Besides being able to handle risky tasks such as entering into a secondary 

machine which entails fatality risks for humans, it is also capable of collecting and 

processing data to optimize the work and adapt its behavior to the surrounding 

environment through some sophisticated artificial intelligence algorithms. 

 

Unimate was the first industrial robot, which was developed in 1954 by George Charles 

Devol, who is also known as the father of robotics. A few years later, Devol and 

entrepreneur Joseph F. Engelberger founded Unimation, the world's first robotics firm. 

After applying for the patent of Unimate in 1954, Devol personally introduced it, which 

was sent to General Motors in 1961, who first used this robot for die casting and spot 

welding of car bodies. Subsequent to this, General Motors bought 66 more Unimates and 

installed them in its factory. Affected by these developments, Ford and Chrysler 

companies also became interested in industrial robots. With the increasing interest and 

investment of the entire automotive industry, the future of industrial robots has begun to 

shine (Wallén 2008). According to the International Federation of Robotics (IFR) 2020 

report, the number of robots used in factories worldwide increased by 12%, to 2.7 

million. Today, the industrial robot market is worth $41.23 billion. As per their latest 

report for the 2021 edition, IFR states that in manufacturing industries, the global 

average robot density has almost doubled in the last five years, having 126 robots per 

10,000 employees, with Asian countries such as South Korea, Singapore, and Japan 

topping the charts. 

 

With the evolution of these industrial robots over time, the requirement for more 

sophisticated control algorithms and the development of some human-machine 

interaction interfaces were born. Although recent industrial robotic arms are outfitted 

with cutting-edge human-machine interaction interfaces that allow the user to program 

them to work according to process requirements and create some motion trajectory in 
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space via point teaching, they lack the ability to explain their behavior to the user or learn 

from some user-generated heuristics in a dynamic setting. 

 

This kind of reasoning and learning could be made possible if these industrial robots 

could be interfaced with some kind of reasoning framework that is capable of 

communicating with the user as well as with these robots in a language that is mutually 

interpretable. Through this, humans could seek guidance on specific scenarios or convey 

their message to these machines. This would further enhance the role of machine 

operators in the industry from performing learning supervision tasks to endowing 

knowledge to the machines as coaches. 

 

Machine coaching is a two-way approach to knowledge acquisition that falls under the 

human-machine interaction domain. Through Machine Coaching, a human user may 

transmit his own preferences, expertise, and/or intuition to a machine by giving it 

guidance in the form of reasons in favor of or against specific behaviors. A machine 

coaching cycle takes place between two parties, such as a smart system that has a basic 

knowledge of its own and a supervisor, which could be a human or a highly 

knowledgeable smart system. Based on the knowledge and the preferences, the smart 

system is able to make decisions pertaining to a specific goal. The supervisor, on the other 

hand, could make this decision-making process more accurate by enhancing the 

knowledge of the smart system about that specific goal. A machine coaching cycle is built 

up of the following steps: 

 

• Triggering of the smart system or the cognitive agent by the supervisor or advice 

seeker to seek guidance on a specific task which acts as the context for the agent.   

 

• With the available knowledge base of the cognitive agent, some advice about the 

context is proposed. 

 

• The advice seeker could then prompt the cognitive agent for the associated 

reasons pertaining to the proposed advice. 
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• The cognitive agent provides the explanation backed by the associated reasons 

from its knowledge base pertaining to its proposal. 

 
• The advice seeker, if it disagreed with the agent’s explanation, could provide its 

own outlook on the context, which would initiate the knowledge acquisition 

process through user-specific reasons or simply the associated arguments. 

However, in the case of an agreement, the advice seeker would accept the agent’s 

advice and the entailing explanation. Therefore, the agent’s knowledge is not 

interrupted, and the advice seeker may proceed with another query, reinitializing 

the entire process. 

 

In a high-level setting, this could be done by, for example, removing, adding, or changing 

a specific rule from the agent's knowledge base as part of its explanation, or by changing 

the rule's priority, which is the order in which it appears in the agent's knowledge base. 

 

The goal of coaching an industrial robotic arm through argumentation is to improve the 

rudimentary forms of human-machine communication and mutual understanding by 

offering a fundamentally more suitable language of communication that makes the 

machine's internal reasoning simple to the human. As part of our proposed system, we 

can use the hard-coded logic-based previous knowledge and inference application 

through logical arguments to achieve argumentation-based reasoning within the 

cognitive agent. This makes machine coaching possible when the cognitive agent is 

connected to the robotic arm. 

 

1.3 The Link between Industrial robotic arm and 
Argumentation. 

Argumentation can be seen as a process of explaining a claim by the set of premises on 

which the supporting argument is built. From the perspective of argumentation-based 

coaching of an industrial robotic arm, we believe that there is an existing interface that 

could convey the arm’s current situation dynamically in real time to the argumentation 

framework, which consists of some predefined knowledge in the form of rules. These 

rules could contain the information that is necessary to coach the arm. The user could 

also seek guidance about the arm’s specific behavior under the current situation or rather 
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the context. This explanation is conveyed in the form of inferences to the user, which are 

backed by related arguments extracted from the rules in the knowledge base of the 

argumentation framework. The user could accept the supporting arguments for these 

inferences or reject them by adding, deleting, or modifying the rules in the available 

knowledge base in order to achieve the desired explanation. As the robotic arm is 

communicating with the argumentation framework in real time, it also receives the 

generated inferences, which enables the arm to change its behavior depending upon the 

user’s arguments. Under the argumentation framework, the existence of an argument for 

some inference could be understood mathematically as described in (Michael 2019). Let 

h be some literal, k be a prioritized knowledge base, k = (R, p) and c be some context, 

which is a set of pairwise non-conflicting literals. Assuming that (I = R U c), we conclude 

that A is an argument for h in c under k if A is a subset of I, (A ⊆ I), i.e., A contains few or 

all elements in I under the following conditions: 

 

1. A ≠ ø 

2. h could be inferred through repeated application of modus ponens starting from 

literals in A ∩ c using the rules in A ∩ R 

3. We cannot infer h from M, which is a proper subset of A, (M ⊂ A), i.e., M contains 

fewer elements than A, such that ø ≠ M ⊂ A by substituting it in place of A as in (2). 
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Chapter 2 
 Explanation  

 

 

 

 

2.1 Objectives & Necessity of Research Study  
Embedding cognitive abilities and human intelligence in machines has been a hot topic 

among researchers and scientists worldwide. Although such features are quite common 

in humanoid robotics, computers, and mobile applications, etc., the industrial world still 

starves for them. The main issue with industrial automation systems is their limitation to 

interacting with humans through a language that both can comprehend in real time. This 

makes it difficult for the machine operators or learning supervisors to change some of its 

inappropriate behavior instantly by annotating knowledge that would in turn enhance 

the machine’s performance. The main objective of this research study is to create an 

interaction interface that would facilitate machine coaching through an argumentation 

process. It would serve as a bridge between the human and the machine through which 

the former could interpret the latter’s explanation pertaining to some specific behavior 

and guide it where necessary to achieve maximum performance. In our case, the machine 

is an industrial robotic arm, which will be coached by a human operator to improve some 

aspects of its behavior in an industrial environment. 

 

Industrial Robotic arms are widely used across all sorts of industries worldwide, be it 

automotive, aerospace, metal working, material handling, packaging, medical, pharma, 

etc. Each sector has its own application requirements, complexities, and challenges. The 

necessity of this research lies in the fact that manual teaching or application-based 

teaching of these robotic arms is time-consuming and requires skills and experience that 

machine or line operators do not possess. This increases machine downtime and incurs 

production loss for the industry. With the advancement in smart technologies, it is 

possible to incorporate techniques which could offer some cognitive characteristics to 

these smart machines. This would make them intelligent enough to converse with the 
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users for easy learning based on their directives and also argue with the users to come 

up with a correct learning result without the requirement of traditional machine 

programming. This would enable the operators to interact freely with these robotic arms 

without the requirement of any special technical skills.  

    

We therefore propose a system that consists of an argumentation assistant and an 

industrial robot which are connected through an interaction interface that is accessed by 

the human user. The assistant communicates with the robot over TCP-IP to exchange 

information that is crucial for its operation. The robot, on the other hand, evaluates the 

operation scenario through constant monitoring of its system information. This 

information consists of the robot’s model, firmware version, hours of operation, current 

coordinates in the joint reference frame, current tool center point coordinates in the 

world reference frame, the mechanical and software limits of the six axes, its operation 

mode (manual or automatic), the emergency circuit status, etc. As per the reasoning 

outcome, the assistant could also give commands to the robot, such as starting or 

stopping the operation cycles, sending the robot to its home position, and so on. The 

assistant also has access to the robot’s application-specific signals such as sensors, 

actuators, etc. 

 

To achieve the reasoning functionality through a set of rules under a specific situation, 

the assistant consists of a knowledge base and a context. The assistant, based on the 

current context that is cyclically updated by the robot, deduces its outcome from the set 

of rules that have been manually defined in its knowledge base by a human user. These 

rules describe the robot’s standard policy of operation. Depending upon the user’s 

requirements related to the robot’s operation, these rules could be modified, deleted, or 

new rules could be added in the assistant’s knowledge base. Argumentation functionality 

is achieved in such a way that the assistant presents an argument in the form of a rule or 

a set of rules from its knowledge base that support its explanation in the specified context. 

These explanations are sent to the robot to actuate the control scenario. The user who 

acts as a supervisor, on the other hand, could present its counter argument in case of 

disagreement with the agent’s explanation that rebuts the assistant’s supporting 

argument. To do this, the rules in the assistant's knowledge base are added, removed, or 

changed. 
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For instance, under the robot’s standard operation policy, the assistant’s knowledge base 

consists of the following rule sets: 

 

Rule_0 :: at_home, auto_perm, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: -sleep, auto implies auto_perm; 

Rule_4 :: -powered implies sleep; 

Rule_5 :: powered implies -sleep; 

Rule_6 :: manual implies -auto; 

Rule_7 :: -manual implies auto; 

 

The standard policy states that the robot must move to pick up the part if it is in the home 

position, in automatic mode, and its gripper status is open. Once the part is picked, then 

it must proceed to place it, and subsequently it must go to its home position. The robot 

would repeat this procedure cyclically. 

 

Based on this standard policy, the robot would move to pick up the part even though it is 

not available. When the human user seeks information from the assistant on this issue, 

the agent explains that from rules r7, r5, and r3 it is deduced that "the robot has automatic 

permission active." As it’s gripper status is also open, therefore from r0 it is deduced that 

"it must go to pick up the part." 

 

Considering the control scenario and the user’s requirements, the assistant’s knowledge 

base could be manually intervened upon by the user. Depending upon the agreement 

between the user and the assistant’s claim and the explanation related to it, the user could 

modify the available set of rules in the knowledge base, create new rules or delete the 

existing ones. For instance, the user does not agree with the agent’s explanation above 

about its standard policy of not moving when the part is absent. Therefore, the user now 
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creates an exception in the knowledge base by modifying r0 and adding a new rule as r3, 

which can be seen below. 

 

Rule_0 :: at_home, auto_perm, part_avl, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: auto_perm, -part_avl, grip_open implies wait_part; 

Rule_4 :: -sleep, auto implies auto_perm; 

Rule_5 :: -powered implies sleep; 

Rule_6 :: powered implies -sleep; 

Rule_7 :: manual implies -auto; 

Rule_8 :: -manual implies auto; 

 

In r0, the user has incorporated a new predicate called part_avl which determines the 

status of the part’s availability. Also, in the new rule r3, the user has annotated that if the 

robot has automatic permission and its gripper is open but the part is not available, then 

it must not move. Therefore, the following explanation is generated when the user seeks 

guidance from the agent regarding the robot not moving to pick up the part: 

 

From rules r8, r6, and r4, it is deduced that "the robot has automatic permission to 

operate". As the part is not available and its gripper is open, then from r3 it is deduced 

that the robot should wait for the part. 

 

2.2 Machine Coaching 
With Machine Coaching, a human user may transmit their own preferences, expertise, 

and/or intuition to a machine by giving it guidance in the form of arguments in favor of 

or against specific behaviors. This takes place through a coaching cycle involving two 

parties, such as the user and the machine/agent, which we have already described in 

section 1.2 of Chapter 1. For a better understanding, we further elaborate on this in the 

context of industrial robot control. We presume that all of the following arguments are 
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given in a common language between the human user and the coaching agent. Also, we 

assume that our agent is provided with a single rule which states that when the robot has 

automatic permission and the part is available on the conveyor, then it must move to pick 

the part from the conveyor. Assuming that the robot has automatic permission, and 

therefore, when we seek advice in the context of part availability, the agent suggests: 

 

“I would suggest the robot to pick or grab the part as it has automatic permission, and the 

part is available”.  

 

This advice is acceptable pertaining to the agent’s knowledge and the available context. 

Next, another part arrives on the conveyor and on querying the agent in the similar 

context we receive the following response: 

 

“I would suggest the robot to pick or grab the part as it has automatic permission, and the 

part is available”.  

 

Due to our assumption pertaining that our agent has only one guideline which says that 

when a part is available and the robot has automatic permission then it must pick the 

part, the above suggestion was quite evident. As such, a suggestion regarding the picking 

of the part when the robot already has a part in its gripper would result in a crash when 

the robot moves again to pick the new part from the conveyor. We proceed to advise our 

agent to be more careful by checking the state of the gripper through the following 

counterargument to its suggestion: 

 

“Even through a part is available on the conveyor and the robot has automatic permission, 

it must pick the part only when its gripper is in open state”. 

 

In light of this counterargument, we withdraw our prior advice of picking the part when 

the robot has automatic permission, and the part is available on the conveyor at the local 

level. The revised rule in the agent’s knowledge base would allow the robot to pick the 

part from the conveyor only when its gripper state is open, besides other mandatory 

requirements as discussed above. We could teach the agent more about our theory of 

controlling robots by giving it more suggestions in the same way. 
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When it comes to machine learning and declarative programming, machine coaching falls 

somewhere in between. One of the advantages of machine learning in this case is that the 

user's heuristics and preferences may be used to help the machine learn about its own 

domain. Contrary to popular belief, under the concept of "machine coaching," the 

machine is not given explicit instructions on where to look for or how to create relevant 

information. As a result, the user provides explicit instructions to the machine and, if 

feasible, the agent follows these instructions in some form. Machine coaching, on the 

other hand, makes the learning process obvious to the system's functionality while also 

enabling humans to educate machines in a more declarative manner. Every time it makes 

a decision, the machine notifies the user of the reasoning it used to arrive at that decision. 

When considering machine coaching as an interpretable learning approach (Arrieta et al. 

2020), we can say that the user can grasp every step of the model's reasoning and 

learning process based on their own advice. This is because of the preceding information. 

Since each proposal is based on rules that derive from a user's idea about some domain, 

the user is supposed to be capable of simulating its function given all the information 

accessible to the machine. This makes machine coaching also a simulatable paradigm. 

 

In the following section, we will discuss in more detail that how we can control and guide 

the industrial robot in a more declarative manner by grasping every step of the reasoning 

and learning process based on our own advice in the form of rules entailing a priority 

relation. Hence, understanding in a better way how Machine Coaching's high levels of 

interpretability and transparency may be attributed in large part to this. As we proceed, 

the majority of this dissertation's discussion on machine coaching follows the 

presentation in (Michael 2019). 

 

2.2.1 Robot control and guidance through Machine Coaching 

Moving ahead with the example discussed above in section 2.2 we describe that the robot 

has a task to pick the part from the conveyor, place it and then return to the home 

position. This policy is described in the form of three rules in the agent’s knowledge base 

in the following manner. 
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Argument 1: Rule 1 

When the robot has automatic permission, the part is available on the conveyor and its 

gripper is open then it must move to pick the part from the conveyor. 

 

Under the language of Machine Coaching: 

Rule_1 :: auto_perm, part_avl, grip_open implies pick_part; 

 

Argument 2: Rule 2 

When the robot has automatic permission, and the part is picked from the conveyor then 

the robot must move to place it at the place point. 

 

Under the language of Machine Coaching: 

Rule_2 :: auto_perm, part_picked implies place_part; 

 

Argument 3: Rule 3 

When the robot has automatic permission, and the part is placed then the robot must 

move to the home position. 

 

Under the language of Machine Coaching: 

Rule_3 :: auto_perm, part_placed implies go_home; 

 

Assuming that the robot has automatic permission, and its gripper state is open, when we 

seek advice from the agent under the context of part availability (part is available), the 

agent suggests: 

 

“As the robot has automatic permission, its gripper is in the open state and the part is 

available then it must move to pick the part”.  

 

Therefore, it presents Argument 1 which fires Rule 1 as part of its explanation. The head 

of Rule 1 “pick_part” acts as the control command for the robot that enables it to move 

and pick the part.  

 



15 
 

Now assuming that the robot has automatic permission, and its gripper state is closed, 

when we seek advice from the agent under the context of part availability (part is 

available) and part status (part is picked), the agent suggests: 

 

“As the robot has automatic permission, and the part is picked then it must move to place 

the part”.  

 

Therefore, it presents Argument 2 which fires Rule 2 as part of its explanation. The head 

of Rule 2 “place_part” acts as the control command for the robot that enables it to move 

and place the part.  

 

Further we assume that the robot has automatic permission, and its gripper state is open, 

when we seek advice from the agent under the context of part availability (part is 

available) and part status (part is placed), the agent suggests: 

 

“As the robot has automatic permission, its gripper is in the open state and the part is 

available then it must move to pick the part”.  – Rule 1 

 

“As the robot has automatic permission, and the part is placed then it must move to home 

position”. – Rule 3 

 

Therefore, under this circumstance, the agent fires both Rules 1 and 3 as part of its 

explanation for the relevant arguments, leading to a conflict. Therefore, as Rules 1 and 3 

are prioritized differently, the robot's relevant move may or may not be advised 

depending on the order in which they are prioritized. Hence, in our case, as Rule 1 appears 

higher in order as compared to Rule 3, therefore it holds a higher priority. Therefore, the 

robot will move to pick up the part rather than go to its home position. 

 

As the robot’s standard task is made of three operations of picking, placing, and moving 

to its home position, based on the agent’s above suggestion according to the rule priority, 

the robot fails to execute its final operation. So, our counterargument suggests that the 

robot should only pick up the available part if it is at the home position as below: 

 



16 
 

“Pick the part from the conveyor only if the robot is present at the home position”. 

 

Therefore, we withdraw our prior advice of picking the part when the robot has 

automatic permission, its gripper state is open, and the part is available on the conveyor 

at the local level. The revised rule in the agent’s knowledge base would allow the robot to 

pick the part from the conveyor only when it is physically present at the home position, 

besides other mandatory requirements as discussed above. The revised rule would look 

like below: 

 

Argument 1: Rule 1 

When the robot is at home position, has automatic permission, the part is available on the 

conveyor and its gripper is open then it must move to pick the part from the conveyor. 

 

Under the language of Machine Coaching: 

Rule_1 :: at_home, auto_perm, part_avl, grip_open implies pick_part; 

 

In this manner, we utilize Machine Coaching’s functionality to control and guide the 

industrial robot in a more declarative manner by grasping every step of the reasoning 

process based on our own advice in the form of rules entailing a priority relation.  

 

2.3 Argumentation & Learning in Machine Coaching 
Here, we'll talk about how reasoning works in the context of machine coaching. Before 

we can proceed, we must define the arguments. Under Machine Coaching, arguments 

appear in the following manner: 

 

• Internal arguments help the machine decide what actions, behaviors, or items to 

suggest to the user. 

 

• Interaction with the user is accomplished via the usage of machine arguments. 

Actually, when the computer gives you advice, it also gives you an explanation of 

why it gave you that recommendation. In fact, the answer is based on the same 

internal logic that led the machine to reach this conclusion in the first place. So, 



17 
 

one could say that the machine is clear and easy to understand, as described by 

(Arrieta 2020), since it lets the user see how it works. 

 
• Any argument from the user is accepted by the machine. As we said in section 2.2, 

the user can give the machine a counterargument if they don't agree with the 

proposal or explanation it gives. 

 

2.3.1 Description of Arguments under Machine Coaching Language 

Under the machine coaching domain, the existence of an argument for some inference 

could be understood mathematically as described in (Michael 2019). Let h be some literal, 

k be a prioritized knowledge base; k = (R, p) and c be some context which is a set of 

pairwise non-conflicting literals. Assuming that (I = R U c), we conclude that A is an 

argument for h in c under k if A is a subset of I, (A ⊆ I), i.e., A contains few or all elements 

in I under the following conditions: 

1. A ≠ ø 

2. h could be inferred through repeated application of modus ponens starting from 

literals in A ∩ c using the rules in A ∩ R 

3. We cannot infer h from M, which is a proper subset of A, (M ⊂ A), i.e., M contains 

fewer elements than A, such that ø ≠ M ⊂ A by substituting it in place of A as in (2). 

 

The unique rule γ ϵ A that has h as its head is also known as the argument's crown rule. 

 

At least one literal from x or one rule from R must be present in an argument in order for 

it to satisfy the first criterion. For the second condition to hold, we need to be able to 

derive R from our hypothesis as an argument in support of our hypothesis. At this point, 

it should be noted that an argument may or may not include any rules at all, in which case 

h should be included. Since we presume that literals relating to a context are by default 

evaluated as truths that are true in a specific scenario inside our setting, such harmful 

arguments might be construed as restating some previously known fact. The last and 

most critical condition requires that arguments be limited in the sense that they comprise 

just what is necessary. There is no need to distinguish between arguments that vary by, 
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say, one rule or one literal that does not have any additional consequences relating the 

target literal h. 

 

Consider the following knowledge base k which has the following rules. 

 

Rule_0 :: at_home, auto_perm, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: -sleep, auto implies auto_perm; 

Rule_4 :: -powered implies sleep; 

Rule_5 :: powered implies -sleep; 

Rule_6 :: manual implies -auto; 

Rule_7 :: -manual implies auto; 

 

Let us consider the following context c:  

 

-manual; powered; at_home; grip_open, -part_picked; -part_placed; 

 

Suppose we wish to see whether the knowledge base k above has any support for the 

argument for pick_part. We may deduce pick_part from (A = c ∪ k) ≠ ø by looking at the 

rules and literals in A thereby proving the first two conditions to be true. Now regarding 

the third condition, even if we delete -part_picked, -part_placed or rule Rule_1, we may 

still deduce pick_part from the new reduced set, which indicates the requirement about 

the argument's minimality is not met.  

 

The following option, which is the only one that satisfies the third requirement listed in 

the definition of an argument, is the one and only viable alternative for the A.  

 

A = {-manual, powered, at_home; grip_open, Rule_3, Rule_0} 
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Therefore, pick_part would not be inferred if any of the preceding rules were not applied 

to A. For instance, eliminating rule Rule_3 would prevent Rule_0 from being triggered, 

thereby preventing its head pick_part to be inferred. 

 

It should be further understood that, given a context c, a prioritized knowledge base k, 

and a target literal h, even if there is an argument A for h in c under k, its status as a unique 

solution is in no way guaranteed, even in the event that it does exist. In order to provide 

evidence of this, let us extend k by including the following rules, each of which has a 

greater priority as compared to any other rule: 

 

Rule_9 :: auto_perm, test_pick implies pick_part; 

Rule_8 :: auto_perm, simulation_active implies test_pick; 

Rule_0 :: at_home, auto_perm, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: -sleep, auto implies auto_perm; 

Rule_4 :: -powered implies sleep; 

Rule_5 :: powered implies -sleep; 

Rule_6 :: manual implies -auto; 

Rule_7 :: -manual implies auto; 

 

On extending our context c above with the literal simulation_active; we observe that 

pick_part is also deduced by a second argument B in the following way: 

 

B = {-manual, powered, simulation_active, Rule_3, Rule_8, Rule_9} 

 

A context c and a prioritized knowledge base k may serve as the basis for the development 

of arguments in support of, as well as opposition against, the same literal. In addition, it 

is also feasible to create arguments in both of these directions simultaneously. In point of 

fact, have a look at the following knowledge base: 
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Rule_11 :: at_home, auto_perm, grip_open implies pick_part; 

Rule_10 :: auto_perm, test_place implies place_part; 

Rule_9 :: auto_perm, test_place implies -pick_part; 

Rule_8 :: auto_perm, simulation_active implies test_place; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: -sleep, auto implies auto_perm; 

Rule_4 :: -powered implies sleep; 

Rule_5 :: powered implies -sleep; 

Rule_6 :: manual implies -auto; 

Rule_7 :: -manual implies auto; 

 

Under the following context c: 

-manual; powered; at_home; grip_open, -part_picked; -part_placed; simulation_active;  

 

The following argument supporting pick_part is contructed: 

 

A = {-manual, powered, at_home; grip_open, Rule_3, Rule_11} 

 

However, under the same context c as above, another argument supporting -pick_part is 

also constructed. 

 

B = {-manual, powered, simulation_active, Rule_3, Rule_8, Rule_9} 

 

2.3.2 Establishing the Boundaries of an Argumentation Framework 

As we have described above in detail the arguments under Machine Coaching, we proceed 

to building an argumentation framework, as stated in (Dung 1995). Here we define α and 

ω as an ordered pair (α, ω) where α is an argument set and ω is a binary attack relation 

on α, such that, ω ⊆ α x α (Dung 1995). Furthermore, let context to be referred as c and 

prioritized knowledge base as k = (R, p). 

 

We let α be the set of all arguments in c under k in terms of the total number of arguments 

(Michael 2019). We will make the following decisions within the ASPIC+ framework 
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(Prakken 2010) in regard to the ω relation of attacks between arguments through the 

approach described by (Michael 2019). 

 

• It is impossible to refute the premises of context c, so we use it as an axiom set 

(Prakken 2010). Contextual knowledge is always deemed to be accurate since 

arguments cannot be challenged on their premises. The robot’s working mode 

(auto/manual) cannot be questioned by any of the users, and the same holds true 

for all of the environmental facts where the robot operates. This is a way of saying 

that facts about a given scenario cannot be disputed. 

 

• We have decided that all of the rules that make up our knowledge base should be 

defeasible. This means that if all of the rule's assumptions are true, then it is 

possible for the rule's head to be true (Prakken 2010). There are a few rules that 

hold true in every situation, whether in daily life or in a robot’s operation, and our 

defeasibility factor aims to represent this truth. In reality, the vast majority of 

rules are context-sensitive. 

 
• In between arguments, we prefer to respond to attacks with rebuttals (Prakken, 

2010). According to the definition of refutation, an argument B challenges an 

argument A when the conclusion of B contradicts some of the conclusions that A 

has drawn, among other things. If you let attacks be rebutted, that means that for 

argument A to be true, no other counterargument can be triggered by a certain 

situation, so that every single conclusion of argument A is accepted in that context. 

 

• Using the last-link approach (Prakken 2010), we can also sort arguments. For 

instance, if the final rule of A is preferred over the last rule of B according to the 

priority relation p, we say that an argument A is preferred over another argument 

B. 

 

To put it another way, if one of the below requirements is met in a context c under a 

knowledge base k, we may say that an argument A supporting h, attacks another 

argument B that includes a rule r with head -h i.e. (𝐴𝐴, 𝐵𝐵) ∈ ω.  
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• (h ∈ c), which means that it is an undeniable fact that the conclusion of argument 

A, h is correct. 

• (γ ⊀ 𝑟𝑟), where γ being the crown rule of argument A which implies that B′, the sub-

argument of B that has r as its crown rule, is no less preferable than A. 

 

Hence for a better understanding of the above, let us consider the two arguments A and 

B that we have described in the previous section. 

 

A = {-manual, powered, at_home; grip_open, Rule_3, Rule_11} 

B = {-manual, powered, simulation_active, Rule_3, Rule_8, Rule_9} 

 

Clearly, A attacks B, but vice-versa. As a matter of fact, Rule 11 of argument A rebuts Rule 

9 of argument B. Rule 11 is favored above Rule 9 since it occurs above Rule 9 in the 

knowledge base, however this is not the case for B because it may include a rule that leads 

to a conflict with A. 

 

Furthermore, let us consider the following knowledge base where the rules that appear 

higher have a higher priority. 

 

Rule_1 :: at_home, auto_perm, prod(Shift1), -prod(Shift2), grip_open implies -pick_part; 

Rule_2 :: at_home, auto_perm, prod(Shift), start(Shift), grip_open implies pick_part; 

Rule_3 :: at_home, auto_perm, prod(Shift), halt_prod, grip_open implies -pick_part; 

Rule_4 :: time(X), ?<(X,9) implies halt_prod; 

 

Consider the following context describing the industrial production scenario: 

at_home; auto_perm; prod(morning); -prod(afternoon); grip_open; start(morning); 

time(8); 

 

Under the above context, three arguments are detected: 

 

A = {time(8), at_home, auto_perm, prod(morning), grip_open, Rule_4, Rule_3} 

B = {at_home, auto_perm, prod(morning), grip_open, start(morning), Rule_2} 

C = {at_home, auto_perm, prod(morning), -prod(afternoon), grip_open, Rule_1} 
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Given that (pRule_3 < pRule_2 < pRule_1), where p describes the priority relation of the rules 

R in knowledge base k, argument B attacks argument A – because pRule_3 < pRule_2 and also 

argument C attacks argument A, since pRule_2 < pRule_1 among the three arguments above. 

 

2.3.3 Grounded Semantics of an Argumentation Framework 

Using a prioritized knowledge base k and a given context c, we'll look at what may be 

reliably deduced and see whether there's a computationally efficient approach for 

calculating the inferred literals. For a potential solution, we consider adopting Dung's 

Grounded extension of an argumentation framework, as proposed in (Dung 1995); 

Michael 2019). Prior to proceeding with the details, we define certain terms as a 

prerequisite. It is only admissible to argue that an argument A is acceptable with regard 

to a set of arguments, S, if for every other attack on A, there is another attack on B by 

another argument C, such that C ∈ S. (Dung 1995). That is, S has adequate evidence to 

counter all of A's attacks. 

 

Let the argumentation framework be represented as AF = (α, ω). The characteristic 

function of AF is represented as a function ZAF : P(AF) → P(AF), where P(X) determines 

set X’s powerset such that ZAF(S) = {A ∈ α: with regard to S, A is acceptable.} (Dung 1995). 

Therefore, with ZAF, the first fixed point of ZAF's grounded extension GEAF of AF is 

specified with regard to set inclusion (Dung, 1995). In order to throw more light on this 

notion, let us assume again that the argumentation framework is denoted by AF = (α, ω) 

and its characteristic function be denoted by Z.  

 

Starting with the empty set ø, the following steps are taken:   

 

• If Z(∅) = ∅, as our first fixed point of Z is identified here therefore we say GEAF = ∅ 

in order to conclude.  

• If Z(∅) ≠ ø, we start finding Z2(∅) ≔ Z(Z(∅)). When we identify Z2(∅) = Z(∅) that 

means GEAF = Z(∅) in order to conclude. 

• If Z2(∅) ≠ Z(∅), similar to above we start finding Z3(∅) and so forth. 
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The grounded extension of AF, GEAF, can be computed with certainty since Z maintains 

set inclusion. For instance, let X ⊆ Y and A ∈ Z(X). Given that each attack against A is met 

by a rebuttal from X, the same logic must be applied to Y which ultimately results in A ∈ 

Z(Y), and hence Z(X) ∈ Z(Y). Thus, we may either stop at some fixed point or continue 

with a bigger set of arguments at each step. Therefore, under this context, proving that 

there exists at least one fixed point for Z would be sufficient to prove the computation of 

the grounded extension. Assume that M ≔ {X ⊆ α: X ⊆ Z(X)}. Note that M ≠ ∅ as ∅ ∈ M 

and assume that Y ≔ ⋃X∈M X which is clearly understood from the fact that M ≠ ∅. 

Initially we prove that Y ⊆ Z(Y). As we know that X ⊆ Y for any X ∈ M to avail Z(X) ⊆ Z(Y) 

for any X ∈ M from the set inclusion fact of Z. Therefore, Y = ⋃X∈M X ⊆ Z(Y) and, as we 

know that Y = sup M, we obtain Y ⊆ Z(Y). In order to get the inclusion inversely, note that 

as Y ⊆ Z(Y), because Z holds set inclusion, we also know that Z(Y) ⊆ Z(Z(Y)). Therefore, 

we get Z(Y) ∈ M from the description of M. So, as Y = sup M we also hold Z(Y) ⊆ Y. Hence, 

Y exists as a fixed point of Z through Y = Z(Y). 

 

Grounded semantics are also described as the skeptical semantics in (Dung, 1995) from 

their objective to record a set of inferences that may be securely established under a 

knowledge base k in a context c. To shed more light on this in order to determine which 

argument sets A ∈ α are acceptable by ∅, we calculate Z(∅). To put it another way, there 

is no argument B in Z(∅) attacking any argument A, therefore this clearly captures 

conclusions that don't require any further support. Hence, there is no argument included 

in GEAF when Z(∅) = ∅. If this is the case, we are unable to move further because ∅ = Z(∅) 

= Z(Z(∅)) = ⋯ = Zn(∅) = ⋯ 

 

We further calculate Z(Z(∅)) under the situation Z(∅) ≠ ∅ which means that the set of 

arguments that, although being attacked by other arguments, are able to be defended by 

arguments that are not themselves attacked by any other argument. Because of this, we 

may confidently accept such judgments. Our argumentation framework's grounded 

extension may be produced in the same way as previously, if the following holds: if 

Z(Z(∅)) = Z(∅) and Z(Z(Z(∅))) equals Z3(∅), then we have constructed our framework's 

grounded extension. By extending Z2(∅) to arguments that may be attacked by arguments 



25 
 

that are in turn attacked by other arguments in Z(∅), we advance our understanding of 

Z(∅) until we reach Z's first fixed point, proceeding in the same manner. 

After our understanding of the above we say that the concepts grounded and skeptical 

seem reasonable in this situation because an argumentation framework is an ongoing 

process. Here we begin with arguments that don't need to be supported by other 

arguments. Then gradually we add new arguments so that they can be defended against 

other attacks by refuting the attacking arguments. Therefore, under grounded semantics 

the property of groundedness marks its importance in the sense that it permits safe 

conclusions to be made. Another important reasons for the selection of grounded 

semantics in the argumentation framework are that they bear resemblance with the 

human reasoning leading to a single model that is evident from the findings of (Stenning 

& Lambalgen 2012) and also, they facilitate efficient computation of the grounded 

extension of an argumentation framework (Michael, 2019). 

 

We will now show an example of a grounded extension in our context of the industrial 

robot control and guidance after describing the motivations behind the concept of an 

argumentation framework's grounded extension as well as our personal motive for using 

it in our setting. 

 

Let us again consider the three arguments and their attach relations that we had 

described in section 2.3.2 above such that α ≔ {A, B, C} and ω ≔ {(C, B), (B, A)}. 

 

A = {time(8), at_home, auto_perm, prod(morning), grip_open, Rule_4, Rule_3} 

B = {at_home, auto_perm, prod(morning), grip_open, start(morning), Rule_2} 

C = {at_home, auto_perm, prod(morning), -prod(afternoon), grip_open, Rule_1} 

 

The grounded extension of the argumentation framework AF = (α, ω) can be computed 

as under: 

 

• We begin by calculating ZAF(∅). Given our attack relation, the sole argument that 

can stand alone without the help of other arguments is argument C, and as a result 

ZAF(∅)= {C}. We do not stop here as ZAF(∅)≠ ∅. 
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• In the subsequent step we calculate Z2AF(∅) = ZAF(ZAF(∅)). We also get C ∈ Z2AF(∅) 

from the fact that C ∈ ZAF(∅) and ZAF holds set inclusion. Also as C ∈ ZAF(∅) defends 

A from the attack of B, we get A ∈ Z2AF(∅). Note that since B is attacked by C 

therefore B ∉ Z2AF(∅). 

• Further we calculate Z3AF(∅) = ZAF(Z2AF(∅)). Note that as B is being attacked by C, 

it is impossible to include it in the argumentation framework's grounded 

extension. We get Z3AF(∅) = Z2AF(∅) from the fact that ZAF holds set inclusion 

therefore, {A, C} emerges as the first fixed point of ZAF. 

 

Therefore, {A, C} is found to be the grounded extension of the argumentation framework 

as discussed above. Hence, given the aforementioned three arguments and their attack 

relation, we can't successfully argue in favor of B although, as stated above, we can when 

it comes to A and/or C. 

 

2.3.4 Learning under Machine Coaching 

According to (Michael 2019), PAC semantics (Valiant 1984) are used to characterize 

learning in the context of Machine Coaching. If an algorithm can learn a feedback class X 

= X(α, β, γ) using a hypotheses class T for every 𝛿𝛿, 𝜀𝜀 ∈(0,1), every probability distribution 

P over inputs in α of size n and every f ∈ X of size s, provided access to 𝛿𝛿, 𝜀𝜀 X, we claim 

that the algorithm is probably approximately conformant given the fact that it iteratively 

performs the following task: 

 

i. Either through a random or active choice under P fetch an input (i ∈ α). 

ii. From (j ∈ β), choose an output. 

iii. Get some guidance f (i, j). 

 

The algorithm finishes and returns a hypothesis h ∈ T after [q (1/𝛿𝛿 , 1/𝜀𝜀 , 𝑛𝑛, 𝑠𝑠)] maximum 

time such that 𝑓𝑓(i, ℎ(i)) = 𝑛𝑛𝑛𝑛Guidance except with probability 𝛿𝛿  and 𝜀𝜀 (Michael, 2019: 84). 

In addition, we shall argue that the method is an efficient conformant learner if q with 

regard to its parameters has a polynomial complexity. 

 

According to the definition above, an algorithm that can capture a theory about anything 

(e.g., an industrial robotic arm) by making predictions about examples it encounters and 
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receiving pieces of advice about them is possible under any desired probability of failure 

𝛿𝛿 ∈ (0,1) and any desired probability of accuracy 𝜀𝜀 ∈ (0,1). Then, we get a model of our 

theory that is correct, allowing for mistakes to occur with a probability 𝜀𝜀, provided that 

the algorithm ends at some point, based on the two stated probabilities, the size of each 

example and the related pieces of advice. Moreover, the above model of our theory with 

a probability of 𝛿𝛿 may not be generated. 

 

Apart from the high-level description of learnability above, we try to shed some light on 

the efficient learning algorithm described in (Michael 2019) in the form of a learning 

protocol. Here, our target learning theory, the knowledge base, is denoted by k and c 

represents the context of our choice. Our specific feedback class X is described as below: 

 

• If a predicted rule is not found in k, it will be regarded unrecognized unless it is a 

rule that exists in our theory. 

• If a predicted rule does not add to any argument in c under k, it will be deemed 

unnecessary or superfluous.  

• If a rule does not exist in a prediction while it is included in k and its inclusion 

would lead to extra arguments from the machine, it is deemed incomplete. 

• If there is no alternative argument in x under k that challenges an argument in the 

machine's prediction, then the argument is regarded indefensible. 

• Otherwise, no responsive situation will arise. 

 

The following algorithm is probably approximately conformant learner as described in 

(Michael 2019) provided the feedback class X as above and the linear order of the 

conflicting rules in k with respect to their priority relation. 

 

• Let the initial knowledge base of the machine is represented by k = ∅. 

• For each input i, that is randomly chosen: 

 Determine the prediction of the corresponding dual representation j. 

 As per the above protocol get the user’s advice f (i, j). 

 Facilitate the deletion of the rules that are deemed to be superfluous or 

unrecognized. Provide rules that are deemed to be incomplete or result in 
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the user’s counter-arguments having priority higher compared to any 

existing rule in k.  

• Repeat the above process until the condition of no response arises for n 

consecutive cycles. Here n stands for the polynomial as per the PAC learnability 

definition above. 

 

The description of the learning protocol above enables us to get an idea about how in 

section 2.2.1, our desired functionality is achieved where the user was able to rebut the 

machine’s explanations through his counterarguments.  
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Chapter 3 
Literature Review 

 

 

 

 

The literature review consists of a detailed analysis of the interaction mechanism 

between a human and a robot as well as how defeasible logic and argumentation theory 

aid this domain. 

 

3.1 Human-Robot Interaction (HRI) 

 

Graph 1. HRI publication distribution over the years 
 

As per the Scopus website, Graph 1 above displays the increasing amount of research 

being carried out over the years in the field of Human-Robot Interaction. With the 
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growing number of publications, HRI researchers have attempted to answer the subject's 

challenges in a variety of ways. Figure 1 depicts the classification of these techniques. 

 

Figure 1. HRI classification 
 

3.1.1 Interaction based on Communication 

Various routes can be used to establish the needed communication through vision and 

speech for the establishment of HRI. The perception of the surroundings by a robot is 

provided by a collection of algorithms that use image sensors such as a camera. In the 

work by Xue et al., they used a six-axes robot and an industrial camera to execute gas 

metal arc welding with an error rate of less than 0.5mm with an operator (Xue et al. 

2021). Another investigation was conducted using a plastic robot joint with a camera. 

People touched this joint, and the direction in which they wished to move the robot 

according to the propensity of this joint was identified using the camera (Oliveira et al. 

2020). In another study, deep learning algorithms were used to locate the spots in the 

image where the robot could grasp the items (Bergamini et al. 2020). The pictures 

captured by the Red-Green-Blue-Depth (RGB-D) sensor in Li's work were characterized 

using deep learning methods to control the robot arm in the simulation environment (Li 

2020). In a research similar to that of Li's, the depth picture captured by the RGB-D sensor 

HR
I

Communication

Vision

Speech

Touch

Multi-way

Behavior
Mimic

Collaboration

Type
Social Robots

Industrial Robots
Safety



31 
 

was recognized using deep learning to operate the Baxter robot using the human arm's 

movement (Fang et al. 2020). 

 

Speech is another kind of communication that is utilized as frequently as vision in HRI. 

Chen and his colleagues employed speech-based communication to enable their robot to 

recognize human emotions (Chen et al. 2020). Another study (Liu et al. 2018) calculated 

Mel Frequency Cepstral Coefficients (MFCC) over speech with 90.28 percent accuracy to 

identify emotional interactions between humans and robots using linear discriminant 

analysis (LDA) and principal component analysis (PCA). It was possible to execute the 

needed tasks by talking to the Khepera II robot. 2007). Ding and Shi used the microphone 

array on the RGB-D sensor to drive a humanoid robot using a speech recognition program 

based on support vector machines (SVM) and Gaussian mixture models (GMM) (Ding & 

Shi 2017). (Gunawan et al. 2017) used voice recognition to operate another humanoid 

robot, Rapiro. 

 

Touch is one of the ways that humans communicate with one another. The detection of 

the robot's touched site and the assessment of the touch kind were explored in research 

on this communication technology, which used three microphones mounted on a 

humanoid robot (Gamboa-Montero et al. 2020). A success rate of around 86 percent was 

attained. Erica, a humanoid robot, was given the ability to anticipate touch and glance in 

that direction using two RGB-D sensors in another study (Shiomi et al. 2018). Another 

research on Erica investigated whether joyful and sad sentiments could be 

communicated to the other individual by touch, and it was successfully discovered (Zheng 

et al. 2020). Kim and his colleagues used nine touch sensors and one accelerometer 

mounted on the head of a humanoid robot to detect whether humans touched it with one 

of the four forms of touch they identified using a temporary decision tree method (Kim et 

al., 2010). 

 

When interacting with one another, people frequently utilize many communication 

channels. In HRI, the scenario is similar. These communication channels are frequently 

used jointly in the literature. For example, the KUKA LBR iiwa industrial robot is 

controlled using both visual and tactile communication channels (Cherubini et al. 2015). 

A voice and visual communication channel was employed with a humanoid robot in 
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another study (McColl et al. 2017), and the relevance of body language derived from the 

picture was underlined. Both the voice and hand gesture detection routines on the 

GOOGOL GRB3016 and KUKA KR 6 R700 robots have successfully followed the trail (Du 

et al. 2018). This voice and hand gestures approach was utilized to control a robot arm in 

another investigation and the only variation between the two experiments above is that 

the sensors used for hand movements are different (Yongda et al. 2018). In another 

investigation, a robot that provided human assistance at an event interacted with the 

participants through speech and vision (Jensen et al. 2005). 

 

3.1.2 Interaction based on Behavior 

In order for robots to perform desired tasks, they must imitate humans or collaborate in 

order to benefit from people's experiences. This difficulty was put forth in one of the 

studies that required the understanding of the location and orientation of the object first 

in order for the robot to fetch it. The robot was instructed to fetch the object like humans 

that was demonstrated by the people in order to tackle this difficulty, and successful 

results were obtained (Canal et al. 2016). In another study, data from a surface electrode 

Electromyography (EMG) sensor connected to people's arms was used to create a robotic 

hand that imitated the human hand (Meattini et al. 2018). The copying of humanoid facial 

emotions such as pleased, sad, and astonished by a robot has also been studied in the 

literature (Cid et al. 2013, Ge et al. 2008). In another research, Erica, a humanoid robot, 

was able to simulate a tourism agency representative owing to the transfer of speech 

knowledge gathered via human-human conversation (Doering et al. 2019). A 

laparoscopic robot is used to guide the camera mounted on it according to the head 

motions of the surgeon doing the surgery to assured that the surgeon enlarged the region 

that he focused on (Fujii et al. 2018). A robotic assistant has been built to aid people 

during the cutting process of wooden or plastic objects in other investigations (X. Chen et 

al. 2020, Peternel et al. 2017). Another field where human-robot collaboration may be 

seen is welding. According to research in this field, light-weighted robots assist people to 

achieve smoother welding results (Erden & Billard 2015a, Erden & Billard 2014, Erden & 

Billard 2015b). The method of transporting heavy goods alongside people was taught to 

the robot through imitation to achieve collaboration in research focused on robot 

imitation and collaboration. In extension to this research, the robot was taught to 

collaborate with humans throughout the furniture assembly process (Rozo et al. 2016). 
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3.1.3 Interaction based on Robot Type 

The most often employed robot kinds in HRI are the social and industrial robots, which 

will be covered in this section. Robots that can be a part of people's daily lives are known 

as social robots. In Tseng and his team's investigation, the robot was asked to determine 

whether or not socially distant people require assistance. In order to do this, the robot 

would respectfully interrupt a group of people's conversation to ask if they had any 

questions, or if a person directly inquired, the robot would answer their queries (Tseng 

et al. 2016). The feeling of trust in the robot under social HRI was investigated in another 

study, and it was discovered that people's trust in robots increased following a gaming 

session (Aroyo et al. 2018). A humanoid robot was used to deliver 121 treatment sessions 

to pediatric patients with autism spectrum disorder over the course of four weeks in 

another research (Melo et al. 2019). Another research used the Nao robot to help 8 young 

individuals with autism spectrum disorder play the Tangram puzzle game in instructional 

and peer mode which had positive outcomes (Bernardo et al. 2016). 

 

Industrial robots are another category of robots that are frequently employed in HRI. 

Kronader and Billard used KUKA LWR and Barrett WAM industrial robots to construct 

physical HRI and user interface applications for beverage filling. When both the softwares 

were tested on the task load index and system usability scale by two groups of 14 people, 

the physical HRI was observed to be more responsive (Kronander & Billard 2014). In 

another research on the KUKA LWR robot, it was found that using a combination of 

variable impedance and kinematic redundancy resolution in physical HRI applications 

may achieve the best accuracy and processing time (Ficuciello et al. 2015). With the aid 

of the developed wearable sensors, the ABB YuMi robot was able to imitate human arm 

movements in another study (Zhou et al. 2020, F. Chen et al. 2019). 

 

3.1.4 Safety in HRI 

Governments and employers have agreed on certain safety regulations to mitigate the 

dangers associated with the human work environment that have evolved as a result of 

the industrial revolutions. The ISO 10218 standard and the ISO/TS 15066:2016 technical 

specification (Robla-Gomez et al. 2017) govern the connection between people and 

robots in terms of safety. More specifically, the safety requirements for industrial robots 
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are established by ISO 10218, whereas safety standards for robot and controller 

manufacturers are established by ISO 10218-1, and safety standards for robot and 

assistive device integrators are established by ISO 10218-2. The ISO TS 10566 standard, 

on the other hand, contains standards for collaborative robots. 

 

Due to the advancement in technology and continuous evolution of the human-robot 

interaction domain, the vast majority of HRI scientists are focused on developing a safer 

HRI. In the research conducted by Liu and Wang, RGB-D sensors installed in the robot's 

working environment were used to identify whether people approached the robot, 

allowing a new trajectory to be designed to prevent an accident (H. Liu & Wang 2021). 

Another research (Landi et al. 2019) used a Kinect sensor to predict if a person in the 

robot's working area would approach the robot. In another investigation, infrared 

sensors were mounted at intervals over the designated joint of the ABB IRB 140 robot, 

and the information obtained from these sensors was calculated. With this, the presence 

of a human in the vicinity who may constitute a threat was perceived (Buizza Avanzini et 

al. 2014). Raiola and his colleagues, on the other hand, have successfully established a 

safe HRI by analyzing the energy of the robot joints without the need for an external 

sensor (Raiola et al. 2018). 

 

3.1.5 Use of Machine Learning & Artificial Intelligence in HRI 

Machine learning is an application area of artificial intelligence that learns by analyzing 

data, detecting patterns, and making inferences without the need of human 

programming. With the rise of this branch, algorithms have started to leave the field of 

mathematics and enter the field of natural sciences, as the nature of machine learning is 

to make statistical inferences from the data representing the existing world and to 

operate the patterns. 

 

Perhaps the biggest contribution of machine learning algorithms to programmers is that 

they are very time-saving. For example, if a programmer wants to write a spelling 

correction program code, instead of describing all the examples of spelling errors one by 

one, he/she can feed a set of existing spelling error examples into machine learning 

algorithms and come up with a much more comprehensive program in a very short time. 

Another area of use is the ability to customize products for specific audiences. Let's say 
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that the spelling correction program produced by the programmer was very successful 

and he/she wanted to adapt it to other languages. Thanks to machine learning algorithms, 

the program can be adapted to other languages by operating the same model for the 

languages closest to the language in which the program is written. Another possibility 

offered by machine learning is that it can distinguish and recognize data outside the 

threshold of human perception. 

 

Of course, the contributions of machine learning to a programmer's life are numerous, 

but what are the most common technologies with which we interact as humans in our 

daily lives that incorporate these machine learning algorithms?  

 

• Recommendation Systems 

One of the areas where machine learning is most commonly used is 

recommendation systems, which allow websites to offer a more personalized 

experience to their users. For sites such as Netflix, Youtube, or Amazon, which 

have a wide range of content and are growing and developing every day, the ability 

to bring this content to users at any time and in a need-oriented manner is one of 

the most important factors that keeps these sites ahead of the competition. For 

example, Netflix can show different content to different users to promote a 

production on its interface. On online shopping sites such as Amazon, on the other 

hand, recommendation systems can offer options about product combinations 

that the user can add to the shopping cart. 

 

• Spam/Mail Subject Filtering 

All of us, at some point in our lives, have suffered from junk mail that has fallen 

into our mailbox. When this is the case, it can be quite difficult to distinguish 

important messages from others. But now, mail services such as Gmail make the 

user's job much easier by scanning the subject and content of the mails received 

by the user with machine learning algorithms and placing them in appropriate 

categories. A similar system is also used to filter spam and phishing emails. 

 

• Search Engines & Internet Search 
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Search engines such as Google, Yandex, etc. that we use almost every day in our 

lives to access the resources available on the internet and that act as a bridge 

between the human user and the internet incorporate machine learning 

algorithms as their prime working mechanisms. These algorithms are used in 

many stages, such as indexing data on the internet (web crawling), optimizing the 

ordering of results, and extracting the most appropriate results for the context of 

the search term. 

 

• Smart Personal Assistants 

If anyone has ever spoken to their smart assistant on their phone or at home, 

they've experienced natural language processing and deep learning algorithms, 

which are a subset of machine learning. The difference between these algorithms 

and classical machine learning is that they can also process unstructured data. 

 

While 80% of the data we produce is unstructured, only 20% is classified as 

structured. Unstructured data is a data group with a wide variety such as visual, 

audio, video, mobile activity, social media activity and is therefore difficult to 

analyze, whereas structured data includes data that is easy to analyze and 

collected in accordance with a predetermined data model. 

 

Voice-activated devices like Siri, Alexa, Cortana, or Google Assistant have already 

started coming into our lives and making them easier by hearing accurately what 

is being said, understanding the context, and responding in the most appropriate 

way for the situation and in a language that we can understand. In order to do all 

of these and to make sense of the unstructured data in the form of natural 

language, machine learning algorithms are used. 

 

While most of the above-mentioned systems have the ability to learn from the data 

supplied explicitly through questionnaires or implicitly through the learning algorithms, 

some specific systems could also be coached in real time in order to achieve outcomes 

that are most suitable to the user’s desires. For example, smart personal assistants could 

be taught to play a certain song when the user is sad instead of a random song that the 

assistant thinks fits the mood. 
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At today's technological level, the employment of artificial intelligence and machine 

learning algorithms in HRI is unavoidable so that the robots can provide the most suitable 

responses to unanticipated inputs. The DT (Decision tree) algorithm was utilized in Kim 

and his team's work to classify the touch types in the HRI established using the touch 

channel (Kim et al. 2010). Emotion categorization was accomplished with the SVM 

machine utilizing characteristics collected from facial pictures (Ge et al. 2008). In another 

study, the data collected with the surface EMG sensor was classified using SVM, and the 

robot reproduced human hand motions (Meattini et al. 2018). The GMM (Gaussian 

Mixture Model) is used by the robot to learn the movement of the parts required for table 

construction (Rozo et al. 2016). Fujii and his colleagues used the k-means algorithm and 

the Hidden Markov Model (HMM) to move the camera on the laparoscopic robot (Fujii et 

al. 2018). In speaker and speech identification software built for use in humanoid robots, 

structures such as SVM, GMM, and fuzzy classifier are employed (Ding & Shi 2017). A two-

layer fuzzy multiple random forest method was used in another work to investigate 

emotion prediction without speech (L. Chen et al., 2020). Fang and his colleagues used a 

Deep Neural Network (DNN) to interpret the depth image and used the human arm angles 

in the image to alter the arm angles of the Baxter robot (Fang et al. 2020). Using Deep 

Convolutional Neural Networks (DCNN), the robot was able to locate locations where it 

could grasp unfamiliar items in other research (Bergamini et al. 2020). Another study 

utilizing DCNN found that the generated system could recognize two hands with the aid 

of DCNN and use the motions of these hands to establish human-robot communication 

(Gao et al. 2019). In another similar work (Li 2020), it was attempted to simulate human 

arm motions by the robot with the use of DCNN and RGB-D sensors. PoseNET, a DCNN 

model, ensures the human's safety while working with the robot (H. Liu & Wang 2021). 

According to research done for a robot to learn humanoid qualities, reinforcement 

learning allows the robot to have both social and decision-making characteristics similar 

to humans on certain topics (Qureshi et al. 2018). 

 

3.2 Defeasible Logic 
Introduced for the formulation of defeasible reasoning, defeasible logic (Nute 1994) is a 

logic in which the relationship between the consequences of the logical assertions is not 

monotonic. Due to this fact, defeasible logic could be referred to as non-monotonic logic. 
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It can therefore reason on contradictory logical statements by employing defeat relations 

among defeasible logical propositions, unlike in monotonic logic. Defeasible logic is built 

up of strict evidence or facts, strict guidelines or rules, defeasible rules, undermining 

defeaters, and priority relations among defeasible rules. 

 

• Strict Evidence/Fact 

It is represented with an atomic formula α whose complement is denoted by ¬α. 

E.g. animal(Tiger) is an strict evidence. 

 

• Strict Guidelines/Rules 

They are denoted by implication representation in the form (α0 ⇐ α1 ˄ …. ˄ αn) 

which states that if (α1 ˄ …. ˄ αn) is true then α0 should also be true where α0 is 

referred to as the rule’s claim. Therefore, strict rules are said to be undefeatable 

rules.  

E.g. animal(X) ⇐ tiger(X) which states that a tiger is an animal.  

 

• Defeasible Rules 

Like the strict rules, they are also denoted by implication representation in the 

form (α0 ⃪ α1 ˄ …. ˄ αn). However, they bear weaker connections as compared to 

the strict rules as they are prone to be defeated by other defeasible rules. Two 

rules (α and ¬α) that make conflicting assertions or claims clash and may defeat 

each other. 

E.g. herbivorous(X) ⃪ animal(X) and ¬herbivorous(X) ⃪ tiger(X) according to 

which animals may be herbivorous and tigers may not be herbivorous.  

 

• Priority Relations 

Among the non-strict rules, priority is established by the priority relations, which 

are acyclic binary relations specified in order to choose amongst the defeasible 

rules based on their defeat relations or priority. As we know from the previous 

example, a tiger is an animal. Animals may be herbivorous and tigers may not be 

herbivorous. Therefore, we may claim both that a tiger is an animal, so it may be 

herbivorous, or that a tiger may not be herbivorous. Hence, to reason on them, a 

defeat relation between these rules is required. When the defeasible rule that a 
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tiger may not be herbivorous gets a higher priority, it is concluded that even in the 

presence of the opposing defeasible rules that a tiger may not be herbivorous. In a 

real-time scenario, the definition of these priority relations is user-dependent. 

 

• Undermining Defeaters 

These are the less defeasible versions of defeasible rules. Because of their weaker 

claims, they are not employed as supporting rules in inference. Their objective is 

to keep us from making decisions that we might otherwise make. 

 

3.2.1 Defeasible Logic Programming 

As per (García & Simari 2004), DeLP came into existence due to the need for combined 

results that involve Logic Programming and Defeasible Argumentation. As DeLP is based 

on defeasible logic, therefore, it also incorporates its characteristics such as evidence or 

facts, strict rules, defeasible rules, and priority relations. DeLP enables us to build a 

defeasible argumentation inference process for queries such as YES, NO, UNDECIDED, 

and UNKNOWN. A claim or its counterpart is justified if the answer is YES or NO. 

UNDECIDED indicates that neither the claim nor its complement is supported by 

evidence. If the claim does not exist in the language, the query returns UNKNOWN. 

 

A Defeasible Logic Program is an endless set of evidence/facts, stringent rules, and 

defeasible rules that are used to come up with answers to questions. During the inference 

cycle of DeLP, defeasible argumentation is used. An argument Ai among a group of 

arguments (Ai ϵ ω) connects a claim, claim(Ai) to a consistent collection of evidences, 

stringent rules, and defeasible rules. The support set is always the smallest consistent set 

that can be used to prove the claim. 

 

Table 1 below describes a DeLP example which is made up of facts and defeasible rules 

as described in (García & Simari 2004). 
 

a ⃪ b ¬b ⃪ e ¬b ⃪ c ˄ f ¬f ⃪ i 

b ⃪ c e f ⃪ g i 

c ¬f ⃪ g ˄ h g ¬h ⃪ k 

¬b ⃪ c ˄ d h ⃪ j k  

d j   
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Table 1. Facts & Defeasible Rules 
 

It is to be noted here that the negation of x is represented by ¬x. Also, if Xj contains all of 

Xi's supports, Xi is considered a sub-argument of Xj. If claim(Xi) = α and claim(Xj) = ¬α, 

the two arguments, Xi and Xj, are said to be in conflict with each other. When argument 

Xi is in conflict with a sub-argument of Xj, we say that argument Xi attacks Xj. Therefore, 

we may derive the arguments as in Table 2 below from the facts and defeasible rules 

mentioned in Table 1 above.  

 

Xi Claim(Xi) Xj (Supporting Argument set of Xi) 

X1 a (a ⃪ b), (b ⃪ c), c 

X2 ¬b (¬b ⃪ c ˄ d), c, d 

X3 ¬b (¬b ⃪ c ˄ f), c, (f ⃪ g), g 

X4 ¬b (¬b ⃪ e), e 

X5 ¬f (¬f ⃪ g ˄ h), (h ⃪ j), g, j 

X6 ¬f (¬f ⃪ i), i 

X7 ¬h (¬h ⃪ k), k 

Table 2. Derived arguments from Table 1 
 

Table 2 only lists the argument (X1) that asserts a and the arguments that may be used to 

refute any other argument. 

 

From above, the argument X2 opposes argument X1 because it claims ¬b, while X1's sub-

argument asserts b. If argument Xi rebuts argument Xj and is better than Xj in terms of 

the given evaluation criteria, argument Xi becomes a blocking defeater for argument Xj. 

Therefore, the arguments are blocking defeater for each other if the compared arguments 

are equivalent in terms of the evaluation criterion. 

 

In DeLP, any claim's conclusion is obtained by developing its appropriate argumentation 

lines (AL), where each subsequent argument is in conflict with the sub-arguments of the 

prior one in an ordered sequence of arguments (X0, X1….Xn). The claim is considered to 

be justified if an argument that supports it cannot be refuted in any accepted 

argumentation line. 
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As per (García & Simari 2004), a valid argumentation line shows the following properties. 

 

• It is a set of arguments with a finite number of entries. 

 

• No argument that exists in AL is a sub-argument of any of the preceding 

arguments. 

 
• No conflicting arguments exist between the even indices (X0 ⨆ X2 ⨆ X4 ⨆…) and 

the odd indices (X1 ⨆ X3 ⨆ X5 ⨆…) argument sets. 

 
• If a blocking defeater exists in AL then the following argument must be a valid 

defeater 

 

3.2.2 Defeasible Logic Programming Applications 

As the primary aim of DeLP was to bring the results of Logic Programming and Defeasible 

Argumentation together (García & Simari 2004), it paved ample scope for research that 

offered several expansions to the basic formalism. In the work by (Governatori 2004) 

defeasible rules were used to expand description logic. As per (Governatori & Terenziani 

2007), temporal rules have been added to DeLP to cope with long-term facts and delays 

between rules. The robotic domain has seen numerous applications of defeasible logic 

programming. DeLP has been employed in Khepera mobile robots to form a layered 

framework in order to deal with contradictory information [Feretti et al. 2006]. In the 

work by (Feretti et al. 2007), DeLP is used to determine the activities of a cleaning service 

robot. In a more recent and common robotic application, DeLP is also offered for 

resolving potential collisions between unmanned autonomous vehicles (UAVs) via 

communication (Lam and Governatori 2012). 

 

As defeasible logic forms the basis of argumentative reasoning, it has been incorporated 

in various approaches lately that introduce learning and reasoning capability in smart 

machines and devices. A similar approach that formulates argumentative reasoning to 

offer machine coaching is described in (Michael 2019), where all the inputs are given in 

the form of rules or literals in first-order language. A fair implementation of this machine 

coaching formulation is seen in PRUDENS (Personalized User-Deliberation Support), 

which is a software tool that has been developed by the research group of the 
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Computational Cognition Lab of the Open University of Cyprus led by Dr. Loizos Michael. 

Through an interaction interface, it makes it easier for both humans and machines to 

learn new things. 

 

3.3 Argumentation based Communication Theory 
Argumentation is an important part of communication, and it has been around for 

generations in our civilization. This approach finds its roots in the philosophical theory 

of justification and reasoning, which was initially based on oratory and reasoning 

proposed by Aristotle. However, with time, Aristotle’s views were rejected and 

questioned by scholars, and a premise for argument that was larger than that proposed 

by Aristotle was discovered. Several scientists attempted to create ways for people to get 

support for their thoughts and views between the 60s and 70s. Many others have 

developed reasoning in other ways as well. 

 

Communication has played an important part in our evolution as human beings convey 

their thoughts through speech. The speaker would provide knowledge while conversing, 

and the listener would listen. The listener must be able to distinguish between legitimate 

information and falsehoods and treachery in this situation. As per Dan Sperber, the 

listener must possess a mechanism that would distinguish between the legitimacy of the 

received information. For instance, we believe what is taught in class as we trust the 

teacher and the school. Among the various scholars that have proposed different 

approaches to argumentation, Stephen Toulmin’s argumentation theory has achieved 

wide recognition in this domain. Being an English philosopher and logician, in his work 

he has described how an argument is built up through its elements (Toulmin 2003). A 

brief explanation of these elements can be seen below. 

 

• Claim 

It is a statement presented by the speaker or listener for the acceptance of the 

information conveyed through it as true. For instance, one will not perform an 

action when asked by someone unless inquiring and understanding the 

requirements associated with the action. Therefore, one will ask for the support 

of their claim, which would require the grounds associated with the claim. For 

instance, Sam is a British national. 



43 
 

• Ground 

It is the foundation of the claim which might be made-up data used to influence 

the audience. More precisely, it is the foundation upon which an argument is 

built, and it may also provide proof for reasoning. Therefore, the information 

plays a vital role in the persuasion mechanism. For instance, Sam was born in 

Bermuda. 

 

• Warrant 

The justification of the claim relies on the warrant which determines that the 

ground to the claim is proper. It might be a simple statement or a lengthy 

argument which might be correct, implied, or unstated. For instance, someone 

born in Bermuda is usually of British nationality. 

 

• Backing 

Backing is directly proportional to the warrant associated to a claim as the 

warrant receives additional support when the argument receives backing. For 

instance, the rights granted by the law. 

 

• Qualifier 

Terms like 'most,' 'generally,' 'always,' and 'sometimes' that limit the 

comprehensiveness of the claim are referred to as the qualifiers. For instance, 

probably. 

 

• Rebuttal 

It refers to circumstances that are not covered by the warrant. Simply, rebuttals 

are the statements that explain circumstances in which the argument will be 

invalid. The denier serves as the annulter and allows for the demonstration of 

revocable logic. For instance, both parents might be of foreign nationality or hold 

American citizenship.  

 

3.3.1 Use of Argumentation theory in HRI 

Under standardized cases, it has been observed that the human-robot relationship is 

merely a master-slave relationship where the slave (robot) works as per the guidelines 
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defined by the master (human). This methodology creates a barrier in the communication 

where the slave (robot) could also propose options through its analysis which could be 

utilized by the master (human) for the optimum workflow of the task. However, the 

functioning of the robot is only limited to reporting errors besides discussing the reasons 

for the failure. The robot cannot anticipate for better opportunities or stop its current 

task to suggest alternative actions. In order to achieve a more dynamic HRI where both 

the humans and the robots could engage in a dialogue exchange, the use of argumentation 

theory comes into recognition to be utilized in this domain. (Sklar et al. 2013) propose an 

approach where a human and a robot are engaged in a dialogue-based game. Here they 

use an argumentation-based dialogue protocol to exchange inflictions to obtain an 

agreement on goals and plans. The dialog protocols between the human and the robot 

which include information (advice) seeking, inquiry, persuasion, negotiation and 

delibration are modeled for a dynamic setting implementation. Using a similar approach 

(Sklar & Azhar 2015) demonstrate how argumentation-based dialog system enables a 

dynamic HRI under a gameplay environment where they focus on a Treasure Hunt game. 

(Black & Sklar 2016) have explored the addressing of the issues pertaining to trust, 

privacy and ethics when it comes to sharing information and modeling others’ beliefs 

through computational argumentation strategies. In another study by (Azhar & Sklar 

2017), objective and subjective performance analysis has been studied for a shared 

decision making in a human-robot team. Positive results were achieved under human-

robot collaboration and argumentation based collective decision making whereas 

subjective results varied when it comes to the preference of choosing a robot over a 

human as a teammate. As argumentation-based communication facilitates a mutual 

explanation and understanding based outcome generation between two parties, 

therefore scholars have proposed studies that utilize argumentation framework to coach 

a machine or a cognitive agent. As per (Michael 2019), a calling assistant could be coached 

through a similar approach to accept or reject a call based on the user’s location, time 

frame, caller priority, emotion etc. 

 

3.3.2 Argumentation in Machine Learning 

As machine learning is the process of learning from data and improving over time, its 

application has become increasingly essential in recent years since it is used in almost 

every domain around us. Argumentation and Machine Learning (ML) are brought 
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together in a variety of contexts, such as to enhance ML or to aid in the extraction of 

arguments (Lippi & Torroni 2016, Grosse et al. 2015). The existing methods of machine 

learning that involve argumentation differ in their machine learning approach and 

strategy. For the supervised learning domain, the CN2 rule induction algorithm (Clark & 

Niblett 1989) has been improvised in the Argumentation-Based Machine Learning 

(ABML) approach by (Možina et al. 2007). (Bratko et al. 2009) propose the Argument-

Based Inductive Logic Programming (ABILP) approach that finds its roots in Inductive 

Logic Programming (ILP). Another study by (Amgoud & Serrurier 2007) emphasizes on 

the version space learning framework (Hierons 1999) in their concept learning technique 

that is completely based on argumentation. Other studies by (Ontañón et al. 2012) which 

describe multi-agent inductive concept learning, and by (Ontañón & Plaza 2014) which 

describe the computational implementation of (Ontañón et al. 2012)’s work use concept 

learning (Hierons 1999) for supervised learning. In their works, (Carstens & Toni 2015, 

Carstens & Toni 2016) describe the Classification Enhanced with Argumentation (CleAr) 

technique that has been tested using Naive Bayes classifiers (John & Langley 1995), 

Support Vector Machines (SVMs) (Cortes & Vapnik 1995), and Random Forests (Breiman 

2001). Therefore, it works as a global technique for any supervised learning 

methodology. For the unsupervised learning domain, (Gómez & Chesnevar 2004) use the 

Fuzzy Adaptive Resonance Theory (ART) model (Carpenter et al. 1991) for the hybrid 

approach they propose in their work. For the reinforcement learning domain, the 

Argumentation Accelerated Reinforcement Learning (AARL) described by (Gao & Toni 

2013, Gao & Toni 2014, Gao & Toni 2015) finds its roots in SARSA (Rummery & Niranjan 

1995). We can say that, depending upon the reasoning approach and the argumentation 

technique employed, the existing machine learning techniques differ from each other, 

which is evident from their varied outcomes, which are not limited to performance 

improvement and transparency enhancement through improved explanation. 
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Chapter 4 
Methodology 

 

 

 

 

As argumentation facilitates a bilateral reasoning framework under which knowledge 

could be developed through arguments or explanations, we utilize this approach through 

Prudens in order to develop a Human-Robot Interaction mechanism that would offer 

information flow between Prudens and the industrial robot. 

  

4.1 Implementation 
An approach to interact, control, and coach an industrial robotic arm through 

argumentative inferential deductions has been proposed below. PRUDENS has been used 

as a tool which facilitates the argumentative behavioral machine coaching paradigm 

through inference generation, which is based on the rules present in its knowledge base 

under the contextual information that has been sent by the robotic arm during its 

operation. The system has been implemented using the Web Interface (HTML) version of 

PRUDENS, a product of the Computational Cognition Lab of the Open University of Cyprus 

led by Dr. Loizos Michael, which can be downloaded from the link 

https://github.com/VMarkos/prudens-js and Staubli Robotics Suite (SRS) 2019.9.0, 

which is a licensed software development and simulation program for Staubli Robotic 

Arms. The robotic arm model used for the system integration is the Staubli Tx2-40, which 

consists of six degrees of freedom, each with a specific joint limit. The arm has a maximum 

extension of 515mm and a load capacity of 2Kg. 
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Figure 2. Robotic Arm 
 

The arm periodically sends its status information to PRUDENS, which, based on the rules 

present in its knowledge base, builds an inference which is sent back to the robotic arm. 

Based on the inference, the robotic arm performs an action to pick a part, place the picked 

part, move to the home position or stop working. The coaching of the arm is facilitated by 

the modification or addition of the rules in the knowledge base of PRUDENS. The 

implementation has been tested in the simulation environment in SRS as well as on the 

real robotic arm. 

 

4.1.1 Architecture 
 

 

Figure 3. System Architecture 
 

At a high level, the proposed system is a cognitive agent that models the human 

argumentation capability in order to interact with the environment where a robotic arm 
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or simply a machine is present. Therefore, as a whole, the architecture is comprised of an 

Argumentation Framework, which has been facilitated by the PRUDENS software 

interface, the Environment, which consists of the Staubli Robotic Arm, and Feedback or 

Knowledge Input by the User or the Assistance Requester about a specific task. 

 

4.1.1.1 Argumentation Framework 

The Argumentation Framework consists of four main blocks, which are the Knowledge 

Base, the Context Interpreter, the Reasoning Engine, and the Inference Generator. The 

knowledge base consists of some predefined rules related to the ecosystem in which the 

interface is established. The various types of knowledge in this module are the expert 

knowledge, which is hard coded in the form of predefined rules; the commonsense 

knowledge, which is machine learned based on the robot's status and environmental 

data; and the knowledge based on personal biases through user feedback. The context is 

built up of the internal knowledge based on the arm’s status and its environment, which 

arrives cyclically to the context interpreter. The job of the context interpreter is to 

prepare the incoming context information for the deductive interpretation required for 

reasoning. The argumentative reasoning is facilitated by the Reasoning Engine, which 

provides an inference based on the rules in the knowledge base under the respective 

context (Michael 2019). This resulting inference (advice or explanation) could be 

evaluated by the user or assistance requester. The Inference Generator filters the output 

of the Reasoning Engine which could be sent to the machine, which in our case is the 

robotic arm. 

 

4.1.1.2 Environment 

The environment is composed of an industrial robotic arm which has an independent CPU 

(Central Processing Unit) that hosts the execution of the sequential program that drives 

the arm to perform a task of picking a part from a point A, placing it at a point B, and then 

going to point C, which is the home position of the arm. 
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Figure 4. Arm's Motion Task 
 

The signal determining the availability of the part is received by the arm from its 

environment via an optic or vision sensor. The internal status or knowledge block 

cyclically updates the arm’s status information such as the arm’s power status, arm’s 

motion status, arm’s gripping status, alarm status, etc. Besides containing the application 

specific status information, this block also holds some dynamic knowledge in the form of 

the current day of the week, current hour etc. Based on the environmental and status 

information, the context generator generates several contexts which are cyclically sent to 

the argumentation framework. The inferences generated by the argumentation 

framework are sent to the Inference Interpreter, which interprets the received inferences 

into the robot’s recognizable instructions. Based on these inferences, the robot performs 

its Pick-Place routine, which affects its immediate environment. 

 

The user or assistance requester could thereby coach and control the robotic arm by 

modifying the existing rules or appending new rules in the knowledge base of the 

argumentation framework (Michael 2019). 

 

4.2 The Language of Staubli Robotic Arm – VAL3 
Variable Assembly Language (VAL) is a computer-based control system and language 

designed specifically for programming Unimation Industrial Robots. The instruction sets 

used in VAL are easy to understand and self-explanatory in nature, which makes the 

syntax easy to read and interpret (Shimano 1979). VAL3 finds its roots in VAL and is a 

high-level programming language designed specifically to program and drive Staubli 

robots. It facilitates the combination of the basic features of a standard real-time high-

level computer language with the specific functionalities required to control an industrial 
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robot cell, such as tools for robot control, tools for geometrical modeling, tools for 

input/output, etc. (Akdogan 2019). 

 

4.2.1 VAL3 Application 

A VAL3 application is a complete software package that includes programs, global and 

local data, libraries, user data types, HMI user pages, and a multi-tasking option for 

concurrent program execution. A new application upon creation is generated with a 

start() program which is called when the application is started and a stop() program 

which is called when the application is stopped (Akdogan 2019).  

 

 

Figure 5. Sample VAL3 Application 
 

4.3 Communication over Socket TCP IP 
One of the prominent protocols of the Internet protocol suite is the Transmission Control 

Protocol (TCP). The data packets or streams of octets (bytes) delivered by TCP between 

applications running on hosts over an IP network are reliable, ordered, and error-

checked (Kurose & Ross 2013). 



51 
 

 

Figure 6. Socket Communication 
 

The use of TCP for communication is so prevalent that we can easily get examples from 

our daily interaction with computers and the internet. Our emails, the World Wide Web, 

etc. are some of the most common examples that rely on TCP. Another protocol that 

resembles TCP but lacks reliability is the User Datagram Protocol (UDP), which does not 

perform error checking on the data stream and emphasizes reduced latency. Online 

gaming, video streaming, etc. rely on UDP. 
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4.3.1 Client & Server in TCP IP 

 

Figure 7. Client-Server Connection 
 

The working principle of TCP/IP connections resembles that of a telephone call where a 

connection is required to be initiated by a person by dialing the phone number. Once 

connection is established, the person at the receiver’s side must be listening to the call 

and pick up the line. In TCP/IP, the IP address is like the phone number, and the port 

number is like the extension code. In the TCP/IP connection, the device that dials the 

phone number is the Client, and the device that listens to the incoming calls is the Server. 

Therefore, in a TCP/IP connection, the IP address and the port number of the server are 

required to be known by the client. 



53 
 

 

Figure 8. Communication Flow 
 
 

4.4 The PRUDENS Tool 
PRUDENS is a Java application that has been developed by the research group at the 

Computational Cognition Lab of the Open University of Cyprus led by Dr. Loizos Michael. 

When it is given a knowledge base about a certain task and context-encoding information 

about a specific scenario pertaining to that task, it gives the requestor some piece of 

advice along with an explanation as anticipated by the appropriate machine coaching 

theory. 

 

4.4.1 The Language of PRUDENS Tool 

As PRUDENS permits predicates to be used to represent relationships between universal 

entities, we can say that it resembles Prolog to some extent in that sense. Each predicate 

is made up of two parts, such as its name and a list of arguments. Anything starting with 

lower case Latin alphabets (a to z) and following a limited sequence of letters, digits, or 

underscore might be used as the predicate name. The arguments are in the form of a list, 

with each argument separated by a comma and enclosed by left and right parenthesis. 

For example, 
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predicateName(X1, X2, X3, …., Xn) 

where, X1, X2, X3, …., Xn are the arguments. 

 

In the above example, the length of the arguments appearing in the argument list is n. 

Therefore, we may say that the predicate’s arity is n.  

 

The arguments are bound to have the following properties: 

 

• Arguments could be constants that appear as strings of lower-case letters (a-z) 

which might follow a limited sequence of letters, digits, and underscores. 

Constants are distinct universal entities. E.g., animal(tiger), where tiger is a 

distinct universal entity. 

 

• Arguments could be variables that appear as strings of upper-case letters (A-Z) 

which might follow a limited sequence of letters, digits, and underscores. The 

variables are used as placeholders for the constants. E.g., herbivorous(X), where X 

is the placeholder for a constant. 

 

It is possible for a predicate to contain both constants and variables as the elements of 

the argument list. E.g. marriedTo(X, sam) which is interpreted as ‘’X is married to some 

universal entity Sam’’. Besides the standard user defined predicates, Prudens also provide 

built-in predicates for equality and inequality which are represented as ?=(something, 

something) and ?<(something, something). In some cases, these predicates can also be 

used as a condition to allow a baseless variable to be united with a constant. Simply, 

?=(X,Y) is read as ‘’X is equal to Y” and ?<(X,Y) is read as “X is less than Y”. 

 

The rules play a key role in the language of Prudens as through them one can capture 

desirable behaviors or establish new relationships between the elements of the universe 

to create a knowledge base. The rules are built up of predicates, variables and constants 

or simply literals. A literal could be a predicate itself or its negation which is represented 

with a minus (-) sign which follows no space between the minus sign and the name of the 

predicate. For instance, herbivorous(X), -herbivorous(X) or marriedTo(X, sam), -

marriedTo(X, sam). In Prudens, the negation is regarded as classical negation due to the 
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absence of the Closed World Assumption theory where it is possible to draw inferences 

under a similar context about something which is not declared in the knowledge base. 

For instance, in Closed World Assumption (CWA) it is possible to infer -brotherOf(sam, 

tom) from brotherOf(sam, rose) and brotherOf(jack, sam) as brotherOf(sam, tom) does not 

exist in the knowledge base. However, in Prudens, it is not possible to infer the above due 

to the absence of any CWA. 

 

In PRUDENS, rules follow a specific structure which includes the rule’s name, rule’s body 

and rule’s head where either of the three should not be null or empty. The rule’s name is 

separated from the body and the head through a combination of two colons (::).  The rule’s 

head is referred to as a single literal whereas the rule’s body is referred to as the literal 

list separated by commas. The head and the body together form the main part of the rule. 

An entire rule ends with a semicolon (;). For instance, Rule_1 :: eatsGrass(X), animal(X) 

implies herbivorous(X);. An ordered list of these rules together forms the knowledge base. 

The order of appearance of the rules in the list adds a priority relation to them with the 

rule appearing first in the list having the highest priority i.e. it is liable to be triggered first 

in comparison to the ones appearing below.  

 

In Prudens language, there are two ways by which knowledge could be encoded namely 

the knowledge base and the contexts. Contexts are the pairwise non-conflicting literals 

that contain only constants as their argument and are separated from each other using 

semicolon (;). They act as solid facts that describe a certain situation whereas knowledge 

bases are built up of rules that depict a certain pattern of behavior in a variety of settings 

through a priority order which are provoked by the facts that appear as context. For 

example,  

 

KB1 

Rule_3 :: holiday(X), tired(X) implies perform(takeRest); 

Rule_2 :: holiday(X), tired(X)  implies -perform(longDrive); 

Rule_1 :: holiday(X) implies perform(longDrive); 

 

From the rules above, it is evident that a policy about what is to be performed on a holiday 

is encoded in the knowledge base. Rule_1 depicts that on a holiday we must go on a long 
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drive in a general manner. Rule_2 depicts an exception to Rule_1 that if we are tired on a 

holiday we must not go on a long drive. Rule_3 depicts that if we are tired on a holiday 

then we must take rest. Hence, the knowledge base encodes that on a holiday we must go 

on a long drive and on a holiday if we are tired then we must take rest. These two 

scenarios could be encoded through two separate contexts namely S1 holiday(today); 

which depicts that today is a holiday and we are not tired and S2 holiday(today); 

tired(today); which depicts that today it’s a holiday and we are tired. Hence, for the 

context S2 from KB1 we can say that Rule_3 and Rule_2 are triggered and as the priority 

of Rule_3 is higher than Rule_2 therefore Rule_2 is ignored for the inference. 

 

If our knowledge base is somewhat similar to the one below as KB2, the outcomes 

achieved would have differed as compared to the above. 

 

KB2 

Rule_1 :: holiday(X) implies perform(longDrive); 

Rule_3 :: holiday(X), tired(X) implies perform(takeRest); 

Rule_2 :: holiday(X), tired(X)  implies -perform(longDrive); 

 

Under both the contexts S1 and S2, as the priority of Rule_1 is the highest as compared to 

Rule_2 and Rule_3, the inference generated is based on Rule_1 (Markos nd).  
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4.5 Linking PRUDENS and the Robotic Arm 

 

Figure 9. Robotic Arm Coaching Interface 
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The TCP/IP socket communication protocol is used in order to establish the link between 

the PRUDENS software interface and the robotic arm. The PRUDENS software interface 

acts as a server that sends responses to the client’s requests, which is the Robotic Arm. 

To achieve this, a JavaScript application index.js is developed on the PRUDENS side. This 

application opens one particular port on the server, and the robotic arm communicates 

with this server’s IP at the specified port. The robotic arm will send requests (context) to 

the server in a predefined format. The incoming request is then processed to generate the 

necessary inferences through the argumentation functionality, and the output is then 

parsed to generate a message in a format suitable for the robotic arm to understand. If 

Automatic Reply functionality is not used on the front end, the parsed response could be 

seen populated in the Processed Result column. The Automatic Reply functionality 

enables the server to send the processed response automatically to the client without the 

need for human intervention. By selecting the Use Memory option at the front end, the 

server starts operating in cache mode where it generates a cache memory and stores the 

responses against the incoming context such that when the same context arrives at the 

server next time, its inference is directly sent to the client from the cache memory without 

waiting for the deductive reasoning process. This enables the server to generate quick 

responses at a low processing time. 

 

For the backend services, Node.js is used as a scripting language, and for the front end, 

the prudens-js project is used from the github repository to add the Auto Reply and Use 

Memory checkboxes as well as the Clear Memory button. In order to start the application, 

we need to navigate to the root directory and start the application using the command 

NPM START in the command prompt window. This will start the application on the 

localhost:3000 url and, by default, it will also open 1258 as a telnet port for client-server 

communication. In order to terminate the application, ctrl+C keyboard input could be 

used in the command prompt window. 

 

4.5.1 Code Description - PRUDENS 

Index.js: This routine is used to implement socket communication. 

 

const app = require('express')(); 

const http = require('http').Server(app); 
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const io = require('socket.io')(http); 

const net = require("net"); 

 

To achieve this functionality, at the PRUDENS side we used the require() function. As part 

of the basic functionality of this function, reading of a JavaScript file, executing it, and 

returning the output as an exports object is achieved.  

 

The above code displays the basic module imports that are required to implement socket 

connection. Here by the use of express() function, an Express application is created 

denoted by app. The app returned by express() is originally a JavaScript function that is 

designed to be passed to the Node’s HTTP servers as a callback to handle requests. The 

import of the http module enables Node.js for data transfer over Hyper Text Transfer 

Protocol (HTTP). The socket.io library import allows real time, two-way and event driven 

communication between the client and the server. The net module supplies an 

asynchronous or half-duplex network binding such that the data flows only in one 

direction at a time. 

 

const port = process.env.PORT || 3000; 

 

Here we create a default port 3000. It tells the application to use port 3000 unless there 

exists a preconfigured port in the environment.  

 

var express = require('express'); 

var cache = new Object(); 

var lastReq; 

 

Here we create an express application and a cache object which creates a cache memory 

functionality to map incoming requests to their responses. 

 

app.get('/', (req, res) => { 

  res.sendFile(__dirname + '/index.html'); 

}); 
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Here we map the index.html as our default html page.  

 

app.use(express.static(__dirname + '/')); 

Here we map the static resources like CSS using the express.static(root, [options]) 

function. This function enables us to use static files such as images, css files, Javascript 

files etc. The root argument specifies the root directory where the static files are available 

and options argument which in our case is the “/”. When the path name is a directory, this 

argument redirects to the trailing “/”. 

 

var globalSocket; 

var useMemory; 

const server = net.createServer((socket)=>{ 

  globalSocket = socket; 

 globalSocket.write("Hello From Server!") 

  var input = "";  

 

Here we create a global socket server and send a greeting message to the client. In order 

to know that a communication has been established with the client, the server open the 

port and starts listening to the request and when a ping request from the client is 

received, it sends back the greeting response once at initialization of the communication 

phase. 

 

socket.on("data",(data)=>{ 

      input +=data.toString() 

 

Post initialization of the handshake between the server and the client this function is 

called on each receipt of the data from the client i.e. the robotic arm. One we receive a 

data packet from the client we iterate it inside a for loop until we find the end character 

which is 13 in ASCII format. As soon as the end character is found, the received request 

or rather context is sent for processing. Here we also check the status of the Memory 

function. If it is enabled and the processed response is already available in the cache 

memory then the response is sent to the client directly without processing. 
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for (let i = 0; i < input.length; i++) { 

        if(data.toString().charCodeAt(i)== 13){ 

          lastReq = input; 

      if(useMemory && cache[lastReq]){ 

        globalSocket.write(cache[lastReq]) 

      }else{ 

        io.emit('context', input);  

      } 

      input ="" 

      } 

    };  

 

In order to close the socket the below function is called. 

 

socket.on("close",()=>{ 

      console.log("Connection closed.!!!") 

  }) 

}); 

server.listen(1258); 

 

Here we determine the port number on which we want the server to listen. Once the 

connection is established, the below function is called. 

 

io.on('connection', (socket) => { 

 

This below function will be called on receiving response from server which includes the 

processed result. 

 

  socket.on('ServerResponse', msg => { 

 

Here in order to make the response interpretable by the client or the robotic arm, extra 

curly braces are appended in the response. 
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    msg="{"+msg+"}" 

 

In order to Send the response back to robot, we use the socket.write() command. 

 

    globalSocket.write(msg) 

 

Here we check that if the memory function is enabled then we cache the incoming request 

for future use. 

 

    if(useMemory) 

      cache[lastReq]=msg; 

  }); 

 

This function is called on the clear memory event and will clear the stored responses in 

the memory. 

 

  socket.on('clearMemory', msg => { 

    cache = new Object(); 

  }); 

 

This function will activate or deactivate the memory function based on front end 

checkbox selection. 

 

  socket.on('useMemory', msg => { 

    console.log(msg) 

    useMemory = msg; 

  }); 

}); 

 

This is the main function to start the application on the given port. 

 

http.listen(port, () => { 

  console.log(`Socket.IO server running at http://localhost:${port}/`); 
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}); 

 

Index.html: The front end interface of the PRUDENS application has been designed using 

the index.html code. In order to catch several events from the objects that are added on 

the front end for their execution by the backend program, several commands are added 

in the original index.html code. 

 

<script src="/socket.io/socket.io.js"></script> 

 

In the html head, the socket.io.js script is added to load the socket.io client which enables 

the front end to communicate with the backend for data exchange over Socket.IO.  

 

<script> 

 

Socket is established at client side (html page) to send data to backend server. 

 

var socket = io(); 

 

Once data is received the context will be set to the processed column on the html page. 

 

socket.on('context', function(msg) { 

document.getElementById('deduce-tab context').value=msg.toString().trim(); 

consoleOutput(); 

 

Here we execute the auto send function to inform the server to automatically send the 

processed response back to robot without manual intervention. 

 

if( document.getElementById('autoSend-checkbox').checked) 

sendResponse() 

}); 

 

This below is the function that sends response back to server on the serverResponse 

event. 
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function sendResponse(){ 

console.log("Emitting:"+document.getElementById("processedResult").value ) 

socket.emit('ServerResponse',  document.getElementById("processedResult").value); 

document.getElementById("processedResult").value=''; 

} 

 

This function is used to clear the server's memory using the clear memory event. 

 

function clearMemory(){ 

socket.emit('clearMemory', '');         

} 

 

This is the function that enables or disables the use of memory function of the server 

using the useMemory event. 

 

function useMemory(){ 

socket.emit('useMemory', document.getElementById('memory-checkbox').checked); 

 } 

</script> 

 

Utils.js: The parsing of the processed result prior sending to the client is performed in 

this program. This following block of code is for filtering the processed output until “; 

true;” so that it results only the inferences deduced after processing. 

 

var filter ="; true; "; 

try{ 

let processed =  contextToString(inferences); 

         processed = 

processed.substring(processed.indexOf(filter)+filter.length,processed.length-1) 

         document.getElementById("processedResult").value = processed; 

}catch(err){ 

console.error(err); 
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} 

 return outputString + "Inferences: " + contextToString(inferences) + "\nGraph: " + 

graphToString(graph); 

 

4.5.2 Code Description – ROBOTIC ARM 

 

Figure 10. Manual Socket Implementation 
 

The VAL3 language enables the user to define sockets which could either be Server or 

Client manually from the HMI or dynamically from within the code. 

 

A Client socket is created at the Robotic Arm’s side manually from the HMI as shown in 

Figure 9 A client socket at the Staubli Robotic Arm requires four typical parameters which 

are the Port Number, Timeout in seconds, End of String character and the Server IP 

address. 
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The port number at both the server and the client side should be identical. The Server IP 

should contain the IP address of the system on which the server application is running. 

Once the client socket is implemented from the HMI, we create two programs namely 

sockets and test01 in the robot’s controller. The sockets program acts as a library to the 

test01 program and consists of a variable named siocam of data type SIO (socket input 

output). This variable is linked to the physical client socket which we implemented 

manually from the HMI in order to be used dynamically inside the program. 

 

 

Figure 11. Robot's HMI Interface 
 

A user interface in the form of an HMI page is created which enables the user to start the 

communication between the robotic arm and the PRUDENS server, a text field that 

displays the context message generated by the code to be sent to the server, a text field 

that displays the status of the send request to server function, a list box that displays the 

received inference from the server, a learn mode activation button which increases the 

cyclic delay of the send-receive process to compensate the processing delay at the server 
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side, and a part available button that simulates the availability of a part that is required 

to be grabbed by the robotic arm. 

 

On execution of the test01 application, six parallel tasks are created as follows. 

 

• taskCreate "hmi",10,hmi() 

 

This task catches the button press events on the HMI page and manages their color on 

activation and deactivation.  

 

• taskCreate "calender",10,getCalender() 

 

This task returns the day of the week based on the current date as a number between 1 

and 7 where 1 represents Monday. 

 

• taskCreate "time",10,getTime(sHour) 

 

This task returns the current hour in 24Hr format. 

 

• taskCreate "stat",10,getStat() 

 

This task cyclically gets the arm’s status information and concatenates them as a string of 

contexts to be sent to the PRUDENS server. These contexts include the arm power status 

(powered/-powered), the mode of operation (manual/-manual), end effector tooling 

status (open/-open), part availability (available/-available), part picked status (picked/-

picked), part placed status (placed/-placed), home position status (at home/-at home), 

current day of the week and current hour. 

 

• taskCreate "refList",10,refBinding() 

 

This task cyclically refreshes the list box on the HMI to display the latest inferences 

received from the server as contents of the list. 

 



68 
 

• taskCreate "prod",10,production() 

 

This task consists of three motion commands namely Pick Part, Place Part and Go Home 

which are executed on parsing the received inferences from the PRUDENS server.  

 

Post creation of the above parallel tasks, the program enters an endless loop where it 

waits for the user to switch on the Learning Mode and provide a numeric start command 

to initiate the communication with the PRUDENS server. 

 

while true 

    // 

    wait(nCmd==1) 

    // 

    while !bLearning 

      popUpMsg("Switch on Learning Mode") 

      delay(0.1) 

    endWhile 

    // 

 

When the user enters 1 at the numeric command, the initialize communication procedure 

starts where the robot’s application sends a message “Client Calling” to the server. On 

successful delivery of the message to the server, “Pinged Server” message is printed in the 

status field of the robot’s HMI.  

 

call sendRequestInit(0,"Client Calling",bErr) 

    if !bErr 

      sStatus="Pinged Server" 

      call getResponse(0,l_sResp) 

      sRequest=l_sResp 

      if sRequest!="" 

        call resetSocket(0,-1,bErr) 

        if !bErr 

          nCmd=2 
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          delay(0.5) 

          sRequest="" 

        else 

          nCmd=0 

          sStatus="Reinitialize Communication!" 

        endIf 

      endIf 

    else 

      sStatus="Ping Failed" 

      call resetSocket(0,1,bErr) 

      if bErr 

        nCmd=0 

        sStatus="Reinitialize Communication!" 

      endIf 

    endIf 

 

The server sends the greeting message subsequently, which on reception at the robot’s 

side the program enters the main cyclic loop where the processed contexts are sent to the 

PRUDENS server, and the respective received messages are parsed and filtered to be 

populated as elements of a list of inferences which are filtered for the motion commands 

by the “Production” task running in parallel. 

 

while nCmd==2 

      //      

      sSendMsg=sSendData 

      call sendRequest(0,sSendMsg,bErr) 

      if !bErr 

        sStatus="Success" 

        //       

        call getResponse1(0,l_sResp) 

        //     

        call parsing(nLengthServ,nStreamServ,sData,false,bErr) 

        if !bErr 
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          call filterData(sData,sFilter) 

          call getInference(sFilter,sInf,bErr,sRequest) 

          //     

        endIf 

      else 

        sStatus="Failed" 

        call resetSocket(0,1,bErr) 

        if !bErr 

          nCmd=1 

        else 

          nCmd=0 

          sStatus="Reinitialize Communication!" 

        endIf 

      endIf 

 

      delay(nDelay) 

    endWhile 

    delay(0) 

  endWhile 

  

Data Parsing: The received data from the PRUDENS server is parsed using the parsing() 

function. This function looks for the initial character, the separator, and the end character 

for data parsing. The characters starting after the initial character up to the separator are 

combined to form a message chunk and stored in a data array. This process is repeated 

until the appearance of the end character.  

 

Data Filtration: If the parsed message chunks include white spaces, they are required to 

be filtered through the filterData() function. This function checks each element of the data 

array to filter the white spaces if present and stores the filtered message chunks into the 

filtered data array. 

 

Inference acquisition: The inferences are acquired from the filtered data array using the 

getInference() function. This function outputs the inferences as text keys of a collection 
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data type. These keys are checked for the motion commands in the “Production” task 

running in parallel. For example, if the inference collection has a key named 

pick_part(true) then the robotic arm moves to the pick position to grab the part. Similarly, 

if the key named place_part(true) is available then the robotic arm moves to the place 

point in order to release the part and if the key named go_home(true) is available then the 

robotic arm moves to the home position.  

 

Error Handling: The error handing in the communication is handled in a very 

sophisticated manner through reporting the user with the status information on the HMI. 

This enables the user to understand about the communication status that whether it is 

successful in each cycle or failed.  

 

In case of communication failure at any instance, the program automatically goes into 

communication initialization by using the resetSocket() function. With the help of this 

function, the timeout parameter of the socket is modified dynamically to 1 second which 

is otherwise –1. This enables the socket to wait 1 second at each send and receive 

instance. In case the resetSocket() function returns error, the program informs the user 

to reinitialize the communication manually. Upon successful automatic restoration of the 

client-server communication the timeout parameter of the socket is restored to -1 which 

means that the send and receive cycles process whatever message is available at the port 

without any delay.  
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Chapter 5 
Evaluation  

 

 

 

 

In order to evaluate our proposed system in the previous chapter we proceed with two 

real time experiments where the robotic arm is tested in two separate production 

environments by ten volunteers belonging to distinct industrial domains and expertise. 

Fifty percent of the volunteers participated in experiment 1 and the remaining 

participated in experiment 2. The volunteers remained engaged in the actual coaching of 

the robotic arm for ten minutes each where they controlled the robotic arm through 

PRUDENS interface and tried to improve the robot’s performance through various 

policies shown below. However, we discuss in the text the most suitable policies that 

attained maximum performance in terms of the robot’s operational tasks under various 

constraints. In these experiments we monitor the system’s performance based on 

intrinsic factors. We also evaluate the system performance extrinsically based on the 

collective feedback of the ten volunteers.  

 

Experiment 1: Part Handling between two points 

 

In this experiment the robot’s task is to Pick a part from the pick point and place it to the 

place point. After placing the part the arm has to return to the home position and loop in 

a similar fashion. All the three Pick, Place and Home positions are static locations which 

have already been taught manually to the robotic arm. The robotic arm is interfaced with 

the PRUDENS server which tells it to pick, place or go to home depending upon the 

deductive reasoning utilizing the rules in the knowledge base under the incoming 

contexts as status information from the robotic arm. 
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Figure 12. Arm's Pick-Place Cycle 
 

In the initial phase the robot follows a standard policy with the following rules in the 

knowledge base of the PRUDENS server that drive the robot based on the context. 

 

Rule_0 :: auto_perm, part_avl, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: auto_perm, -part_avl, grip_open implies wait_part; 

Rule_4 :: -sleep, auto implies auto_perm; 

Rule_5 :: -powered implies sleep; 

Rule_6 :: powered implies -sleep; 

Rule_7 :: manual implies -auto; 

Rule_8 :: -manual implies auto; 

 

At an instant the context received from the robotic arm is as under. 

 

powered; -manual; grip_open; -part_avl; -part_picked; -part_placed; at_home; day(5); 

time(2);  

 

The inferences received by the robotic arm are -sleep; auto; auto_perm; wait_part. 

 

As human could be directly involved with the robotic arm in collaborative working 

scenarios or as the production is directly affected by this arm under the non-collaborative 

scenarios it becomes necessary for this system to explain each of its unexpected move. 
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The explainability method of knowledge extraction is a close fit for such a system to 

increase its interpretability (Adadi & Berrada 2018). As the building block of this system 

is argumentation theory through hypothesis generation based on the rules present in its 

knowledge base as well as the rules learnt and generated through counter argumentation, 

this system explains about what it is supposed to do when asked to perform a new task 

or modify its current task or learn new challenges. 

 

It becomes quite a challenge for the machine operators or blue-collar workers to establish 

communication with complex machines such as the robotic arms. Our proposed system 

enhances the ability of the non-technical staff in a production facility to interact with the 

machine through argumentation. In the above case when the operator seeks guidance to 

understand the cause of robot’s stalling, the console section on the PRUDENS interface 

describes its inferences in the following manner. 

 

-sleep: [Rule_6 :: powered implies -sleep;] 

 

Rule 6 suggests that when the robot is powered on it is not in sleep mode. 

 

auto: [Rule_8 :: -manual implies auto;] 

 

Rule 8 suggests that when the robot is not in manual mode, it is in automatic mode. 

 

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;] 

 

Rule 4 suggests that when the robot is not in sleep mode and automatic mode is available 

then robot is ready to work in automatic cycle. 

 

wait_part: [Rule_3 :: auto_perm, -part_avl, grip_open implies wait_part;] 

 

Rule 3 suggests that when part is not available and other conditions are true then it is 

waiting for part.  
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This functionality of self-explanation makes the Human Machine Interaction easy to 

everyone. The operator thus understands that he needs to make the parts available so 

that the robot could proceed with its regular operation. In this first case, the operator 

creates an exception in the form of his counter argument to coach the robot by modifying 

Rule 0 and deleting Rule 3. 

  

The knowledge base now looks as below. 

 

Rule_0 :: auto_perm, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_4 :: -sleep, auto implies auto_perm; 

Rule_5 :: -powered implies sleep; 

Rule_6 :: powered implies -sleep; 

Rule_7 :: manual implies -auto; 

Rule_8 :: -manual implies auto; 

 

Now under the similar context as above the inferences generated are -sleep; auto; 

auto_perm; pick_part. 

 

The description of the generated inferences is as under. 

 

-sleep: [Rule_6 :: powered implies -sleep;] 

auto: [Rule_8 :: -manual implies auto;] 

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;] 

pick_part: [Rule_0 :: auto_perm, grip_open implies pick_part;] 

 

Here the robot moves to pick the part because the conditions of Rule 0 are satisfied and 

iterates in a loop to place the part and moving to the home position subsequently.  

 

In the second case, the operator seeks guidance to understand why the robot works non-

stop without caring about the weekends. As evident from the above robot’s standard 

policy and the relevant explanations which does not include the time constraint even 
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though the context contains it, the operator understands the need to add exceptions in 

order to coach the robotic arm such that it should only work during the weekdays. The 

knowledge base is then modified with the following exceptions. 

 

Rule_0 now contains an additional predicate named at_home as the operator desires that 

the robot should only go to pick the part once it arrives to the home position. 

 

Rule_0 :: at_home, auto_perm, part_avl, grip_open, weekday implies pick_part; 

Rule_1 :: auto_perm, part_picked, -grip_open, weekday implies place_part; 

Rule_2 :: auto_perm, part_placed, grip_open, weekday implies go_home;  

Rule_3 :: day(X), ?=(X,1) implies monday; 

Rule_4 :: day(X), ?=(X,2) implies tuesday); 

Rule_5 :: day(X), ?=(X,3) implies wednesday; 

Rule_6 :: day(X), ?=(X,4) implies thursday; 

Rule_7 :: day(X), ?=(X,5) implies friday; 

Rule_8 :: day(X), ?=(X,6) implies saturday; 

Rule_9 :: day(X), ?=(X,7) implies sunday; 

Rule_10 :: saturday implies weekend; 

Rule_11 :: sunday implies weekend; 

Rule_12 :: monday implies -weekend; 

Rule_13 :: tuesday implies -weekend; 

Rule_14 :: wednesday implies -weekend; 

Rule_15 :: thursday implies -weekend; 

Rule_16 :: friday implies -weekend; 

Rule_17 :: -weekend implies weekday; 

Rule_18 :: weekend implies -weekday; 

Rule_19 :: -sleep, auto implies auto_perm; 

Rule_20 :: -powered implies sleep; 

Rule_21 :: powered implies -sleep; 

Rule_22 :: manual implies -auto; 

Rule_23 :: -manual implies auto; 
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The operator therefore adds exceptional rules (Rule_3 to Rule 18) apart from the 

standard policy rules to incorporate the feature of weekend off for the robot. 

 

In the third case, the operator inquires about the status of the Gripper and the permission 

to manually jog the robot. As the knowledge base does not contain any fact or exception 

regarding the operator’s query therefore the operator defines further facts and 

exceptions regarding the same. Now the knowledge base looks as below.  

 

Rule_0 :: at_home, auto_perm, part_avl, grip_open, weekday implies pick_part; 

Rule_1 :: auto_perm, part_picked, -grip_open, weekday implies place_part; 

Rule_2 :: auto_perm, part_placed, grip_open, weekday implies go_home;  

Rule_3 :: day(X), ?=(X,1) implies monday; 

Rule_4 :: day(X), ?=(X,2) implies tuesday); 

Rule_5 :: day(X), ?=(X,3) implies wednesday; 

Rule_6 :: day(X), ?=(X,4) implies thursday; 

Rule_7 :: day(X), ?=(X,5) implies friday; 

Rule_8 :: day(X), ?=(X,6) implies saturday; 

Rule_9 :: day(X), ?=(X,7) implies sunday; 

Rule_10 :: saturday implies weekend; 

Rule_11 :: sunday implies weekend; 

Rule_12 :: monday implies -weekend; 

Rule_13 :: tuesday implies -weekend; 

Rule_14 :: wednesday implies -weekend; 

Rule_15 :: thursday implies -weekend; 

Rule_16 :: friday implies -weekend; 

Rule_17 :: -weekend implies weekday; 

Rule_18 :: weekend implies -weekday; 

Rule_19 :: awake, auto implies auto_perm; 

Rule_20 :: -sleep, manual implies jog_perm; 

Rule_21 :: -powered implies sleep; 

Rule_22 :: powered implies -sleep; 

Rule_23 :: grip_open implies -grip_closed; 

Rule_24 :: -grip_open implies grip_closed; 



78 
 

Rule_25 :: jog_perm implies -auto_perm; 

Rule_26 :: sleep implies -awake; 

Rule_27 :: -sleep implies awake; 

Rule_28 :: manual implies -auto; 

Rule_29 :: -manual implies auto; 

 

Under the context which says that, powered; -manual; grip_open; part_avl; -part_picked; -

part_placed; at_home; day(1); time(8); 

 

The PRUDENS server now generates the inferences as monday; -weekend; weekday; -

sleep; -grip_closed; awake; auto; auto_perm; pick_part which are explained in the following 

way. 

 

monday: [Rule_3 :: day(1), ?=(1, 1) implies monday;] 

 

Rule 3 suggests that it is Monday. 

 

-weekend: [Rule_12 :: monday implies -weekend;] 

 

Rule 12 suggests that it is not weekend. 

 

weekday: [Rule_17 :: -weekend implies weekday;] 

 

Rule 17 suggests that it is a weekday. 

 

-sleep: [Rule_22 :: powered implies -sleep;] 

 

Rule 22 suggests that when the robot is powered on it is not in sleep mode. 

 

-grip_closed: [Rule_23 :: grip_open implies -grip_closed;] 

 

Rule 23 suggests that gripper is not closed. 
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awake: [Rule_27 :: -sleep implies awake;] 

 

Rule 27 suggests that as the robot is not in sleep mode, it is awake. 

 

auto: [Rule_29 :: -manual implies auto;] 

 

Rule 29 suggests that the robot is in automatic mode. 

 

auto_perm: [Rule_19 :: awake, auto implies auto_perm;] 

 

Rule 19 suggests that as the robot is awake and is in automatic mode that means it has 

permission to work automatically. 

 

pick_part: [Rule_0 :: at_home, auto_perm, part_avl, grip_open, weekday implies 

pick_part;] 

 

Rule 0 suggests that the robot must pick the part as all of its conditions are satisfied. 

 

If the day is a weekend for example, then the context becomes powered; -manual; 

grip_open; part_avl; -part_picked; -part_placed; at_home; day(6); time(2); 

 

Then based on the above rules in the knowledge base the following inferences are 

generated, saturday; weekend; -weekday; -sleep; -grip_closed; awake; auto; auto_perm; 

whose explanations are inferred from the following rules. 

 

saturday: [Rule_8 :: day(6), ?=(6, 6) implies saturday;] 

weekend: [Rule_10 :: saturday implies weekend;] 

-weekday: [Rule_18 :: weekend implies -weekday;] 

-sleep: [Rule_22 :: powered implies -sleep;] 

-grip_closed: [Rule_23 :: grip_open implies -grip_closed;] 

awake: [Rule_27 :: -sleep implies awake;] 

auto: [Rule_29 :: -manual implies auto;] 

auto_perm: [Rule_19 :: awake, auto implies auto_perm;] 
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From rules 8, 10 and 18, it is evident that the current day is a weekend and therefore the 

inference to pick the part is not generated. In this manner the robotic arm is coached for 

not working on weekends. 

 

In the fourth case, the operator enquires about the robot working beyond the standard 

production hours of 8:00 and 18:00. The operator does not receive a satisfactory 

explanation due to the evidence that no such exceptions exist in the robot’s standard 

policy as well as the modified knowledge base. Therefore, the operator further adds the 

relevant exceptions (Rule_4 to Rule_12) which modifies the knowledge base in the 

following manner.  

 

Rule_0 :: at_home, auto_perm, part_avl, grip_open, shift_active implies pick_part; 

Rule_1 :: auto_perm, part_picked, -grip_open, shift_active implies place_part; 

Rule_2 :: auto_perm, part_placed, grip_open, shift_active implies go_home;  

Rule_3 :: -shift_active implies prod_hold; 

Rule_4 :: time(X), ?<(X,8), weekday implies -cond1; 

Rule_5 :: time(X), ?=(8,X), weekday implies cond1; 

Rule_6 :: time(X), ?<(8,X), weekday implies cond1; 

Rule_7 :: time(X), ?=(X,18), weekday implies cond2; 

Rule_8 :: time(X), ?<(X,18), weekday implies cond2; 

Rule_9 :: time(X), ?<(18,X), weekday implies -cond2; 

Rule_10 :: -cond1, cond2 implies -shift_active; 

Rule_11 :: cond1, -cond2 implies -shift_active; 

Rule_12 :: cond1, cond2 implies shift_active; 

Rule_13 :: day(X), ?=(X,1) implies monday; 

Rule_14 :: day(X), ?=(X,2) implies tuesday; 

Rule_15 :: day(X), ?=(X,3) implies wednesday; 

Rule_16 :: day(X), ?=(X,4) implies thursday; 

Rule_17 :: day(X), ?=(X,5) implies friday; 

Rule_18 :: day(X), ?=(X,6) implies saturday; 

Rule_19 :: day(X), ?=(X,7) implies sunday; 

Rule_20 :: saturday implies weekend; 
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Rule_21 :: sunday implies weekend; 

Rule_22 :: monday implies -weekend; 

Rule_23 :: tuesday implies -weekend; 

Rule_24 :: wednesday implies -weekend; 

Rule_25 :: thursday implies -weekend; 

Rule_26 :: friday implies -weekend; 

Rule_27 :: -weekend implies weekday; 

Rule_28 :: weekend implies -weekday; 

Rule_29 :: awake, auto implies auto_perm; 

Rule_30 :: -sleep, manual implies jog_perm; 

Rule_31 :: -powered implies sleep; 

Rule_32 :: powered implies -sleep; 

Rule_33 :: grip_open implies -grip_closed; 

Rule_34 :: -grip_open implies grip_closed; 

Rule_35 :: jog_perm implies -auto_perm; 

Rule_36 :: sleep implies -awake; 

Rule_37 :: -sleep implies awake; 

Rule_38 :: manual implies -auto; 

Rule_39 :: -manual implies auto; 

 

Then under the context which contains the following information, powered; -manual; 

grip_open; part_avl; -part_picked; -part_placed; at_home; day(1); time(8);  

 

The following explanations are generated by the system.  

 

cond1: [Rule_5 :: time(8), ?=(8, 8), weekday implies cond1;] 

cond2: [Rule_8 :: time(8), ?<(8, 18), weekday implies cond2;] 

shift_active: [Rule_12 :: cond1, cond2 implies shift_active;] 

monday: [Rule_13 :: day(1), ?=(1, 1) implies monday;] 

-weekend: [Rule_22 :: monday implies -weekend;] 

weekday: [Rule_27 :: -weekend implies weekday;] 

-sleep: [Rule_32 :: powered implies -sleep;] 

-grip_closed: [Rule_33 :: grip_open implies -grip_closed;] 
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awake: [Rule_37 :: -sleep implies awake;] 

auto: [Rule_39 :: -manual implies auto;] 

auto_perm: [Rule_29 :: awake, auto implies auto_perm;] 

pick_part: [Rule_0 :: at_home, auto_perm, part_avl, grip_open, shift_active implies 

pick_part;] 

 

The above inferences suggest that from rules 13, 22 and 27 that it is a weekday and from 

rules 5, 8 and 12 that it is a standard shift hour and from rules 32, 33, 37, 39, 29 and 0 

that it should pick the part.  

 

When it is a weekday and the time is beyond the standard production hour, the robot now 

operates as desired.  

 

Under the context, powered; -manual; grip_open; part_avl; -part_picked; -part_placed; 

at_home; day(1); time(19);   

 

The following explanations are generated. 

 

cond1: [Rule_6 :: time(19), ?<(8, 19), weekday implies cond1;] 

-cond2: [Rule_9 :: time(19), ?<(18, 19), weekday implies -cond2;] 

-shift_active: [Rule_11 :: cond1, -cond2 implies -shift_active;] 

monday: [Rule_13 :: day(1), ?=(1, 1) implies monday;] 

-weekend: [Rule_22 :: monday implies -weekend;] 

weekday: [Rule_27 :: -weekend implies weekday;] 

-sleep: [Rule_32 :: powered implies -sleep;] 

-grip_closed: [Rule_33 :: grip_open implies -grip_closed;] 

awake: [Rule_37 :: -sleep implies awake;] 

auto: [Rule_39 :: -manual implies auto;] 

prod_hold: [Rule_3 :: -shift_active implies prod_hold;] 

auto_perm: [Rule_29 :: awake, auto implies auto_perm;] 
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From these explanations it becomes evident that from rules 13, 22 and 27 that it is a 

weekday and from rules 6, 9 and 11that it is a no production hour and from rules 32, 33, 

37, 39, 3, and 29 that the robot should hold the production.  

 

In this way the operators managed to coach the robotic arm based on various scenario 

demands to achieve the desired performance. 

 

The various policies provided by the remaining four volunteers could be seen in the 

following table for experiment 1. 

 

Volunteer Policy Context Constraint Result      

1 Rule_0 :: auto_perm, -part_avl, 
grip_open implies pick_part; 
Rule_1 :: auto_perm, part_picked 
implies place_part; 
Rule_2 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies sleep; 
Rule_6 :: powered implies -sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 
 

powered;  
-manual; 

grip_open; 
-part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(5); 
time(2); 

  

Part 
Availability 

(Robot 
should 

work even 
though part 
is available 

or not) 

Pass 

Rule_0 :: at_home, auto_perm, 
part_avl, grip_open, weekday 
implies pick_part; 
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday implies 
place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, weekday implies 
go_home;  
Rule_3 :: awake, auto implies 
auto_perm; 
Rule_4 :: -sleep, manual implies 
jog_perm; 
Rule_5 :: -powered implies sleep; 
Rule_6 :: powered implies -sleep; 
Rule_7 :: grip_open implies -
grip_closed; 
Rule_8 :: -grip_open implies 
grip_closed; 
 

powered;  
-manual; 

grip_open; 
part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(1); 
time(8); 

Weekend 
(Robot 
should 

work only 
on 

weekdays) 

Failed 
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No response powered; 
-manual;  

grip_open;  
part_avl;  

-part_picked;  
-part_placed;  

at_home;  
day(1);  
time(8); 

  

Time 
Period 
(Robot 
should 

work only 
between 
standard 

production 
hours of 
8:00 and 

18:00) 

Failed 

2 Rule_0 :: auto_perm, grip_open 
implies pick_part; 
Rule_1 :: auto_perm, part_picked 
implies place_part; 
Rule_2 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies sleep; 
Rule_6 :: powered implies -sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 
 

powered;  
-manual; 

grip_open; 
-part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(5); 
time(2); 

Part 
Availability 

(Robot 
should 

work even 
though part 
is available 

or not) 

Pass 

Rule_0 :: auto_perm, part_avl, 
grip_open, weekday implies 
pick_part; 
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday implies 
place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, weekday implies 
go_home; 
Rule_3 :: day(X), ?<(X,6) implies 
weekday;  
Rule_4 :: awake, auto implies 
auto_perm; 
Rule_5 :: -sleep, manual implies 
jog_perm; 
Rule_6 :: -powered implies sleep; 
Rule_7 :: powered implies -sleep; 
Rule_8 :: jog_perm implies -
auto_perm; 
Rule_9 :: sleep implies -awake; 
Rule_10 :: -sleep implies awake; 
Rule_11 :: manual implies -auto; 
Rule_12 :: -manual implies auto; 
 

powered;  
-manual; 

grip_open; 
part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(1); 
time(8); 

Weekend 
(Robot 
should 

work only 
on 

weekdays) 

Pass 
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Rule_0 :: auto_perm, part_avl, 
grip_open, weekday, start_work 
implies pick_part; 
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday, start_work 
implies place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, weekday, start_work 
implies go_home; 
Rule_3 :: time(X), ?<(X,18) implies 
start_work;  
Rule_4 :: day(X), ?<(X,6) implies 
weekday;  
Rule_5 :: awake, auto implies 
auto_perm; 
Rule_6 :: -sleep, manual implies 
jog_perm; 
Rule_7 :: -powered implies sleep; 
Rule_8 :: powered implies -sleep; 
Rule_9 :: jog_perm implies -
auto_perm; 
Rule_10 :: sleep implies -awake; 
Rule_11 :: -sleep implies awake; 
Rule_12 :: manual implies -auto; 
Rule_13 :: -manual implies auto; 
 

powered; 
-manual;  

grip_open;  
part_avl;  

-part_picked;  
-part_placed;  

at_home;  
day(1);  
time(8);  

Time 
Period 
(Robot 
should 

work only 
between 
standard 

production 
hours of 
8:00 and 

18:00) 

Failed 

3 Rule_0 :: auto_perm, part_avl, 
grip_open implies pick_part; 
Rule_1 :: auto_perm, part_picked 
implies place_part; 
Rule_2 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies sleep; 
Rule_6 :: powered implies -sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 
 

powered;  
-manual; 

grip_open; 
-part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(5); 
time(2);  

Part 
Availability 

(Robot 
should 

work even 
though part 
is available 

or not) 

Failed 

No Response powered;  
-manual; 

grip_open; 
part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(1); 
time(8); 

Weekend 
(Robot 
should 

work only 
on 

weekdays) 

Failed 
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No Response powered; 
-manual;  

grip_open;  
part_avl;  

-part_picked;  
-part_placed;  

at_home;  
day(1);  
time(8);  

Time 
Period 
(Robot 
should 

work only 
between 
standard 

production 
hours of 
8:00 and 

18:00) 

Failed 

4 Rule_0 :: auto_perm, grip_open 
implies pick_part; 
Rule_1 :: auto_perm, part_picked 
implies place_part; 
Rule_2 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies sleep; 
Rule_6 :: powered implies -sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 

powered;  
-manual; 

grip_open; 
-part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(5); 
time(2);  

Part 
Availability 

(Robot 
should 

work even 
though part 
is available 

or not) 

Pass 

Rule_0 :: auto_perm, grip_open, 
weekday implies pick_part; 
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday implies 
place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, weekday implies 
go_home; 
Rule_3 :: day(X), ?<(X,6) implies 
weekday;  
Rule_4 :: awake, auto implies 
auto_perm; 
Rule_5 :: -sleep, manual implies 
jog_perm; 
Rule_6 :: -powered implies sleep; 
Rule_7 :: powered implies -sleep; 
Rule_8 :: jog_perm implies -
auto_perm; 
Rule_9 :: sleep implies -awake; 
Rule_10 :: -sleep implies awake; 
Rule_11 :: manual implies -auto; 
Rule_12 :: -manual implies auto; 
 

powered;  
-manual; 

grip_open; 
part_avl; 

-part_picked; 
-part_placed; 

at_home; 
day(1); 
time(8); 

Weekend 
(Robot 
should 

work only 
on 

weekdays) 

Pass 
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Rule_0 :: auto_perm, part_avl, 
grip_open, weekday, start_work, 
start_work1 implies pick_part; 
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday, start_work, 
start_work1 implies place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, weekday, start_work, 
start_work1 implies go_home; 
Rule_3 :: time(X), ?<(8,X) implies 
start_work; 
Rule_4 :: time(X), ?<(X,18) implies 
start_work1;   
Rule_5 :: day(X), ?<(X,6) implies 
weekday;  
Rule_6 :: awake, auto implies 
auto_perm; 
Rule_7 :: -sleep, manual implies 
jog_perm; 
Rule_8 :: -powered implies sleep; 
Rule_9 :: powered implies -sleep; 
Rule_10 :: jog_perm implies -
auto_perm; 
Rule_11 :: sleep implies -awake; 
Rule_12 :: -sleep implies awake; 
Rule_13 :: manual implies -auto; 
Rule_14 :: -manual implies auto; 
 

powered; 
-manual;  

grip_open;  
part_avl;  

-part_picked;  
-part_placed;  

at_home;  
day(1);  
time(8);  

Time 
Period 
(Robot 
should 

work only 
between 
standard 

production 
hours of 
8:00 and 

18:00) 

Failed 
(The 
robot 
works 

between 
9:00 and 

17:00 
though) 

Table 3. Policies provided by volunteers under various constraints for Experiment 1 
 

Experiment 2: Part handling between multiple points. 

 

In the second experiment the robot’s task is to Pick a part from the pick point on the 

infeed conveyor and place it to the place point on the outfeed conveyor. After placing the 

part, the arm has to return to the home position and loop in a similar fashion. As an 

additional complexity, the parts that arrive on the conveyor could be faulty or non-faulty 

which are sensed through the vision system dynamically on the conveyor and the 

respective part status is sent to the robot as an input. The peripheral devices connected 

to the robot also suggest any human presence in the vicinity of the robot. All the three 

Pick, Place and Home positions are static locations which have already been taught 

manually to the robotic arm. In order to enhance the user’s comprehension of the 

system’s explanations, an additional Download button is added on the console of the 

PRUDENS interface.  
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Figure 13. PRUDENS Console Download Button 
 

This download button enables the user to download the explanations generated by the 

system in the form of text file as below. This further enhances the user to keep a record 

of the agent’s arguments as part of the coaching process.  

 

 

Figure 14. Example Text file on Download 
 

In the initial phase the robot follows a standard policy with the following rules in the 

knowledge base of the PRUDENS server that drive the robot based on the context. 

 

Rule_0 :: auto_perm, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked implies place_part; 

Rule_2 :: auto_perm, part_placed implies go_home; 

Rule_3 :: -sleep, auto implies auto_perm; 

Rule_4 :: -powered implies sleep; 

Rule_5 :: powered implies -sleep; 
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Rule_6 :: manual implies -auto; 

Rule_7 :: -manual implies auto; 

 

At an instant the context received from the robotic arm is as under. 

 

powered; -manual; grip_open; -part_avl; -part_picked; -part_placed; -human_det; -part_def; 

-rob_run; at_home; day(1); time(8); 

 

The inferences received by the robotic arm are -sleep; auto; auto_perm; pick_part. When 

the robot picks the part then it moves to place it through the inferences -sleep; auto; 

auto_perm; place_part. On placing the part, the robot goes to its home position through -

sleep; auto; auto_perm; pick_part; go_home.  

 

In another instance, the operator observes the arrival of the defected part which the robot 

picks and places at the non-defected part position in the generic manner. This is observed 

as below. 

 

Context under which Picking of the part takes place. 

 

powered; -manual; grip_open; part_avl; -part_picked; -part_placed; -human_det; part_def; 

-rob_run; at_home; day(1); time(8);  

 

Explanations generated as -sleep; auto; auto_perm; pick_part. 

 

Context under which Placing of the part takes place. 

 

powered; -manual; -grip_open; part_avl; part_picked; -part_placed; -human_det; part_def; 

rob_run; -at_home; day(1); time(8); 

 

Explanations generated as -sleep; auto; auto_perm; place_part. 

 

The robot then moves to its home position as part of its standard policy.  
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On enquiring about this behavior of placing the defected part to the non-defected part’s 

position, the operator gets the following explanation. 

 

-sleep: [Rule_5 :: powered implies -sleep;] 

auto: [Rule_7 :: -manual implies auto;] 

auto_perm: [Rule_3 :: -sleep, auto implies auto_perm;] 

place_part: [Rule_1 :: auto_perm, part_picked implies place_part;]  

 

The operator agrees with the system’s explanation and decides to add exception in the 

knowledge base in order to place the defected part at its respective location which has 

already been taught to the robot. The modified knowledge base now looks as below. 

 

Rule_0 :: auto_perm, grip_open implies pick_part; 

Rule_1 :: auto_perm, part_picked, part_def implies place_def; 

Rule_2 :: auto_perm, part_picked, -part_def implies place_part; 

Rule_3 :: auto_perm, part_placed implies go_home; 

Rule_4 :: -sleep, auto implies auto_perm; 

Rule_5 :: -powered implies sleep; 

Rule_6 :: powered implies -sleep; 

Rule_7 :: manual implies -auto; 

Rule_8 :: -manual implies auto;   

 

The operator has added an exception as Rule_1 and added an additional predicate in 

Rule_2 in order to place the defected part to its respective location. 

 

Now under the similar context as above, the following explanations are generated,  

-sleep; auto; auto_perm; place_def. 

 

-sleep: [Rule_6 :: powered implies -sleep;] 

auto: [Rule_8 :: -manual implies auto;] 

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;] 

place_def: [Rule_1 :: auto_perm, part_picked, part_def implies place_def;] 

 



91 
 

In the third instance, the operator observes human presence in the vicinity of the robot 

but the robot continues to operate without stopping. This is observed as below. 

 

Context under which Picking of the part takes place. 

 

powered; -manual; grip_open; part_avl; -part_picked; -part_placed; human_det; -part_def; 

-rob_run; at_home; day(1); time(8);  

 

Explanations generated as -sleep; auto; auto_perm; pick_part. 

 

Context under which Placing of the part takes place. 

 

powered; -manual; -grip_open; part_avl; part_picked; -part_placed; human_det; -part_def; 

rob_run; -at_home; day(1); time(8); 

 

Explanations generated as -sleep; auto; auto_perm; place_part. 

 

The robot then moves to its home position as part of its standard policy.  

 

On enquiring about this behavior of continued operation even under human presence in 

the vicinity, the operator gets the following explanation. 

 

While Picking the part. 

 

-sleep: [Rule_6 :: powered implies -sleep;] 

auto: [Rule_8 :: -manual implies auto;] 

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;] 

pick_part: [Rule_0 :: auto_perm, grip_open implies pick_part;] 

 

While Placing the part. 

 

-sleep: [Rule_6 :: powered implies -sleep;] 

auto: [Rule_8 :: -manual implies auto;] 
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auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;] 

place_part: [Rule_2 :: auto_perm, part_picked, -part_def implies place_part;] 

 

While Going to home position. 

 

-sleep: [Rule_6 :: powered implies -sleep;] 

auto: [Rule_8 :: -manual implies auto;] 

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;] 

pick_part: [Rule_0 :: auto_perm, grip_open implies pick_part;] 

go_home: [Rule_3 :: auto_perm, part_placed implies go_home;] 

 

The operator presents its counter argument in the form of several exceptions pertaining 

to human safety to achieve the required behavior such that the robot stops working on 

the detection of human in its vicinity. The knowledge base now looks as under. 

 

Rule_0 :: auto_perm, rob_run, human_det implies rob_stop; 

Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop; 

Rule_2 :: at_home, auto_perm, grip_open, -rob_stop implies pick_part; 

Rule_3 :: auto_perm, part_picked, -grip_open, -rob_stop, part_def implies place_def; 

Rule_4 :: auto_perm, part_picked, -grip_open, -rob_stop, -part_def implies place_part; 

Rule_5 :: auto_perm, part_placed, grip_open, -rob_stop implies go_home; 

Rule_6 :: -sleep, auto implies auto_perm; 

Rule_7 :: -powered implies sleep; 

Rule_8 :: powered implies -sleep; 

Rule_9 :: manual implies -auto; 

Rule_10 :: -manual implies auto; 

Rule_11 :: rob_run, -human_det implies -rob_stopped; 

Rule_12 :: -rob_run, human_det implies rob_stopped; 

 

Now under the similar context as above, the following explanations are generated,  

-sleep; auto; rob_stopped; auto_perm 

 

-sleep: [Rule_8 :: powered implies -sleep;] 
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auto: [Rule_10 :: -manual implies auto;] 

rob_stopped: [Rule_12 :: -rob_run, human_det implies rob_stopped;] 

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;] 

 

In the fourth instance, the operator enquires about the robot not switching off its power 

during the lunch interval which takes places between 12:00 – 13:00 hours everyday. 

 

Context under which Picking of the part takes place. 

 

powered; -manual; grip_open; part_avl; -part_picked; -part_placed; -human_det; -part_def; 

-rob_run; at_home; day(1); time(12);  

 

The following explanations are generated. 

 

-sleep: [Rule_8 :: powered implies -sleep;] 

auto: [Rule_10 :: -manual implies auto;] 

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;] 

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;] 

pick_part: [Rule_2 :: at_home, auto_perm, grip_open, -rob_stop implies pick_part;] 

 

Context under which Placing of the part takes place. 

 

powered; -manual; -grip_open; part_avl; part_picked; -part_placed; -human_det; -part_def; 

rob_run; -at_home; day(1); time(12); 

 

The following explanations are generated. 

 

-sleep: [Rule_8 :: powered implies -sleep;] 

auto: [Rule_10 :: -manual implies auto;] 

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;] 

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;] 

place_part: [Rule_4 :: auto_perm, part_picked, -grip_open, -rob_stop, -part_def 

implies place_part;] 
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Context under which Home movement takes place. 

 

powered; -manual; grip_open; part_avl; -part_picked; part_placed; -human_det; -part_def; -

rob_run; -at_home; day(1); time(12); 

 

The following explanations are generated. 

 

-sleep: [Rule_8 :: powered implies -sleep;] 

auto: [Rule_10 :: -manual implies auto;] 

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;] 

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;] 

go_home: [Rule_5 :: auto_perm, part_placed, grip_open, -rob_stop implies 

go_home;] 

 

The operator presents its counter argument in the form of several exceptions and facts 

such that the robot switches off its power during the lunch interval. The knowledge base 

now looks as under. 

 

Rule_0 :: auto_perm, rob_run, human_det implies rob_stop; 

Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop; 

Rule_2 :: at_home, auto_perm, grip_open, -power_off, -rob_stop implies pick_part; 

Rule_3 :: auto_perm, part_picked, -grip_open, -power_off, -rob_stop, part_def implies 

place_def; 

Rule_4 :: auto_perm, part_picked, -grip_open, -power_off, -rob_stop, -part_def implies 

place_part; 

Rule_5 :: auto_perm, part_placed, grip_open, -power_off, -rob_stop implies go_home; 

Rule_6 :: lunch_time implies power_off; 

Rule_7 :: -lunch_time implies -power_off; 

Rule_8 :: time(X), ?<(X,12) implies -cond1; 

Rule_9 :: time(X), ?=(12,X) implies cond1; 

Rule_10 :: time(X), ?<(12,X) implies cond1; 

Rule_11 :: time(X), ?=(X,13) implies cond2; 
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Rule_12 :: time(X), ?<(X,13) implies cond2; 

Rule_13 :: time(X), ?<(13,X) implies -cond2; 

Rule_14 :: -cond1, cond2 implies -lunch_time; 

Rule_15 :: cond1, -cond2 implies -lunch_time; 

Rule_16 :: cond1, cond2 implies lunch_time; 

Rule_17 :: -sleep, auto implies auto_perm; 

Rule_18 :: -powered implies sleep; 

Rule_19 :: powered implies -sleep; 

Rule_20 :: manual implies -auto; 

Rule_21 :: -manual implies auto; 

Rule_22 :: rob_run, -human_det implies -rob_stopped; 

Rule_23 :: -rob_run, human_det implies rob_stopped; 

 

Now under the similar contexts as above, the following explanations are generated,  

cond1; cond2; lunch_time; -sleep; auto; power_off; auto_perm; -rob_stop 

 

cond1: [Rule_9 :: time(12), ?=(12, 12) implies cond1;] 

cond2: [Rule_12 :: time(12), ?<(12, 13) implies cond2;] 

lunch_time: [Rule_16 :: cond1, cond2 implies lunch_time;] 

-sleep: [Rule_19 :: powered implies -sleep;] 

auto: [Rule_21 :: -manual implies auto;] 

power_off: [Rule_6 :: lunch_time implies power_off;] 

auto_perm: [Rule_17 :: -sleep, auto implies auto_perm;] 

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;] 

 

In this way, the robot switches off its power during the lunch interval at the production 

facility thereby reducing energy consumption. Therefore, the operators have managed to 

coach the robotic arm based on various scenario demands to achieve the desired 

performance. 

 

The various policies provided by the remaining four volunteers could be seen in the 

following table for experiment 2. 
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Volunteer Policy Context Constraint Result      

1 Rule_0 :: auto_perm, part_avl, 
grip_open implies pick_part; 
Rule_1 :: auto_perm, part_picked 
implies place_part_def; 
Rule_2 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies 
sleep; 
Rule_6 :: powered implies -
sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 

powered; 
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 -human_det; 

 part_def; 
 -rob_run; 
 at_home; 
 day(1); 
 time(8); 

  

Faulty Parts 
(Robot 

should place 
the faulty 

parts faulty 
part position 
& non-faulty 
parts at their 

respective 
location) 

Failed 

Rule_0 :: auto_perm, rob_run, -
human_det implies robo_work; 
Rule_1 :: at_home, auto_perm, 
part_avl, grip_open, robo_work 
implies pick_part; 
Rule_2 :: auto_perm, 
part_picked, -grip_open, 
robo_work implies place_part; 
Rule_3 :: auto_perm, part_placed, 
grip_open, robo_work implies 
go_home;  
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies 
sleep; 
Rule_6 :: powered implies -
sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto;   

powered; 
 -manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 human_det; 
 -part_def; 
 rob_run; 
 at_home; 
 day(1); 
 time(8); 

Human 
Presence 

(Robot 
should stop 
on detection 

of human 
nearby) 

Pass 
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Rule_0 :: auto_perm, rob_run, -
human_det implies robo_work; 
Rule_1 :: at_home, auto_perm, 
part_avl, grip_open, robo_work, 
halt, halt1 implies pick_part; 
Rule_2 :: auto_perm, 
part_picked, -grip_open, 
robo_work, halt, halt1 implies 
place_part; 
Rule_3 :: auto_perm, part_placed, 
grip_open, robo_work, halt, halt1 
implies go_home;  
Rule_4 :: time(X), ?=(X,12) 
implies halt; 
Rule_5 :: time(X), ?=(X,13) 
implies halt1; 
Rule_6 :: -sleep, auto implies 
auto_perm; 
Rule_7 :: -powered implies 
sleep; 
Rule_8 :: powered implies -
sleep; 
Rule_9 :: manual implies -auto; 
Rule_10 :: -manual implies auto;   

powered;  
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 part_placed; 
 -human_det; 

 -part_def; 
 -rob_run; 
 -at_home; 

 day(1); 
 time(12); 

 
  

Power 
Consumption 
(Robot must 
switch off its 
power during 
lunch hour of 

12:00 - 
13:00) 

Failed 

2 No response powered; 
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 -human_det; 

 part_def; 
 -rob_run; 
 at_home; 
 day(1); 
 time(9); 

  

Faulty Parts 
(Robot 

should place 
the faulty 

parts faulty 
part position 
& non-faulty 
parts at their 

respective 
location) 

Failed 
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No response powered; 
 -manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 human_det; 
 -part_def; 
 rob_run; 
 at_home; 
 day(1); 
 time(9); 

Human 
Presence 

(Robot 
should stop 
on detection 

of human 
nearby) 

Failed 

Rule_4 :: time(X), ?<(X,12) 
implies alarm; 
Rule_5 :: -sleep, auto implies 
auto_perm; 
Rule_6 :: -powered implies 
sleep; 
Rule_7 :: powered implies -
sleep; 
Rule_8 :: manual implies -auto; 
Rule_9 :: -manual implies auto;   

powered;  
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 part_placed; 
 -human_det; 

 -part_def; 
 -rob_run; 
 -at_home; 

 day(1); 
 time(12); 

  

Power 
Consumption 
(Robot must 
switch off its 
power during 
lunch hour of 

12:00 - 
13:00) 

Failed 

3 Rule_0 :: auto_perm, part_avl, 
grip_open implies pick_part; 
Rule_1 :: auto_perm, 
part_picked, part_def implies 
place_part_def; 
Rule_2 :: auto_perm, 
part_picked, -part_def implies 
place_part; 
Rule_3 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies 
sleep; 
Rule_6 :: powered implies -
sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 

powered; 
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 -human_det; 

 part_def; 
 -rob_run; 
 at_home; 
 day(2); 
 time(8); 

  

Faulty Parts 
(Robot 

should place 
the faulty 

parts faulty 
part position 
& non-faulty 
parts at their 

respective 
location) 

Pass 
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Rule_0 :: at_home, auto_perm, 
part_avl, grip_open, 
robo_continue implies pick_part; 
Rule_1 :: auto_perm, 
part_picked, -grip_open, 
robo_continue implies 
place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, robo_work implies 
go_home; 
Rule_3 :: auto_perm, rob_run, -
human_det implies 
robo_continue;  
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies 
sleep; 
Rule_6 :: powered implies -
sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto;   

powered; 
 -manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 human_det; 
 -part_def; 
 rob_run; 
 at_home; 
 day(2); 
 time(8); 

Human 
Presence 

(Robot 
should stop 
on detection 

of human 
nearby) 

Pass 

No response powered;  
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 part_placed; 
 -human_det; 

 -part_def; 
 -rob_run; 
 -at_home; 

 day(1); 
 time(12); 

  

Power 
Consumption 
(Robot must 
switch off its 
power during 
lunch hour of 

12:00 - 
13:00) 

Failed 
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4 Rule_0 :: auto_perm, part_avl, 
grip_open implies pick_part; 
Rule_1 :: auto_perm, part_def, 
part_picked implies 
place_defected; 
Rule_2 :: auto_perm, -part_def, 
part_picked implies place_part; 
Rule_3 :: auto_perm, part_placed 
implies go_home; 
Rule_4 :: -sleep, auto implies 
auto_perm; 
Rule_5 :: -powered implies 
sleep; 
Rule_6 :: powered implies -
sleep; 
Rule_7 :: manual implies -auto; 
Rule_8 :: -manual implies auto; 

powered; 
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 -human_det; 

 part_def; 
 -rob_run; 
 at_home; 
 day(2); 
 time(8); 

  

Faulty Parts 
(Robot 

should place 
the faulty 

parts faulty 
part position 
& non-faulty 
parts at their 

respective 
location) 

Pass 

 
Rule_0 :: at_home, auto_perm, 
part_avl, grip_open, -human_det 
implies pick_part; 
Rule_1 :: auto_perm, 
part_picked, -grip_open, -
human_det implies place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, -human_det implies 
go_home; 
Rule_3 :: -sleep, auto implies 
auto_perm; 
Rule_4 :: -powered implies 
sleep; 
Rule_5 :: powered implies -
sleep; 
Rule_6 :: manual implies -auto; 
Rule_7 :: -manual implies auto;   

powered; 
 -manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 -part_placed; 
 human_det; 
 -part_def; 
 rob_run; 
 at_home; 
 day(2); 
 time(8); 

Human 
Presence 

(Robot 
should stop 
on detection 

of human 
nearby) 

Pass 

Rule_0 :: at_home, auto_perm, 
part_avl, grip_open, -human_det 
implies pick_part; 
Rule_1 :: auto_perm, 
part_picked, -grip_open, -
human_det implies place_part; 
Rule_2 :: auto_perm, part_placed, 
grip_open, -human_det implies 
go_home; 
Rule_3 :: time(Time), 
?<(Time,12) implies no_halt; 
Rule_4 :: time(Time), 
?<(13,Time) implies no_halt1; 
Rule_5 :: -sleep, auto implies 
auto_perm; 
Rule_6 :: -powered implies 

powered;  
-manual; 

 grip_open; 
 part_avl; 

 -part_picked; 
 part_placed; 
 -human_det; 

 -part_def; 
 -rob_run; 
 -at_home; 

 day(1); 
 time(12); 

  

Power 
Consumption 
(Robot must 
switch off its 
power during 
lunch hour of 

12:00 - 
13:00) 

Failed 
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sleep; 
Rule_7 :: powered implies -
sleep; 
Rule_8 :: manual implies -auto; 
Rule_9 :: -manual implies auto;   

Table 4. Policies provided by volunteers under various constraints for Experiment 2 

 

5.1 Intrinsic System Performance 
As our proposed system is a combination of software applications running on distinct 

platforms that involve communication between the two nodes, the PC (PRUDENS) and 

the robot, we found it crucial to determine the performance of the combined system 

based on the internal software parameters. We observed the robot’s response time in the 

processing of an information exchange cycle between the two nodes at varied sizes of the 

knowledge base where the robot was responsive enough to execute correct motion under 

two separate cases. One information exchange cycle consists of the compilation and 

transfer of contexts from the robot to PRUDENS, processing of the context, inference 

generation based on the rules and transfer of the output to the robot from PRUDENS, and 

finally processing of the received information and execution of motion by the robot. This 

was achieved by observing the robot’s activity at cyclic delays ranging from 4ms to 

200ms. For each cyclic delay, 20 robotic operation cycles were performed. For each KB 

size, the cyclic delays at which the robot successfully performed 20 operation cycles were 

recorded as the robot’s response time, which is shown in Table 5 below. In the first case, 

we kept the Automatic Reply (AR) option on the PRUDENS server active and the Memory 

(M) option deactivated. However, in the second case, we kept both the options active. This 

test was performed in a standard production environment where the robot controller 

was directly connected to the PC through a CAT6 ethernet cable. The PC on which the 

PRUDENS server was running consists of an Intel i7-11800H @ 2.30GHz processor, 16.0 

GB of RAM, and Windows 11 Enterprise as the operating system. Google Chrome was 
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used as the standard browser for the PRUDENS server. The Robot controller on the other 

hand consists of Atom @ 1.9Ghz processor and a 2.0 GB RAM. The internal 

communication speed of the CPU is 4 ms. The control pendant of the robotic arm, which 

displays the robot’s interface, is a 7-inch touchscreen that displays user pages in HTML 

format. 

 

S. No. KB Size (No. of Rules) Case 1 Robot Response 

Time(ms) 

AR=True; M=False 

Case 2 Robot 

Response Time(ms) 

AR=True; M=True 

1. 7 150 90 

2. 8 150 90 

3. 12 163 101 

4. 23 180 119 

5. 29 187 125 

6. 39 196 138 

7. 45 196 138 

8. 50 198 138 

9. 55 200 138 

10. 60 200 138 

11. 70 200 138 

12. 75 200 138 

Table 5. Robot response time data at distinct KB size with Case 
1 and Case 2 functionalities 
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Graph 2. KB Size (No. of Rules) vs Robot Response Times 

(ms) in Cases 1 & 2 
 
From Graph 2 we observe that with the increase in KB size in Case 1, the Robot’s response 

time in one communication cycle shows a sharp increase up to 200ms after which it gets 

stabilized irrespective of the increase in the number of rules in the KB.  However, it is 

observed that in Case 2, the robot response time attains stability much before as 

compared to Case 1. Therefore, the cache memory functionality offered an increased 

performance at large KB size. 

 
  KB Size (No. 

of Rules) 
Case 1 Robot 

Response 
Time(ms) 

Case 2 Robot 
Response 
Time(ms) 

KB Size (No. of 

Rules) 

1 
  

Case 1 Robot  

Response 

Time(ms) 

0.900575074 

 

1 
 

Case 2 Robot 

Response 

Time(ms) 

0.884384466 

 

0.996925001 

 

1 

Table 6. Correlation b/w KB Size and Robot Response Times in 
Case 1 & 2 

0

50

100

150

200

250

7 8 12 23 29 39 45 50 55 60 70 75

Ro
bo

t R
es

po
ns

e 
Ti

m
e(

m
s)

KB Size (No. of Rules)

Case 1 Robot Response Time(ms) AR=True; M=False

Case 2 Robot Response Time(ms) AR=True; M=True



104 
 

From Table 6, we observe that the robot response times in both the cases exhibit high 

correlation with the size of the KB as well as with each other. It is however observed that 

the correlation between the Case 2 response time and the KB is lower as compared to that 

in Case 1. This again suggests that after a particular value of robot’s response time in Case 

2 the influence of the size of KB is decreased. 

 

5.2 Extrinsic System Performance 
In order to have an extrinsic evaluation of the system’s performance from the cognitive 

point of view, we prepared several tasks pertaining to the system’s use and functionality 

in a real time industrial environment that each participant needs to perform. To achieve 

this an initial training regarding PRUDENS and Staubli Robot was provided to the 

participants. Subsequent to the task phase, the participants were asked to record their 

feedback through a questionnaire. Each participant was informed about the motive of the 

evaluation and was asked to give their consent as part of the data collection and data 

handling policy before beginning with the survey. Ten volunteers (eight male, two 

female) from the industry having ages ranging from twenty-two to fifty-five voluntarily 

participated in the evaluation process. All the participants possessed an intermediate to 

fluent level of English language. In the initial phase of the evaluation, we proceed with a 

demographic survey of the participants as below. 

 

 

Figure 15 
 

30% of the participants fall under the age group of 34 – 40 years. This suggests that 

evaluation would be done by people who are greatly acquainted to advanced industrial 
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technologies. We also observe that there is an equal distribution of participants that lie 

in the age groups of 26 – 33 years, 41- 48 years and 18 - 25 years. It suggests that we will 

receive equal opinions about the system from distinct age groups. We also found that 

10% of the participants fall under the age group of 49 – 55 years which determines that 

evaluation will also contain feedback from people who possess a more manual approach 

towards industrial solutions. 

 

 
Figure 16 

 
From figure 16, it is evident that people from three different ethnicities will be evaluating 

the system. They would enable us to understand their approach towards the system’s 

usage according to which further development of the system could be customized.    

 

 
Figure 17 
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Majority of the participants possess Intermediate English level whereas the remaining 

classify themselves as fluent English users. This has enabled us to test the system on 

English comprehension-based factors. 

 
Figure 18 

 
Most of the participants are from a technical background. This implies for a detailed 

technology evaluation. 

 

 
Figure 19 

 
40% of the participants work as Managers whereas the remaining show a mixed 

distribution of Engineers, Executives, Technicians and Operators. This would enable an 

evaluation pertaining to the user’s approach towards the system from various 

professions. 
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Figure 20 

 

Most of the participants possess an industrial experience of over five years. This has 

enabled us to get the opinion about the system from industry experts with strong 

technical know-how. 

 

 
Figure 21 

 
All the participants are familiar with working on computers. As our system is a computer-

based application therefore computer proficiency was a major requirement from the 

usage and evaluation point of view. 
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Figure 22 

 
80% of the participants know how to use industrial robots. This shows that most of the 

participants are acquainted with the usage of industrial robots. Due to this fact they 

would evaluate the system keeping in mind the complexities and the challenges they face 

while dealing with the standardized robotic applications.  

 

 
Figure 23 

 

60% of the participants are familiar with industrial robot or machine programming. This 

shows that most of the participants are proficient with the programming of the industrial 

systems. This would enable them to distinguish between the software-based challenges 

and production loss when they need to modify something pertaining to the robot’s or 

machine’s action and how they approach towards the same through our system.  
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Figure 24 

 
Most of the participants are engaged with some kind of Human-Machine Interaction. This 

determines that they are aware of the challenges they face during the interaction process. 

This would in turn help us to get our system evaluated from HMI experienced 

professionals. 

 
Figure 25 

 
Much to a surprise, in the era of industry 4.0, most of the participants prefer Manual HMI 

methods through touch and visualization. This determines the general human outlook 

when it comes to adapting new technology. Humans generally feel comfortable with using 

tools that are common among masses.  
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Figure 26 

 
40% of the participants have the experience to work with collaborative robots in the 

industry. Collaborative robots are the industrial robots that are designed to work with 

humans. They are programmed to work at a speed that would produce minimum energy 

such that it should cause no damage in case it strikes with any human body part. In today’s 

industries, collaborative robots have become a necessity to increase production and offer 

safety. However, when it comes to establishing communication between human and the 

robot classical approaches are followed. Low collaborative experience of the participants 

would create some discrepancy in the evaluation results. 

 

 
Figure 27 

 
Only 20% of the participants suggest that their industrial robots do not require any kind 

of human intervention. This data might not be so correct as almost all the machine 
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operators or engineers intervene with the robots at least once every day in order to check 

for logs or acknowledge alarms. 

 
Figure 28 

 
This suggests that most of the participants still have no experience working with smart 

machines in the industry. This determines that they might find our system a bit complex 

to comprehend in the initial phase. 

 

 
Figure 29 

 
Generally, participants require 2 – 8 work hours in order to modify the robot program. 

This suggests a minimum of 2 – 8 hours of production down time.  

 

As part of the second phase of the evaluation, we proceed with the cognition-based task 

execution. The observations are below. 
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1. Download the Robot Application into the Robot Controller. 

 

 

Figure 30 
 

 

Figure 31 
 

The process of downloading the robot application into the robot controller is an 

important step towards using our proposed system. It requires the installation of the 

Staubli Robotics Suits (SRS) into the PC. Once SRS is installed, the user has to send the API 

to the robot through FTP that is facilitated by the Transfer Manager tool integrated in 

SRS. It was observed that one of the participants experienced an issue with the 

installation of SRS due to which he did not find this process to be easy. 
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2. Create TCP IP Socket on the robot 

 

 

Figure 32 
 

 

Figure 33 
 

It was observed that 50% of the participants could easily create the TCP-IP socket on the 

robot whereas 60% of them found it difficult to insert the communication parameters. 
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3. Open, Run and Interact with the downloaded robot API from the HMI pendant 

 

 

Figure 34 
 

 

Figure 35 
 

 

Figure 36 
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It was observed that 30% of the participants did not find it too easy to open and load the 

robot API into the RAM from the HMI pendant as it involves multiple operations to access 

the robot controller’s disk from the HMI menu and choose the respective API from the 

application list. However, once the application is opened and loaded into the robot 

controller’s RAM around 70% of the participants found is very easy to RUN it and interact 

with the API interface. The main reason behind this is that Running an application from 

the HMI pendant is a one button operation if the application is already loaded into the 

robot controller’s RAM. The application’s interface is simple to interact with as the user 

just needs to enter 1 as a numeric input in order to begin the communication process with 

the PRUDENS server. 

 

4. Run PRUDENS server on the PC 

 

 

Figure 37 
 

 

Figure 38 
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Figure 39 
 

We observed that 30% of the participants found it difficult to give access rights from 

Windows for their PC to enable data exchange over TCP IP. One of the participants failed 

to do so due to some stringent access right policy in his company’s laptop. This participant 

however successfully configured the permissions in his personal laptop. The remaining 

60% participants were easily able to do so by following the respective cues on their 

Windows operating system. When it comes to working with the command prompt it was 

found that 50% of the participants had negligible or little understanding of this tool. 

However, 80% of the participants found it easy to run PRUDENS server from the 

command prompt by executing the “npm start” command. It was observer that 20% of 

the participants found it difficult to run PRUDENS server as they could not navigate to the 

source folder from the command prompt.  

 

5. Workaround with the PRUDENS interface 

 

 

Figure 40 
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Figure 41 
 

 

Figure 42 
 

 

Figure 43 
 

It was observed that 80% of the participants found it easy to comprehend the PRUDENS 

interface understand the syntax of Rules in the knowledge base. 20% of the participants 
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however found it difficult to grasp the basics of the PRUDENS concept. It was also found 

that 90% of the participants were comfortable with the logical concept behind the rules 

and could alter the knowledge base easily. 

 

 

Figure 44 
 

 

Figure 45 
 

When it comes to understanding of the inferences generated by PRUDENS in the console, 

we found that 70% of the participants could easily understand them. However, 30% 

found it difficult initially to build an understanding of the inferences appearing on the 

console. We also found that 80% of the participants could successfully and easily create 

exceptions in the knowledge base. The remaining 20% of the participants found it 

difficult to create exceptions, if necessary, based on the inferences generated out of which 

one participant found it extremely difficult to work around with this. 
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Figure 46 
 

 

Figure 47 
 

All of the participants could easily download the inferences in the form of a text file by 

using the Download button on the console and use the Auto Reply and Memory 

functionalities. 
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6. Control and Coach the Robot through PRUDENS 

 

 

Figure 48 
 

 

Figure 49 
 

We observed that all the participants were comfortable in testing the robot by manually 

sending the outcomes generated by PRUDENS as part of the coaching scenario. 70% of 

the participants found this operation to be very easy to perform. Similar results were 

observed when the participants tried to control the robot’s motion through PRUDENS  
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Figure 50 
 

When it comes to a complete coaching scenario of the robotic arm through PRUDENS, it 

was found that 80% of the participants could easily perform this operation. Two of the 

participants were however got confused at various stages of coaching and therefore 

found the process to be difficult. 

 

As the final evaluation criteria, the participants were asked to complete the questionnaire 

that determines the System Usability Scale (SUS) as part of their individual feedback. The 

questionnaire consists of 10 questions where the participants are required to record 

their feedback on 1 – 5 scale.  

 

From Table 7 below, we observe the outlook of the participants on the questionnaire we 

created for SUS evaluation.  

 

S. 
No. 

User Feedback Strongly 
Agree 

Agree Neither 
Agree 
Nor 
Disagree 

Disagree Strongly 
Disagree 

1 The proposed 
system was easy 

to use. 

0 3 4 2 1 

2 The proposed 
system was 

difficult to use. 

0 2 6 1 1 

3 I would prefer 
to use this 

system to coach 

1 2 4 3 0 
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the robot 
frequently. 

4 I cannot use this 
system 

independently. 

1 4 2 2 1 

5 This proposed 
system is not 

complete.  

0 1 8 2 0 

6 I need training 
to use this 

system. 

2 5 2 1 0 

7 The proposed 
system could 
have a better 

user interface. 

0 3 5 2 0 

8 I don’t prefer 
working with 

TCP IP.  

0 3 2 4 1 

9 The proposed 
system cannot 

be implemented 
in complex 

robotic 
processes.  

2 4 3 1 0 

10 The proposed 
system is awful. 

0 0 1 3 6 

Table 7. System Usability Scale Questionnaire 
 

The first question was based on the ease of use of the system where out of ten participants 

four did not find it to be easy nor difficult whereas three of the participants found the 

system to be easy to use. Two participants found the system to be difficult probably due 

to their low industrial know-how whereas one participant found the system to be very 

difficult. The second question asked the participants about the system’s difficulty level 

and it was found that two out of ten participants found the system to be difficult to use. 

However, six participants were not sure about the same. The remaining participants were 

comfortable with the system and found it not difficult at all. Based on their feedback on 

the third question we found that three participants would like to use such a system 

frequently to coach their robot out of which one participant looked very much promising 

in doing so. We also observe that another three participants were skeptical about using a 

similar system for robot coaching purposes. It might be possible that they belong to the 

category of the users who feel comfortable in using the standard technology rather than 

adopting an out of the box approach. The remaining four participants were not sure about 
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using or not using a similar system for robot coaching purposes in their jobs. Regarding 

the fourth question about using a similar system independently, we observed that five 

out of ten participants were able to do so out of which one participant was highly 

confident regarding the same. Out of the remaining fifty percent participants two could 

not decide that whether they could use a similar system independently or not. However, 

three participants did not find it possible to use such a system independently with one 

being completely reluctant. This gave us an idea that the system might not target the 

users who are reluctant towards trying to get accustomed with new technology. This 

would further require us to add several features to the system that would gain the 

confidence of such users. Eight out of ten participants could not decide that whether the 

proposed system was actually ready to be adopted industrially or not. Although two 

participants were sure enough that the system needs to be developed further for a 

complete industrial integration one participant found it to be ready. We also agree that a 

complete industrial integration requires many factors to be considered. These factors 

might be related to several features for alarm and scenario management, reporting, safety 

etc. which could be adopted into our proposed system through a multi-dimensional 

research and analysis. Seventy percent of the participants found that they would require 

an initial training prior using such a system based on question six. Although the user 

interface of the system was quite simple, we observed that three out of ten participants 

desired for a better user interface which might be adaptable to the users of distinct 

cognitive traits with a possibility of personalization. However, fifty percent of the 

participants were not sure about the user interface. We also found that the remaining two 

participants found the user interface to be acceptable. As TCP -IP communication was one 

of the main features of the proposed system, we observed that according to the user 

feedback on question eight, fifty percent of the participants were comfortable with 

working with TCP-IP and thirty percent were against using this communication protocol. 

It might be due to their narrow experience in using TCP-IP communication within the 

industrial domain. However, the remaining twenty percent of the participants remained 

unsure about this. According to the user feedback on question nine, we found that sixty 

percent of the participants agreed that the proposed system cannot be implemented in 

complex robotic processes which might go beyond picking and placing applications such 

as laser cutting, welding, conveyor tracking etc. One participant however disagreed with 

the outlook of the majority. We on the other hand also disagree with the majority’s 
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feedback as laser cutting and welding applications are trajectory specific application 

where real time trajectory optimization is required. Trajectory optimization coaching 

could be easily facilitated with some modifications in the system. Also, concepts like 

product feed balancing, area distribution, conveyor strategy etc. that are widely used in 

robotic conveyor tracking applications could also be managed through our proposed 

system with some modifications and optimizations. From the user feedback related to the 

tenth question, we found that the majority of the participants did not find our system to 

be awful. This gives us motivation and strength to work on future developments related 

to a more sophisticated industrial integration and application specific optimization.       

 
 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score 

P1 3 5 3 3 5 4 3 2 3 2 52.5 

P2 2 2 2 4 2 3 2 4 4 1 45 

P3 4 5 3 4 2 4 2 3 2 1 40 

P4 1 3 2 3 3 3 4 5 3 2 42.5 

P5 3 2 5 1 3 4 4 2 2 2 65 

P6 4 3 3 5 2 1 3 4 2 3 45 

P7 5 2 5 3 4 3 5 3 4 2 75 

P8 4 4 4 3 3 4 4 3 3 1 57.5 

P9 5 3 4 3 3 3 3 4 5 2 62.5 

P10 4 4 5 5 3 5 3 5 3 2 42.5 

Table 8. System Usability Scale Matrix 
 

Based on the SUS questionnaire, we created a SUS matrix as seen in Table 8 above in order 

to calculate the system usability score of the proposed system. Here the ten participants 

are represented as Pn (n = 1, 2, 3…10) and the ten questions are represented as Qn(n = 

1,2,3….10). We then asked the participants to grade the system based on the ten 

questions on a scale of 1-5. Based on the SUS score calculation, we found the maximum 

score to be 75, the minimum score to be 40 and the average score to be 52.75 out of 100.  
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Figure 51. SUS Acceptability Score (Adobe 2021) 

 

As per (Adobe 2021), we found that on an average, our proposed system lies on the 

marginal band which determines that there is a scope to research and develop the system 

further in terms of effectiveness, efficiency, and user satisfaction.  
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Chapter 6 
 Conclusion  

 

 

 

6.1 Conclusion and Future Work 
Indulging in an argument with a machine sounds fascinating, but it brings complexities 

that need to be handled at a broader level. During our integration of the PRUDENS 

argumentation framework with an industrial robotic arm, the main challenge was to 

design a communication framework that is machine manufacturer independent. 

Although we chose to integrate the system with a Staubli Robotic Arm, the framework 

that we created could also be integrated with any available industrial robot on the market 

that allows TCPIP socket communication. The communication framework adopted is the 

cheapest in the market as it is not brand specific, as is the case today where industrial 

automation brands want to stick with customized industrial communication protocols 

(Pereira & Neumann 2009), whose scope remains limited within their brand specific 

equipment. 

 

Based on system trials with participants and analyzing the results, we were able to gain 

a detailed understanding of implementing such a system in an industrial setting and build 

a framework that would reduce programming complexities. Based on our findings and 

the discussion with the participants, we believe that we managed to explore the domain 

which requires such smart systems where the user could seek information from the 

machine and guide it through exceptions, thereby enhancing its performance. We also 

found that technological limitations and the bias that humans possess when it comes to 

using new technology play a major role in the design and implementation of such 

systems. Communication speeds are vital in a real-time system, therefore the protocol 

that verifies the data transferred and received in a communication cycle at high frequency 

is of utmost importance. TCP/IP assures an error-free data transfer between two parties 

where the data size determines the communication speed. Although TCP IP serves best 

for this purpose of information exchange, there are better technologies that could be 
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adapted for the development of such systems. For instance, the entire system could be 

developed through the Robot Operation System (ROS), which would rule out the use of 

information exchange between two separate parties. This would have provided better 

performance and optimization capabilities. However, as the industrial robots are 

available with their inbuilt programming language that is widely preferred to program 

simple industrial applications without any extra programming cost, therefore, utilizing 

ROS technology would be expensive for our proposed system due to the requirement of 

several licenses and permissions from the robot manufacturer. But this technology would 

have made it easier to set up several automatic programming routines that aren't possible 

in the programming language that our robot uses by default. 

 

Determining the naming style of the predicates that are used to create rules in the 

knowledge base of the argumentation framework was also found to be of critical 

importance. Therefore, we chose a style that is easy to interpret for the robot as well as 

for the human. We proceeded with the introduction of Boolean characteristics such as 

true and false in the predicate names, which makes it easy for the robotic application to 

interpret. In the initial phase of the development, we decided to proceed with bitwise 

operations such that the robot would send the contexts in the form of bits, which would 

be decoded at the PRUDENS server prior to processing for inference generation and 

subsequently convert the resultant into bits prior to transfer to the robot. Inference 

generation from a set of 30–40 rules is also time-consuming at the server side. Therefore, 

incorporating two additional parsers for bitwise operations would add to the processing 

time that would be further increased with the processing and decoding delays at the 

robot side, thereby increasing the overall delay in one send-receive cycle. It was also 

observed that using Booleans in the predicates made the entire naming criteria weird, 

which was also different from what PRUDENS suggests. We therefore moved to the 

standard naming criteria as suggested by PRUDENS and switched from bitwise operation 

to string operation at a later stage to keep the overall processing and comprehension 

times low. We also found that performing too many string operations also slows down 

the overall system performance. Therefore, we kept ourselves limited to minimal string 

operations on both the PRUDENS and the robot side. On the robot side, we developed 

contexts from its knowledge as strings that match the literals in the rules. This enabled a 

fast transfer of data by the robot, which was comprehended as context by the PRUDENS 
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server without the need for any additional parser. We found that generating inferences 

is time-consuming as the size of the rules increases. Therefore, we created a cache 

memory function on the server side that mapped the incoming contexts to the generated 

inferences and stored the outcome in the cache memory. This enabled us to transfer the 

inferences as per the context from the cache memory without the need for reprocessing. 

In order to process the inferences received and generate an action at the robotic arm’s 

side, we developed an inference parser. It was found that a complex parser’s efficiency 

depends on the CPU and RAM capacity as it incorporates string operations which are 

time-consuming on slower CPUs. We experienced a delay in the parsing and execution 

operations on the robot side due to the low-capacity CPU and small RAM. In an overall 

scenario, we managed to work a complete cycle of context transfer and inference 

comprehension for non-cached outcomes to be as slow as 200 ms and for cached 

outcomes to be as slow as 138 ms. We also found that there was a requirement for a 

dynamic time synchronization setting for a transfer cycle at the robot side, which enables 

it to start in learning mode where the server does the respective mapping in the cache 

memory. After several cycles, the robot could be switched to non-learning mode where it 

now enables fast transfer cycles. From here we also found why Working Memory plays 

an important role in the entire Human Argumentation Model, which involves the complex 

cognitive operations of learning and reasoning, intelligence, etc. 

 

This research might be extended into numerous areas, such as Human-Machine 

Interaction, Robotics, Automation, Learning through Argumentative Reasoning, and so 

on. There is a lot of room for research in areas like automated programming and program 

induction (Ellis and Gulwani, 2017) to achieve procedural knowledge, autonomous 

learning of arguments in a natural language environment, and improving machine-

learning approaches to argumentation, among others. As we stand today on the verge of 

industry 5.0, we expect that the human workforce will be indulged more in machine 

knowledge enhancement rather than being physically involved in the tedious jobs which 

could be handled by machines or robots more efficiently. Focus would be on the human-

machine interaction paradigm where the conveyance of knowledge, commands, and 

feedback would match that of human-human conversation. Great progress has already 

been made in the natural language interpretation modules of the voice-controlled home 

automation systems like Siri, Alexa, and Google Assistant, etc. Our idea of coaching an 
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industrial robotic arm through argumentation is the initial step of bringing forward the 

use of argumentation theory as an interaction interface with industrial machines in an 

industrial setting, where we also bring forward the concept of machine programming 

through argumentation at a very superficial level. We believe that further developments 

in our approach to machine coaching would make industries ready for the upcoming 

industrial revolutions.  
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Appendix A 
Code 

 

 

Robot Coaching through PRUDENS 
The code for our proposed system is available at the following GitHub repository. 

https://github.com/khan4search/Robot-Coaching-through-PRUDENS.git 
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