
Open University of Cyprus

Faculty Of Pure and Applied Sciences

Postgraduate (Master’s) Cognitive Systems

Postgraduate (Master’s) Dissertation

Argumentation Based Coaching of an Industrial Robotic
Arm

Mohammad Anas Salman

Supervisor
Dr. Isidoros Perikos

May 2022

Open University of Cyprus

Faculty Of Pure and Applied Sciences

Postgraduate (Master’s) Cognitive Systems

Postgraduate (Master’s) Dissertation

Argumentation Based Coaching of an Industrial Robotic
Arm

Mohammad Anas Salman

Supervisor
Dr. Isidoros Perikos

The present Postgraduate (Master’s) Dissertation was submitted in partial
fulfilment of the requirements for the postgraduate degree

in Cognitive Systems
Faculty Of Pure and Applied Sciences

of the Open University of Cyprus.

May 2022

iii

BLANK PAGE

iv

Summary

Since the advent of the first industrial revolution, the need for machines that would help

to increase production in order to fulfill market demands has increased exponentially.

Industrial robots have sparked a lot of attention since then. In order to cope with

industrial needs, engineers and machine designers have endeavored to construct

machines that would work on the kinematics inspired by the human arm. With the

developments in technology, industrial robotic arms have changed over time. Although

the initial models were more hydraulic and hardwire driven, the recent robotic arms

incorporate highly sophisticated mechanics, electronics, and software. With the dawn of

the Fourth Industrial Revolution, industries have increased their technology benchmark

and are in need of smart technology that can learn, infer, and explain their behavior. This

has expanded the research in the Human Machine Interaction domain where scientists

have managed to propose such systems where interacting with industrial machines has

become easier. Building automation systems through no code or low code approaches

has further alleviated the technology benchmarks. In this Master’s dissertation, we

propose an approach under the shadow of the Human Machine Interaction domain to

coach an industrial robotic arm through the PRUDENS interface that facilitates machine

coaching through argumentation and machine-learning theories, which appear to be

useful in monitoring the machine’s behavior and guiding it to adapt itself under

exceptional settings. PRUDENS is a software tool that has been developed by the

Computational Cognition Lab of the Open University of Cyprus led by Dr. Loizos Michael.

We implement a real-time human-robot interaction system that facilitates machine

coaching within industrial boundaries, in addition to discussing recent trends in the

human-robot interaction domain and the implications of AI, ML, and argumentation

techniques on it.

v

Περίληψη

Από την έλευση της πρώτης βιομηχανικής επανάστασης, η ανάγκη για μηχανές που θα

βοηθούσαν στην αύξηση της παραγωγής προκειμένου να ικανοποιηθούν οι απαιτήσεις της

αγοράς έχει αυξηθεί ραγδαία. Τα βιομηχανικά ρομπότ έχουν προκαλέσει μεγάλη προσοχή

από τότε. Προκειμένου να ανταποκριθούν στις βιομηχανικές ανάγκες, οι μηχανικοί και οι

σχεδιαστές μηχανών προσπάθησαν να κατασκευάσουν μηχανές που θα λειτουργούσαν στην

κινηματική, εμπνευσμένες από τον ανθρώπινο βραχίονα. Με τις εξελίξεις στην τεχνολογία, οι

βιομηχανικοί ρομποτικοί βραχίονες έχουν αλλάξει με την πάροδο του χρόνου. Αν και τα

αρχικά μοντέλα ήταν πιο υδραυλικά και με σκληρό καλώδιο, οι πρόσφατοι ρομποτικοί

βραχίονες ενσωματώνουν εξαιρετικά εξελιγμένους μηχανισμούς, ηλεκτρονική και λογισμικό.

Με τον ερχομό της Τέταρτης Βιομηχανικής Επανάστασης, οι βιομηχανίες έχουν αυξήσει το

τεχνολογικό σημείο αναφοράς τους και χρειάζονται έξυπνη τεχνολογία που θα μπορούσε να

μάθει, να συμπεράνει και να εξηγήσει τη συμπεριφορά του. Αυτό επέκτεινε την έρευνα στον

τομέα της Αλληλεπίδρασης Ανθρώπων - Μηχανών που οι επιστήμονες κατάφεραν να

προτείνουν τέτοια συστήματα στα οποία η αλληλεπίδραση με τις βιομηχανικές μηχανές έχει

γίνει ευκολότερη. Η κατασκευή συστημάτων αυτοματισμού χωρίς κώδικα ή η προσέγγιση

με ελάχιστο κώδικα έχει μετριάσει περαιτέρω τα τεχνολογικά σημεία αναφοράς. Σε αυτή τη

μεταπτυχιακή διατριβή, προτείνουμε μια προσέγγιση υπό το πρίσμα του τομέα

Αλληλεπίδρασης Ανθρώπινων Μηχανών για την καθοδήγηση ενός βιομηχανικού

ρομποτικού βραχίονα μέσω του περιβάλλοντος PRUDENS που διευκολύνει την καθοδήγηση

μηχανών μέσω επιχειρημάτων και θεωριών μηχανικής μάθησης, που φαίνεται να είναι

χρήσιμες για την παρακολούθηση της συμπεριφοράς και την καθοδήγηση της μηχανής να

προσαρμόζεται σε εξαιρετικές ρυθμίσεις. PRUDENS είναι ένα εργαλείο λογισμικού που έχει

αναπτυχθεί από το Εργαστήριο Υπολογιστικής Νόησης του Ανοικτού Πανεπιστημίου

Κύπρου με επικεφαλής τον Δρ Λοΐζο Μιχαήλ. Εκτός από τη συζήτηση των πρόσφατων

τάσεων στον τομέα αλληλεπίδρασης ανθρώπου-ρομπότ και των επιπτώσεων της τεχνητής

νοημοσύνης, μηχανικής μάθησης και τεχνικών επιχειρηματολογίας σε αυτό, εφαρμόζουμε

ένα σύστημα αλληλεπίδρασης ανθρώπου-ρομπότ σε πραγματικό χρόνο που διευκολύνει την

καθοδήγηση μηχανών εντός των βιομηχανικών ορίων.

vi

Acknowledgments

I am highly grateful to The Almighty who gave me the strength to pursue this masters

education. I would like to thank my supervisor Dr. Isidoros Perikos for accepting me to

complete my Dissertation under his valuable guidance and for his consistent support during

this entire phase. I would like to convey my special gratitude to Mr. Vasileios Markos for his

valuable inputs regarding the PRUDENS tool. Furthermore, I would like to thank my family

for being a constant support system without whom I wouldn’t have come so far. Lastly, I am

highly grateful to my daughter Erina Salman for her constant motivation.

vii

Table of Contents:
Chapter 1 .. 1

Introduction ... 1

1.1 What is Human-Machine Interaction? .. 3

1.2 What is Industrial robotic Arm and Argumentation based Machine Coaching? 4

1.3 The Link between Industrial robotic arm and Argumentation. 6

Chapter 2 .. 8

Explanation .. 8

2.1 Objectives & Necessity of Research Study ... 8

2.2 Machine Coaching ... 11

2.2.1 Robot control and guidance through Machine Coaching .. 13

2.3 Argumentation & Learning in Machine Coaching .. 16

2.3.1 Description of Arguments under Machine Coaching Language 17

2.3.2 Establishing the Boundaries of an Argumentation Framework 20

2.3.3 Grounded Semantics of an Argumentation Framework.. 23

2.3.4 Learning under Machine Coaching .. 26

Chapter 3 .. 29

Literature Review ... 29

3.1 Human-Robot Interaction (HRI) ... 29

3.1.1 Interaction based on Communication ... 30

3.1.2 Interaction based on Behavior ... 32

3.1.3 Interaction based on Robot Type ... 33

3.1.4 Safety in HRI ... 33

3.1.5 Use of Machine Learning & Artificial Intelligence in HRI .. 34

3.2 Defeasible Logic .. 37

3.2.1 Defeasible Logic Programming .. 39

3.2.2 Defeasible Logic Programming Applications .. 41

3.3 Argumentation based Communication Theory .. 42

3.3.1 Use of Argumentation theory in HRI ... 43

3.3.2 Argumentation in Machine Learning .. 44

Chapter 4 .. 46

Methodology .. 46

4.1 Implementation .. 46

4.1.1 Architecture ... 47

4.1.1.1 Argumentation Framework ... 48

viii

4.1.1.2 Environment ... 48

4.2 The Language of Staubli Robotic Arm – VAL3 ... 49

4.2.1 VAL3 Application ... 50

4.3 Communication over Socket TCP IP .. 50

4.3.1 Client & Server in TCP IP ... 52

4.4 The PRUDENS Tool ... 53

4.4.1 The Language of PRUDENS Tool ... 53

4.5 Linking PRUDENS and the Robotic Arm ... 57

4.5.1 Code Description - PRUDENS .. 58

4.5.2 Code Description – ROBOTIC ARM ... 65

Chapter 5 .. 72

Evaluation... 72

5.1 Intrinsic System Performance ... 101

5.2 Extrinsic System Performance ... 104

Chapter 6 .. 126

Conclusion .. 126

6.1 Conclusion and Future Work ... 126

Appendix A ... 130

Code ... 130

References .. 131

1

Chapter 1
Introduction

With the advent of the 4th industrial revolution, human-machine interaction is

increasing, and smart technologies are rapidly penetrating every aspect of our lives.

Today, smartphones have become part of our lives, and it is natural for people to interact

with each other anytime and anywhere using these internet enabled smartphones. With

Industry 4.0, this situation is developing further, and the concept of the internet of things

is being clearly adopted alongside the concept of the internet of people. As a result of all

of this, technology will reach a point where machines and systems can talk to each other.

Humans will play a role that is more like that of a teacher or coach, and this will allow

machines and systems to store some knowledge so that they can learn and reason more

like humans in an industrial setting.

Under this industrial revolution, it is expected that machines will organize themselves

around intelligent connections and distributions and try to minimize the human error

rate. With their integrated communication capabilities, machines could make smart

decisions and stay alert at all stages of production by being in constant connection and

communication with their environment. These self-organization capabilities of machines

would pave the way for complex production scenarios that could be run in the future

where humans tend to make errors. Special products that need to be produced one by

one with the interaction of machines could be produced flexibly and in mass without the

need for human intervention and could be quickly released to the market. Such tasks

under the present scenario are handled by robots, which are nothing but industrial

machines that work in the way they are programmed. These robots could develop

reasoning capabilities if they have previous knowledge related to the general world or

knowledge that is task-specific, which could be learnt dynamically as they operate in the

environment. In a broader sense, this would also enable these robots or machines to

explain their actions and as a result they could also be coached by humans through

2

mutual argumentation. This argumentation-based reasoning capability would further

enable humans to seek guidance from these machines under some specific scenarios.

Argumentation is a process of reasoning under which conclusions are formed based on a

theory. While explanation aims to provide reasons or arguments that support a

conclusion against other competing conclusions, argumentation strives to provide

reasons or arguments that support a conclusion against other conflicting conclusions

(Craven & Toni 2016, Gaertner & Toni 2007). When given a rule "A follows from B" and

the observed outcome "A," snatching is frequently referred to as in reverse. We can

deduce that the rule's condition "B" is (possibly) true. A set of sentences representing an

addictive explanation H for an observation O is returned in a logic-based setting, given a

set of sentences representing a theory T that models a domain of interest and a sentence

representing an observation O, such that: 1. T H |= O, 2. T H is consistent, where |= denotes

the deductive logical entailment relation. For the same observation, there may be several

explanations in many circumstances. Extra standards such as minimality may be applied

for an explanation to be considered admissible. It could also be said that the

argumentation process is used for defending a claim (such as a belief or a choice) with

the use of some premises and an argument that connects these premises to the claim.

Arguments in support of a claim are supposed to be accepted or legitimate in the sense

that they can defend themselves against all other competing arguments, i.e., counter-

arguments that challenge the supporting argument. Argumentation takes place in a

formal context inside a predetermined framework. e.g, argumentation framework, AF =

(h, A, D), where h is a set of arguments, A is an attribute, and D is a function. Furthermore,

D is a binary defense (or defeat) relation on h, whereas A is a binary attack relation on h.

The role of attack relation comes into play when one argument is a counter-argument

(i.e., opposing or challenging) to another whereas the role of defense relation comes into

play when one argument is powerful enough to defend against another (opposing or

challenging) argument. Under the aforementioned argumentation framework, a subset of

arguments is acceptable under the following conditions:

• The argument is conflict-free, that is, it does not comprise arguments that are

antagonistic to one another.

3

• The argument defends itself against all additional subsets of arguments that are

directed to it.

Therefore, the goal of argumentation is to form a coalition of arguments with other

arguments to defend it against arguments that would undermine it in some way, such as

by questioning its premises or the appropriateness of its link between its premises.

1.1 What is Human-Machine Interaction?
The way in which a human being interacts with a machine, which could be anything that

reduces human effort, is simply termed "Human Machine Interaction (HMI)." There are

various aliases present for the term Human Machine Interaction, such as Human

Computer Interaction (HCI), Human Machine Interface (HMI), Man Machine Interface

(MMI) etc. In today’s world, Human-Machine Interaction is directly related to the high-

level machines that involve ample software usage and have sophisticated electronics. The

need for HMI has evolved greatly over time as we can find such devices right in our

homes, offices, shopping centers, etc. and everywhere around us in the ecosystem.

Regarding some simple examples of HMI, we have the keyboard, which is a lifesaving

invention derived from the typewriter. It plays a key role in the advancement of

technology today. Then we have the mouse, the GUI panels present on the electrical home

appliances, the KIOSKS present around us in the city, medical devices, computer gadgets,

GUI panels in industrial machinery etc. Through HMIs, we can control the machines as

per our desire, and with the advancement of AI and machine learning technologies, we

could train the machines over a set of inputs. Ergonomics is important in the design and

development of HMIs because it keeps the interaction between the human and the

machine as simple as possible.

Groundbreaking advancements in electronics technology have made the integration of

devices such as cameras, microphones, sensors, etc., possible in order to be used as the

interaction interface between humans and machines.

4

1.2 What is Industrial robotic Arm and Argumentation
based Machine Coaching?

An industrial robotic arm is a reprogrammable, autonomous, or semi-independent

machine that functions to assist a human worker with numerous tasks in a production

environment or is capable of working independently. It can perform mechanically

challenging and repetitive tasks as well as manipulate objects through pre-programmed

movements. Besides being able to handle risky tasks such as entering into a secondary

machine which entails fatality risks for humans, it is also capable of collecting and

processing data to optimize the work and adapt its behavior to the surrounding

environment through some sophisticated artificial intelligence algorithms.

Unimate was the first industrial robot, which was developed in 1954 by George Charles

Devol, who is also known as the father of robotics. A few years later, Devol and

entrepreneur Joseph F. Engelberger founded Unimation, the world's first robotics firm.

After applying for the patent of Unimate in 1954, Devol personally introduced it, which

was sent to General Motors in 1961, who first used this robot for die casting and spot

welding of car bodies. Subsequent to this, General Motors bought 66 more Unimates and

installed them in its factory. Affected by these developments, Ford and Chrysler

companies also became interested in industrial robots. With the increasing interest and

investment of the entire automotive industry, the future of industrial robots has begun to

shine (Wallén 2008). According to the International Federation of Robotics (IFR) 2020

report, the number of robots used in factories worldwide increased by 12%, to 2.7

million. Today, the industrial robot market is worth $41.23 billion. As per their latest

report for the 2021 edition, IFR states that in manufacturing industries, the global

average robot density has almost doubled in the last five years, having 126 robots per

10,000 employees, with Asian countries such as South Korea, Singapore, and Japan

topping the charts.

With the evolution of these industrial robots over time, the requirement for more

sophisticated control algorithms and the development of some human-machine

interaction interfaces were born. Although recent industrial robotic arms are outfitted

with cutting-edge human-machine interaction interfaces that allow the user to program

them to work according to process requirements and create some motion trajectory in

5

space via point teaching, they lack the ability to explain their behavior to the user or learn

from some user-generated heuristics in a dynamic setting.

This kind of reasoning and learning could be made possible if these industrial robots

could be interfaced with some kind of reasoning framework that is capable of

communicating with the user as well as with these robots in a language that is mutually

interpretable. Through this, humans could seek guidance on specific scenarios or convey

their message to these machines. This would further enhance the role of machine

operators in the industry from performing learning supervision tasks to endowing

knowledge to the machines as coaches.

Machine coaching is a two-way approach to knowledge acquisition that falls under the

human-machine interaction domain. Through Machine Coaching, a human user may

transmit his own preferences, expertise, and/or intuition to a machine by giving it

guidance in the form of reasons in favor of or against specific behaviors. A machine

coaching cycle takes place between two parties, such as a smart system that has a basic

knowledge of its own and a supervisor, which could be a human or a highly

knowledgeable smart system. Based on the knowledge and the preferences, the smart

system is able to make decisions pertaining to a specific goal. The supervisor, on the other

hand, could make this decision-making process more accurate by enhancing the

knowledge of the smart system about that specific goal. A machine coaching cycle is built

up of the following steps:

• Triggering of the smart system or the cognitive agent by the supervisor or advice

seeker to seek guidance on a specific task which acts as the context for the agent.

• With the available knowledge base of the cognitive agent, some advice about the

context is proposed.

• The advice seeker could then prompt the cognitive agent for the associated

reasons pertaining to the proposed advice.

6

• The cognitive agent provides the explanation backed by the associated reasons

from its knowledge base pertaining to its proposal.

• The advice seeker, if it disagreed with the agent’s explanation, could provide its

own outlook on the context, which would initiate the knowledge acquisition

process through user-specific reasons or simply the associated arguments.

However, in the case of an agreement, the advice seeker would accept the agent’s

advice and the entailing explanation. Therefore, the agent’s knowledge is not

interrupted, and the advice seeker may proceed with another query, reinitializing

the entire process.

In a high-level setting, this could be done by, for example, removing, adding, or changing

a specific rule from the agent's knowledge base as part of its explanation, or by changing

the rule's priority, which is the order in which it appears in the agent's knowledge base.

The goal of coaching an industrial robotic arm through argumentation is to improve the

rudimentary forms of human-machine communication and mutual understanding by

offering a fundamentally more suitable language of communication that makes the

machine's internal reasoning simple to the human. As part of our proposed system, we

can use the hard-coded logic-based previous knowledge and inference application

through logical arguments to achieve argumentation-based reasoning within the

cognitive agent. This makes machine coaching possible when the cognitive agent is

connected to the robotic arm.

1.3 The Link between Industrial robotic arm and
Argumentation.

Argumentation can be seen as a process of explaining a claim by the set of premises on

which the supporting argument is built. From the perspective of argumentation-based

coaching of an industrial robotic arm, we believe that there is an existing interface that

could convey the arm’s current situation dynamically in real time to the argumentation

framework, which consists of some predefined knowledge in the form of rules. These

rules could contain the information that is necessary to coach the arm. The user could

also seek guidance about the arm’s specific behavior under the current situation or rather

7

the context. This explanation is conveyed in the form of inferences to the user, which are

backed by related arguments extracted from the rules in the knowledge base of the

argumentation framework. The user could accept the supporting arguments for these

inferences or reject them by adding, deleting, or modifying the rules in the available

knowledge base in order to achieve the desired explanation. As the robotic arm is

communicating with the argumentation framework in real time, it also receives the

generated inferences, which enables the arm to change its behavior depending upon the

user’s arguments. Under the argumentation framework, the existence of an argument for

some inference could be understood mathematically as described in (Michael 2019). Let

h be some literal, k be a prioritized knowledge base, k = (R, p) and c be some context,

which is a set of pairwise non-conflicting literals. Assuming that (I = R U c), we conclude

that A is an argument for h in c under k if A is a subset of I, (A ⊆ I), i.e., A contains few or

all elements in I under the following conditions:

1. A ≠ ø

2. h could be inferred through repeated application of modus ponens starting from

literals in A ∩ c using the rules in A ∩ R

3. We cannot infer h from M, which is a proper subset of A, (M ⊂ A), i.e., M contains

fewer elements than A, such that ø ≠ M ⊂ A by substituting it in place of A as in (2).

8

Chapter 2
 Explanation

2.1 Objectives & Necessity of Research Study
Embedding cognitive abilities and human intelligence in machines has been a hot topic

among researchers and scientists worldwide. Although such features are quite common

in humanoid robotics, computers, and mobile applications, etc., the industrial world still

starves for them. The main issue with industrial automation systems is their limitation to

interacting with humans through a language that both can comprehend in real time. This

makes it difficult for the machine operators or learning supervisors to change some of its

inappropriate behavior instantly by annotating knowledge that would in turn enhance

the machine’s performance. The main objective of this research study is to create an

interaction interface that would facilitate machine coaching through an argumentation

process. It would serve as a bridge between the human and the machine through which

the former could interpret the latter’s explanation pertaining to some specific behavior

and guide it where necessary to achieve maximum performance. In our case, the machine

is an industrial robotic arm, which will be coached by a human operator to improve some

aspects of its behavior in an industrial environment.

Industrial Robotic arms are widely used across all sorts of industries worldwide, be it

automotive, aerospace, metal working, material handling, packaging, medical, pharma,

etc. Each sector has its own application requirements, complexities, and challenges. The

necessity of this research lies in the fact that manual teaching or application-based

teaching of these robotic arms is time-consuming and requires skills and experience that

machine or line operators do not possess. This increases machine downtime and incurs

production loss for the industry. With the advancement in smart technologies, it is

possible to incorporate techniques which could offer some cognitive characteristics to

these smart machines. This would make them intelligent enough to converse with the

9

users for easy learning based on their directives and also argue with the users to come

up with a correct learning result without the requirement of traditional machine

programming. This would enable the operators to interact freely with these robotic arms

without the requirement of any special technical skills.

We therefore propose a system that consists of an argumentation assistant and an

industrial robot which are connected through an interaction interface that is accessed by

the human user. The assistant communicates with the robot over TCP-IP to exchange

information that is crucial for its operation. The robot, on the other hand, evaluates the

operation scenario through constant monitoring of its system information. This

information consists of the robot’s model, firmware version, hours of operation, current

coordinates in the joint reference frame, current tool center point coordinates in the

world reference frame, the mechanical and software limits of the six axes, its operation

mode (manual or automatic), the emergency circuit status, etc. As per the reasoning

outcome, the assistant could also give commands to the robot, such as starting or

stopping the operation cycles, sending the robot to its home position, and so on. The

assistant also has access to the robot’s application-specific signals such as sensors,

actuators, etc.

To achieve the reasoning functionality through a set of rules under a specific situation,

the assistant consists of a knowledge base and a context. The assistant, based on the

current context that is cyclically updated by the robot, deduces its outcome from the set

of rules that have been manually defined in its knowledge base by a human user. These

rules describe the robot’s standard policy of operation. Depending upon the user’s

requirements related to the robot’s operation, these rules could be modified, deleted, or

new rules could be added in the assistant’s knowledge base. Argumentation functionality

is achieved in such a way that the assistant presents an argument in the form of a rule or

a set of rules from its knowledge base that support its explanation in the specified context.

These explanations are sent to the robot to actuate the control scenario. The user who

acts as a supervisor, on the other hand, could present its counter argument in case of

disagreement with the agent’s explanation that rebuts the assistant’s supporting

argument. To do this, the rules in the assistant's knowledge base are added, removed, or

changed.

10

For instance, under the robot’s standard operation policy, the assistant’s knowledge base

consists of the following rule sets:

Rule_0 :: at_home, auto_perm, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: -sleep, auto implies auto_perm;

Rule_4 :: -powered implies sleep;

Rule_5 :: powered implies -sleep;

Rule_6 :: manual implies -auto;

Rule_7 :: -manual implies auto;

The standard policy states that the robot must move to pick up the part if it is in the home

position, in automatic mode, and its gripper status is open. Once the part is picked, then

it must proceed to place it, and subsequently it must go to its home position. The robot

would repeat this procedure cyclically.

Based on this standard policy, the robot would move to pick up the part even though it is

not available. When the human user seeks information from the assistant on this issue,

the agent explains that from rules r7, r5, and r3 it is deduced that "the robot has automatic

permission active." As it’s gripper status is also open, therefore from r0 it is deduced that

"it must go to pick up the part."

Considering the control scenario and the user’s requirements, the assistant’s knowledge

base could be manually intervened upon by the user. Depending upon the agreement

between the user and the assistant’s claim and the explanation related to it, the user could

modify the available set of rules in the knowledge base, create new rules or delete the

existing ones. For instance, the user does not agree with the agent’s explanation above

about its standard policy of not moving when the part is absent. Therefore, the user now

11

creates an exception in the knowledge base by modifying r0 and adding a new rule as r3,

which can be seen below.

Rule_0 :: at_home, auto_perm, part_avl, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: auto_perm, -part_avl, grip_open implies wait_part;

Rule_4 :: -sleep, auto implies auto_perm;

Rule_5 :: -powered implies sleep;

Rule_6 :: powered implies -sleep;

Rule_7 :: manual implies -auto;

Rule_8 :: -manual implies auto;

In r0, the user has incorporated a new predicate called part_avl which determines the

status of the part’s availability. Also, in the new rule r3, the user has annotated that if the

robot has automatic permission and its gripper is open but the part is not available, then

it must not move. Therefore, the following explanation is generated when the user seeks

guidance from the agent regarding the robot not moving to pick up the part:

From rules r8, r6, and r4, it is deduced that "the robot has automatic permission to

operate". As the part is not available and its gripper is open, then from r3 it is deduced

that the robot should wait for the part.

2.2 Machine Coaching
With Machine Coaching, a human user may transmit their own preferences, expertise,

and/or intuition to a machine by giving it guidance in the form of arguments in favor of

or against specific behaviors. This takes place through a coaching cycle involving two

parties, such as the user and the machine/agent, which we have already described in

section 1.2 of Chapter 1. For a better understanding, we further elaborate on this in the

context of industrial robot control. We presume that all of the following arguments are

12

given in a common language between the human user and the coaching agent. Also, we

assume that our agent is provided with a single rule which states that when the robot has

automatic permission and the part is available on the conveyor, then it must move to pick

the part from the conveyor. Assuming that the robot has automatic permission, and

therefore, when we seek advice in the context of part availability, the agent suggests:

“I would suggest the robot to pick or grab the part as it has automatic permission, and the

part is available”.

This advice is acceptable pertaining to the agent’s knowledge and the available context.

Next, another part arrives on the conveyor and on querying the agent in the similar

context we receive the following response:

“I would suggest the robot to pick or grab the part as it has automatic permission, and the

part is available”.

Due to our assumption pertaining that our agent has only one guideline which says that

when a part is available and the robot has automatic permission then it must pick the

part, the above suggestion was quite evident. As such, a suggestion regarding the picking

of the part when the robot already has a part in its gripper would result in a crash when

the robot moves again to pick the new part from the conveyor. We proceed to advise our

agent to be more careful by checking the state of the gripper through the following

counterargument to its suggestion:

“Even through a part is available on the conveyor and the robot has automatic permission,

it must pick the part only when its gripper is in open state”.

In light of this counterargument, we withdraw our prior advice of picking the part when

the robot has automatic permission, and the part is available on the conveyor at the local

level. The revised rule in the agent’s knowledge base would allow the robot to pick the

part from the conveyor only when its gripper state is open, besides other mandatory

requirements as discussed above. We could teach the agent more about our theory of

controlling robots by giving it more suggestions in the same way.

13

When it comes to machine learning and declarative programming, machine coaching falls

somewhere in between. One of the advantages of machine learning in this case is that the

user's heuristics and preferences may be used to help the machine learn about its own

domain. Contrary to popular belief, under the concept of "machine coaching," the

machine is not given explicit instructions on where to look for or how to create relevant

information. As a result, the user provides explicit instructions to the machine and, if

feasible, the agent follows these instructions in some form. Machine coaching, on the

other hand, makes the learning process obvious to the system's functionality while also

enabling humans to educate machines in a more declarative manner. Every time it makes

a decision, the machine notifies the user of the reasoning it used to arrive at that decision.

When considering machine coaching as an interpretable learning approach (Arrieta et al.

2020), we can say that the user can grasp every step of the model's reasoning and

learning process based on their own advice. This is because of the preceding information.

Since each proposal is based on rules that derive from a user's idea about some domain,

the user is supposed to be capable of simulating its function given all the information

accessible to the machine. This makes machine coaching also a simulatable paradigm.

In the following section, we will discuss in more detail that how we can control and guide

the industrial robot in a more declarative manner by grasping every step of the reasoning

and learning process based on our own advice in the form of rules entailing a priority

relation. Hence, understanding in a better way how Machine Coaching's high levels of

interpretability and transparency may be attributed in large part to this. As we proceed,

the majority of this dissertation's discussion on machine coaching follows the

presentation in (Michael 2019).

2.2.1 Robot control and guidance through Machine Coaching

Moving ahead with the example discussed above in section 2.2 we describe that the robot

has a task to pick the part from the conveyor, place it and then return to the home

position. This policy is described in the form of three rules in the agent’s knowledge base

in the following manner.

14

Argument 1: Rule 1

When the robot has automatic permission, the part is available on the conveyor and its

gripper is open then it must move to pick the part from the conveyor.

Under the language of Machine Coaching:

Rule_1 :: auto_perm, part_avl, grip_open implies pick_part;

Argument 2: Rule 2

When the robot has automatic permission, and the part is picked from the conveyor then

the robot must move to place it at the place point.

Under the language of Machine Coaching:

Rule_2 :: auto_perm, part_picked implies place_part;

Argument 3: Rule 3

When the robot has automatic permission, and the part is placed then the robot must

move to the home position.

Under the language of Machine Coaching:

Rule_3 :: auto_perm, part_placed implies go_home;

Assuming that the robot has automatic permission, and its gripper state is open, when we

seek advice from the agent under the context of part availability (part is available), the

agent suggests:

“As the robot has automatic permission, its gripper is in the open state and the part is

available then it must move to pick the part”.

Therefore, it presents Argument 1 which fires Rule 1 as part of its explanation. The head

of Rule 1 “pick_part” acts as the control command for the robot that enables it to move

and pick the part.

15

Now assuming that the robot has automatic permission, and its gripper state is closed,

when we seek advice from the agent under the context of part availability (part is

available) and part status (part is picked), the agent suggests:

“As the robot has automatic permission, and the part is picked then it must move to place

the part”.

Therefore, it presents Argument 2 which fires Rule 2 as part of its explanation. The head

of Rule 2 “place_part” acts as the control command for the robot that enables it to move

and place the part.

Further we assume that the robot has automatic permission, and its gripper state is open,

when we seek advice from the agent under the context of part availability (part is

available) and part status (part is placed), the agent suggests:

“As the robot has automatic permission, its gripper is in the open state and the part is

available then it must move to pick the part”. – Rule 1

“As the robot has automatic permission, and the part is placed then it must move to home

position”. – Rule 3

Therefore, under this circumstance, the agent fires both Rules 1 and 3 as part of its

explanation for the relevant arguments, leading to a conflict. Therefore, as Rules 1 and 3

are prioritized differently, the robot's relevant move may or may not be advised

depending on the order in which they are prioritized. Hence, in our case, as Rule 1 appears

higher in order as compared to Rule 3, therefore it holds a higher priority. Therefore, the

robot will move to pick up the part rather than go to its home position.

As the robot’s standard task is made of three operations of picking, placing, and moving

to its home position, based on the agent’s above suggestion according to the rule priority,

the robot fails to execute its final operation. So, our counterargument suggests that the

robot should only pick up the available part if it is at the home position as below:

16

“Pick the part from the conveyor only if the robot is present at the home position”.

Therefore, we withdraw our prior advice of picking the part when the robot has

automatic permission, its gripper state is open, and the part is available on the conveyor

at the local level. The revised rule in the agent’s knowledge base would allow the robot to

pick the part from the conveyor only when it is physically present at the home position,

besides other mandatory requirements as discussed above. The revised rule would look

like below:

Argument 1: Rule 1

When the robot is at home position, has automatic permission, the part is available on the

conveyor and its gripper is open then it must move to pick the part from the conveyor.

Under the language of Machine Coaching:

Rule_1 :: at_home, auto_perm, part_avl, grip_open implies pick_part;

In this manner, we utilize Machine Coaching’s functionality to control and guide the

industrial robot in a more declarative manner by grasping every step of the reasoning

process based on our own advice in the form of rules entailing a priority relation.

2.3 Argumentation & Learning in Machine Coaching
Here, we'll talk about how reasoning works in the context of machine coaching. Before

we can proceed, we must define the arguments. Under Machine Coaching, arguments

appear in the following manner:

• Internal arguments help the machine decide what actions, behaviors, or items to

suggest to the user.

• Interaction with the user is accomplished via the usage of machine arguments.

Actually, when the computer gives you advice, it also gives you an explanation of

why it gave you that recommendation. In fact, the answer is based on the same

internal logic that led the machine to reach this conclusion in the first place. So,

17

one could say that the machine is clear and easy to understand, as described by

(Arrieta 2020), since it lets the user see how it works.

• Any argument from the user is accepted by the machine. As we said in section 2.2,

the user can give the machine a counterargument if they don't agree with the

proposal or explanation it gives.

2.3.1 Description of Arguments under Machine Coaching Language

Under the machine coaching domain, the existence of an argument for some inference

could be understood mathematically as described in (Michael 2019). Let h be some literal,

k be a prioritized knowledge base; k = (R, p) and c be some context which is a set of

pairwise non-conflicting literals. Assuming that (I = R U c), we conclude that A is an

argument for h in c under k if A is a subset of I, (A ⊆ I), i.e., A contains few or all elements

in I under the following conditions:

1. A ≠ ø

2. h could be inferred through repeated application of modus ponens starting from

literals in A ∩ c using the rules in A ∩ R

3. We cannot infer h from M, which is a proper subset of A, (M ⊂ A), i.e., M contains

fewer elements than A, such that ø ≠ M ⊂ A by substituting it in place of A as in (2).

The unique rule γ ϵ A that has h as its head is also known as the argument's crown rule.

At least one literal from x or one rule from R must be present in an argument in order for

it to satisfy the first criterion. For the second condition to hold, we need to be able to

derive R from our hypothesis as an argument in support of our hypothesis. At this point,

it should be noted that an argument may or may not include any rules at all, in which case

h should be included. Since we presume that literals relating to a context are by default

evaluated as truths that are true in a specific scenario inside our setting, such harmful

arguments might be construed as restating some previously known fact. The last and

most critical condition requires that arguments be limited in the sense that they comprise

just what is necessary. There is no need to distinguish between arguments that vary by,

18

say, one rule or one literal that does not have any additional consequences relating the

target literal h.

Consider the following knowledge base k which has the following rules.

Rule_0 :: at_home, auto_perm, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: -sleep, auto implies auto_perm;

Rule_4 :: -powered implies sleep;

Rule_5 :: powered implies -sleep;

Rule_6 :: manual implies -auto;

Rule_7 :: -manual implies auto;

Let us consider the following context c:

-manual; powered; at_home; grip_open, -part_picked; -part_placed;

Suppose we wish to see whether the knowledge base k above has any support for the

argument for pick_part. We may deduce pick_part from (A = c ∪ k) ≠ ø by looking at the

rules and literals in A thereby proving the first two conditions to be true. Now regarding

the third condition, even if we delete -part_picked, -part_placed or rule Rule_1, we may

still deduce pick_part from the new reduced set, which indicates the requirement about

the argument's minimality is not met.

The following option, which is the only one that satisfies the third requirement listed in

the definition of an argument, is the one and only viable alternative for the A.

A = {-manual, powered, at_home; grip_open, Rule_3, Rule_0}

19

Therefore, pick_part would not be inferred if any of the preceding rules were not applied

to A. For instance, eliminating rule Rule_3 would prevent Rule_0 from being triggered,

thereby preventing its head pick_part to be inferred.

It should be further understood that, given a context c, a prioritized knowledge base k,

and a target literal h, even if there is an argument A for h in c under k, its status as a unique

solution is in no way guaranteed, even in the event that it does exist. In order to provide

evidence of this, let us extend k by including the following rules, each of which has a

greater priority as compared to any other rule:

Rule_9 :: auto_perm, test_pick implies pick_part;

Rule_8 :: auto_perm, simulation_active implies test_pick;

Rule_0 :: at_home, auto_perm, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: -sleep, auto implies auto_perm;

Rule_4 :: -powered implies sleep;

Rule_5 :: powered implies -sleep;

Rule_6 :: manual implies -auto;

Rule_7 :: -manual implies auto;

On extending our context c above with the literal simulation_active; we observe that

pick_part is also deduced by a second argument B in the following way:

B = {-manual, powered, simulation_active, Rule_3, Rule_8, Rule_9}

A context c and a prioritized knowledge base k may serve as the basis for the development

of arguments in support of, as well as opposition against, the same literal. In addition, it

is also feasible to create arguments in both of these directions simultaneously. In point of

fact, have a look at the following knowledge base:

20

Rule_11 :: at_home, auto_perm, grip_open implies pick_part;

Rule_10 :: auto_perm, test_place implies place_part;

Rule_9 :: auto_perm, test_place implies -pick_part;

Rule_8 :: auto_perm, simulation_active implies test_place;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: -sleep, auto implies auto_perm;

Rule_4 :: -powered implies sleep;

Rule_5 :: powered implies -sleep;

Rule_6 :: manual implies -auto;

Rule_7 :: -manual implies auto;

Under the following context c:

-manual; powered; at_home; grip_open, -part_picked; -part_placed; simulation_active;

The following argument supporting pick_part is contructed:

A = {-manual, powered, at_home; grip_open, Rule_3, Rule_11}

However, under the same context c as above, another argument supporting -pick_part is

also constructed.

B = {-manual, powered, simulation_active, Rule_3, Rule_8, Rule_9}

2.3.2 Establishing the Boundaries of an Argumentation Framework

As we have described above in detail the arguments under Machine Coaching, we proceed

to building an argumentation framework, as stated in (Dung 1995). Here we define α and

ω as an ordered pair (α, ω) where α is an argument set and ω is a binary attack relation

on α, such that, ω ⊆ α x α (Dung 1995). Furthermore, let context to be referred as c and

prioritized knowledge base as k = (R, p).

We let α be the set of all arguments in c under k in terms of the total number of arguments

(Michael 2019). We will make the following decisions within the ASPIC+ framework

21

(Prakken 2010) in regard to the ω relation of attacks between arguments through the

approach described by (Michael 2019).

• It is impossible to refute the premises of context c, so we use it as an axiom set

(Prakken 2010). Contextual knowledge is always deemed to be accurate since

arguments cannot be challenged on their premises. The robot’s working mode

(auto/manual) cannot be questioned by any of the users, and the same holds true

for all of the environmental facts where the robot operates. This is a way of saying

that facts about a given scenario cannot be disputed.

• We have decided that all of the rules that make up our knowledge base should be

defeasible. This means that if all of the rule's assumptions are true, then it is

possible for the rule's head to be true (Prakken 2010). There are a few rules that

hold true in every situation, whether in daily life or in a robot’s operation, and our

defeasibility factor aims to represent this truth. In reality, the vast majority of

rules are context-sensitive.

• In between arguments, we prefer to respond to attacks with rebuttals (Prakken,

2010). According to the definition of refutation, an argument B challenges an

argument A when the conclusion of B contradicts some of the conclusions that A

has drawn, among other things. If you let attacks be rebutted, that means that for

argument A to be true, no other counterargument can be triggered by a certain

situation, so that every single conclusion of argument A is accepted in that context.

• Using the last-link approach (Prakken 2010), we can also sort arguments. For

instance, if the final rule of A is preferred over the last rule of B according to the

priority relation p, we say that an argument A is preferred over another argument

B.

To put it another way, if one of the below requirements is met in a context c under a

knowledge base k, we may say that an argument A supporting h, attacks another

argument B that includes a rule r with head -h i.e. (𝐴𝐴, 𝐵𝐵) ∈ ω.

22

• (h ∈ c), which means that it is an undeniable fact that the conclusion of argument

A, h is correct.

• (γ ⊀ 𝑟𝑟), where γ being the crown rule of argument A which implies that B′, the sub-

argument of B that has r as its crown rule, is no less preferable than A.

Hence for a better understanding of the above, let us consider the two arguments A and

B that we have described in the previous section.

A = {-manual, powered, at_home; grip_open, Rule_3, Rule_11}

B = {-manual, powered, simulation_active, Rule_3, Rule_8, Rule_9}

Clearly, A attacks B, but vice-versa. As a matter of fact, Rule 11 of argument A rebuts Rule

9 of argument B. Rule 11 is favored above Rule 9 since it occurs above Rule 9 in the

knowledge base, however this is not the case for B because it may include a rule that leads

to a conflict with A.

Furthermore, let us consider the following knowledge base where the rules that appear

higher have a higher priority.

Rule_1 :: at_home, auto_perm, prod(Shift1), -prod(Shift2), grip_open implies -pick_part;

Rule_2 :: at_home, auto_perm, prod(Shift), start(Shift), grip_open implies pick_part;

Rule_3 :: at_home, auto_perm, prod(Shift), halt_prod, grip_open implies -pick_part;

Rule_4 :: time(X), ?<(X,9) implies halt_prod;

Consider the following context describing the industrial production scenario:

at_home; auto_perm; prod(morning); -prod(afternoon); grip_open; start(morning);

time(8);

Under the above context, three arguments are detected:

A = {time(8), at_home, auto_perm, prod(morning), grip_open, Rule_4, Rule_3}

B = {at_home, auto_perm, prod(morning), grip_open, start(morning), Rule_2}

C = {at_home, auto_perm, prod(morning), -prod(afternoon), grip_open, Rule_1}

23

Given that (pRule_3 < pRule_2 < pRule_1), where p describes the priority relation of the rules

R in knowledge base k, argument B attacks argument A – because pRule_3 < pRule_2 and also

argument C attacks argument A, since pRule_2 < pRule_1 among the three arguments above.

2.3.3 Grounded Semantics of an Argumentation Framework

Using a prioritized knowledge base k and a given context c, we'll look at what may be

reliably deduced and see whether there's a computationally efficient approach for

calculating the inferred literals. For a potential solution, we consider adopting Dung's

Grounded extension of an argumentation framework, as proposed in (Dung 1995);

Michael 2019). Prior to proceeding with the details, we define certain terms as a

prerequisite. It is only admissible to argue that an argument A is acceptable with regard

to a set of arguments, S, if for every other attack on A, there is another attack on B by

another argument C, such that C ∈ S. (Dung 1995). That is, S has adequate evidence to

counter all of A's attacks.

Let the argumentation framework be represented as AF = (α, ω). The characteristic

function of AF is represented as a function ZAF : P(AF) → P(AF), where P(X) determines

set X’s powerset such that ZAF(S) = {A ∈ α: with regard to S, A is acceptable.} (Dung 1995).

Therefore, with ZAF, the first fixed point of ZAF's grounded extension GEAF of AF is

specified with regard to set inclusion (Dung, 1995). In order to throw more light on this

notion, let us assume again that the argumentation framework is denoted by AF = (α, ω)

and its characteristic function be denoted by Z.

Starting with the empty set ø, the following steps are taken:

• If Z(∅) = ∅, as our first fixed point of Z is identified here therefore we say GEAF = ∅

in order to conclude.

• If Z(∅) ≠ ø, we start finding Z2(∅) ≔ Z(Z(∅)). When we identify Z2(∅) = Z(∅) that

means GEAF = Z(∅) in order to conclude.

• If Z2(∅) ≠ Z(∅), similar to above we start finding Z3(∅) and so forth.

24

The grounded extension of AF, GEAF, can be computed with certainty since Z maintains

set inclusion. For instance, let X ⊆ Y and A ∈ Z(X). Given that each attack against A is met

by a rebuttal from X, the same logic must be applied to Y which ultimately results in A ∈

Z(Y), and hence Z(X) ∈ Z(Y). Thus, we may either stop at some fixed point or continue

with a bigger set of arguments at each step. Therefore, under this context, proving that

there exists at least one fixed point for Z would be sufficient to prove the computation of

the grounded extension. Assume that M ≔ {X ⊆ α: X ⊆ Z(X)}. Note that M ≠ ∅ as ∅ ∈ M

and assume that Y ≔ ⋃X∈M X which is clearly understood from the fact that M ≠ ∅.

Initially we prove that Y ⊆ Z(Y). As we know that X ⊆ Y for any X ∈ M to avail Z(X) ⊆ Z(Y)

for any X ∈ M from the set inclusion fact of Z. Therefore, Y = ⋃X∈M X ⊆ Z(Y) and, as we

know that Y = sup M, we obtain Y ⊆ Z(Y). In order to get the inclusion inversely, note that

as Y ⊆ Z(Y), because Z holds set inclusion, we also know that Z(Y) ⊆ Z(Z(Y)). Therefore,

we get Z(Y) ∈ M from the description of M. So, as Y = sup M we also hold Z(Y) ⊆ Y. Hence,

Y exists as a fixed point of Z through Y = Z(Y).

Grounded semantics are also described as the skeptical semantics in (Dung, 1995) from

their objective to record a set of inferences that may be securely established under a

knowledge base k in a context c. To shed more light on this in order to determine which

argument sets A ∈ α are acceptable by ∅, we calculate Z(∅). To put it another way, there

is no argument B in Z(∅) attacking any argument A, therefore this clearly captures

conclusions that don't require any further support. Hence, there is no argument included

in GEAF when Z(∅) = ∅. If this is the case, we are unable to move further because ∅ = Z(∅)

= Z(Z(∅)) = ⋯ = Zn(∅) = ⋯

We further calculate Z(Z(∅)) under the situation Z(∅) ≠ ∅ which means that the set of

arguments that, although being attacked by other arguments, are able to be defended by

arguments that are not themselves attacked by any other argument. Because of this, we

may confidently accept such judgments. Our argumentation framework's grounded

extension may be produced in the same way as previously, if the following holds: if

Z(Z(∅)) = Z(∅) and Z(Z(Z(∅))) equals Z3(∅), then we have constructed our framework's

grounded extension. By extending Z2(∅) to arguments that may be attacked by arguments

25

that are in turn attacked by other arguments in Z(∅), we advance our understanding of

Z(∅) until we reach Z's first fixed point, proceeding in the same manner.

After our understanding of the above we say that the concepts grounded and skeptical

seem reasonable in this situation because an argumentation framework is an ongoing

process. Here we begin with arguments that don't need to be supported by other

arguments. Then gradually we add new arguments so that they can be defended against

other attacks by refuting the attacking arguments. Therefore, under grounded semantics

the property of groundedness marks its importance in the sense that it permits safe

conclusions to be made. Another important reasons for the selection of grounded

semantics in the argumentation framework are that they bear resemblance with the

human reasoning leading to a single model that is evident from the findings of (Stenning

& Lambalgen 2012) and also, they facilitate efficient computation of the grounded

extension of an argumentation framework (Michael, 2019).

We will now show an example of a grounded extension in our context of the industrial

robot control and guidance after describing the motivations behind the concept of an

argumentation framework's grounded extension as well as our personal motive for using

it in our setting.

Let us again consider the three arguments and their attach relations that we had

described in section 2.3.2 above such that α ≔ {A, B, C} and ω ≔ {(C, B), (B, A)}.

A = {time(8), at_home, auto_perm, prod(morning), grip_open, Rule_4, Rule_3}

B = {at_home, auto_perm, prod(morning), grip_open, start(morning), Rule_2}

C = {at_home, auto_perm, prod(morning), -prod(afternoon), grip_open, Rule_1}

The grounded extension of the argumentation framework AF = (α, ω) can be computed

as under:

• We begin by calculating ZAF(∅). Given our attack relation, the sole argument that

can stand alone without the help of other arguments is argument C, and as a result

ZAF(∅)= {C}. We do not stop here as ZAF(∅)≠ ∅.

26

• In the subsequent step we calculate Z2AF(∅) = ZAF(ZAF(∅)). We also get C ∈ Z2AF(∅)

from the fact that C ∈ ZAF(∅) and ZAF holds set inclusion. Also as C ∈ ZAF(∅) defends

A from the attack of B, we get A ∈ Z2AF(∅). Note that since B is attacked by C

therefore B ∉ Z2AF(∅).

• Further we calculate Z3AF(∅) = ZAF(Z2AF(∅)). Note that as B is being attacked by C,

it is impossible to include it in the argumentation framework's grounded

extension. We get Z3AF(∅) = Z2AF(∅) from the fact that ZAF holds set inclusion

therefore, {A, C} emerges as the first fixed point of ZAF.

Therefore, {A, C} is found to be the grounded extension of the argumentation framework

as discussed above. Hence, given the aforementioned three arguments and their attack

relation, we can't successfully argue in favor of B although, as stated above, we can when

it comes to A and/or C.

2.3.4 Learning under Machine Coaching

According to (Michael 2019), PAC semantics (Valiant 1984) are used to characterize

learning in the context of Machine Coaching. If an algorithm can learn a feedback class X

= X(α, β, γ) using a hypotheses class T for every 𝛿𝛿, 𝜀𝜀 ∈(0,1), every probability distribution

P over inputs in α of size n and every f ∈ X of size s, provided access to 𝛿𝛿, 𝜀𝜀 X, we claim

that the algorithm is probably approximately conformant given the fact that it iteratively

performs the following task:

i. Either through a random or active choice under P fetch an input (i ∈ α).

ii. From (j ∈ β), choose an output.

iii. Get some guidance f (i, j).

The algorithm finishes and returns a hypothesis h ∈ T after [q (1/𝛿𝛿 , 1/𝜀𝜀 , 𝑛𝑛, 𝑠𝑠)] maximum

time such that 𝑓𝑓(i, ℎ(i)) = 𝑛𝑛𝑛𝑛Guidance except with probability 𝛿𝛿 and 𝜀𝜀 (Michael, 2019: 84).

In addition, we shall argue that the method is an efficient conformant learner if q with

regard to its parameters has a polynomial complexity.

According to the definition above, an algorithm that can capture a theory about anything

(e.g., an industrial robotic arm) by making predictions about examples it encounters and

27

receiving pieces of advice about them is possible under any desired probability of failure

𝛿𝛿 ∈ (0,1) and any desired probability of accuracy 𝜀𝜀 ∈ (0,1). Then, we get a model of our

theory that is correct, allowing for mistakes to occur with a probability 𝜀𝜀, provided that

the algorithm ends at some point, based on the two stated probabilities, the size of each

example and the related pieces of advice. Moreover, the above model of our theory with

a probability of 𝛿𝛿 may not be generated.

Apart from the high-level description of learnability above, we try to shed some light on

the efficient learning algorithm described in (Michael 2019) in the form of a learning

protocol. Here, our target learning theory, the knowledge base, is denoted by k and c

represents the context of our choice. Our specific feedback class X is described as below:

• If a predicted rule is not found in k, it will be regarded unrecognized unless it is a

rule that exists in our theory.

• If a predicted rule does not add to any argument in c under k, it will be deemed

unnecessary or superfluous.

• If a rule does not exist in a prediction while it is included in k and its inclusion

would lead to extra arguments from the machine, it is deemed incomplete.

• If there is no alternative argument in x under k that challenges an argument in the

machine's prediction, then the argument is regarded indefensible.

• Otherwise, no responsive situation will arise.

The following algorithm is probably approximately conformant learner as described in

(Michael 2019) provided the feedback class X as above and the linear order of the

conflicting rules in k with respect to their priority relation.

• Let the initial knowledge base of the machine is represented by k = ∅.

• For each input i, that is randomly chosen:

 Determine the prediction of the corresponding dual representation j.

 As per the above protocol get the user’s advice f (i, j).

 Facilitate the deletion of the rules that are deemed to be superfluous or

unrecognized. Provide rules that are deemed to be incomplete or result in

28

the user’s counter-arguments having priority higher compared to any

existing rule in k.

• Repeat the above process until the condition of no response arises for n

consecutive cycles. Here n stands for the polynomial as per the PAC learnability

definition above.

The description of the learning protocol above enables us to get an idea about how in

section 2.2.1, our desired functionality is achieved where the user was able to rebut the

machine’s explanations through his counterarguments.

29

Chapter 3
Literature Review

The literature review consists of a detailed analysis of the interaction mechanism

between a human and a robot as well as how defeasible logic and argumentation theory

aid this domain.

3.1 Human-Robot Interaction (HRI)

Graph 1. HRI publication distribution over the years

As per the Scopus website, Graph 1 above displays the increasing amount of research

being carried out over the years in the field of Human-Robot Interaction. With the

1 1 3 2 2 2 6 6 1 4 10 3 18 26 32 46 52 53 89 95
17

8 24
6 35

2
35

4 46
3 53

8
53

9
83

7 88
0

84
3 99

5
13

57
13

20 14
28

17
77 19

17
21

14 22
07 23

59

0

500

1000

1500

2000

2500

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

Pu
bl

ic
at

io
ns

Year

30

growing number of publications, HRI researchers have attempted to answer the subject's

challenges in a variety of ways. Figure 1 depicts the classification of these techniques.

Figure 1. HRI classification

3.1.1 Interaction based on Communication

Various routes can be used to establish the needed communication through vision and

speech for the establishment of HRI. The perception of the surroundings by a robot is

provided by a collection of algorithms that use image sensors such as a camera. In the

work by Xue et al., they used a six-axes robot and an industrial camera to execute gas

metal arc welding with an error rate of less than 0.5mm with an operator (Xue et al.

2021). Another investigation was conducted using a plastic robot joint with a camera.

People touched this joint, and the direction in which they wished to move the robot

according to the propensity of this joint was identified using the camera (Oliveira et al.

2020). In another study, deep learning algorithms were used to locate the spots in the

image where the robot could grasp the items (Bergamini et al. 2020). The pictures

captured by the Red-Green-Blue-Depth (RGB-D) sensor in Li's work were characterized

using deep learning methods to control the robot arm in the simulation environment (Li

2020). In a research similar to that of Li's, the depth picture captured by the RGB-D sensor

HR
I

Communication

Vision

Speech

Touch

Multi-way

Behavior
Mimic

Collaboration

Type
Social Robots

Industrial Robots
Safety

31

was recognized using deep learning to operate the Baxter robot using the human arm's

movement (Fang et al. 2020).

Speech is another kind of communication that is utilized as frequently as vision in HRI.

Chen and his colleagues employed speech-based communication to enable their robot to

recognize human emotions (Chen et al. 2020). Another study (Liu et al. 2018) calculated

Mel Frequency Cepstral Coefficients (MFCC) over speech with 90.28 percent accuracy to

identify emotional interactions between humans and robots using linear discriminant

analysis (LDA) and principal component analysis (PCA). It was possible to execute the

needed tasks by talking to the Khepera II robot. 2007). Ding and Shi used the microphone

array on the RGB-D sensor to drive a humanoid robot using a speech recognition program

based on support vector machines (SVM) and Gaussian mixture models (GMM) (Ding &

Shi 2017). (Gunawan et al. 2017) used voice recognition to operate another humanoid

robot, Rapiro.

Touch is one of the ways that humans communicate with one another. The detection of

the robot's touched site and the assessment of the touch kind were explored in research

on this communication technology, which used three microphones mounted on a

humanoid robot (Gamboa-Montero et al. 2020). A success rate of around 86 percent was

attained. Erica, a humanoid robot, was given the ability to anticipate touch and glance in

that direction using two RGB-D sensors in another study (Shiomi et al. 2018). Another

research on Erica investigated whether joyful and sad sentiments could be

communicated to the other individual by touch, and it was successfully discovered (Zheng

et al. 2020). Kim and his colleagues used nine touch sensors and one accelerometer

mounted on the head of a humanoid robot to detect whether humans touched it with one

of the four forms of touch they identified using a temporary decision tree method (Kim et

al., 2010).

When interacting with one another, people frequently utilize many communication

channels. In HRI, the scenario is similar. These communication channels are frequently

used jointly in the literature. For example, the KUKA LBR iiwa industrial robot is

controlled using both visual and tactile communication channels (Cherubini et al. 2015).

A voice and visual communication channel was employed with a humanoid robot in

32

another study (McColl et al. 2017), and the relevance of body language derived from the

picture was underlined. Both the voice and hand gesture detection routines on the

GOOGOL GRB3016 and KUKA KR 6 R700 robots have successfully followed the trail (Du

et al. 2018). This voice and hand gestures approach was utilized to control a robot arm in

another investigation and the only variation between the two experiments above is that

the sensors used for hand movements are different (Yongda et al. 2018). In another

investigation, a robot that provided human assistance at an event interacted with the

participants through speech and vision (Jensen et al. 2005).

3.1.2 Interaction based on Behavior

In order for robots to perform desired tasks, they must imitate humans or collaborate in

order to benefit from people's experiences. This difficulty was put forth in one of the

studies that required the understanding of the location and orientation of the object first

in order for the robot to fetch it. The robot was instructed to fetch the object like humans

that was demonstrated by the people in order to tackle this difficulty, and successful

results were obtained (Canal et al. 2016). In another study, data from a surface electrode

Electromyography (EMG) sensor connected to people's arms was used to create a robotic

hand that imitated the human hand (Meattini et al. 2018). The copying of humanoid facial

emotions such as pleased, sad, and astonished by a robot has also been studied in the

literature (Cid et al. 2013, Ge et al. 2008). In another research, Erica, a humanoid robot,

was able to simulate a tourism agency representative owing to the transfer of speech

knowledge gathered via human-human conversation (Doering et al. 2019). A

laparoscopic robot is used to guide the camera mounted on it according to the head

motions of the surgeon doing the surgery to assured that the surgeon enlarged the region

that he focused on (Fujii et al. 2018). A robotic assistant has been built to aid people

during the cutting process of wooden or plastic objects in other investigations (X. Chen et

al. 2020, Peternel et al. 2017). Another field where human-robot collaboration may be

seen is welding. According to research in this field, light-weighted robots assist people to

achieve smoother welding results (Erden & Billard 2015a, Erden & Billard 2014, Erden &

Billard 2015b). The method of transporting heavy goods alongside people was taught to

the robot through imitation to achieve collaboration in research focused on robot

imitation and collaboration. In extension to this research, the robot was taught to

collaborate with humans throughout the furniture assembly process (Rozo et al. 2016).

33

3.1.3 Interaction based on Robot Type

The most often employed robot kinds in HRI are the social and industrial robots, which

will be covered in this section. Robots that can be a part of people's daily lives are known

as social robots. In Tseng and his team's investigation, the robot was asked to determine

whether or not socially distant people require assistance. In order to do this, the robot

would respectfully interrupt a group of people's conversation to ask if they had any

questions, or if a person directly inquired, the robot would answer their queries (Tseng

et al. 2016). The feeling of trust in the robot under social HRI was investigated in another

study, and it was discovered that people's trust in robots increased following a gaming

session (Aroyo et al. 2018). A humanoid robot was used to deliver 121 treatment sessions

to pediatric patients with autism spectrum disorder over the course of four weeks in

another research (Melo et al. 2019). Another research used the Nao robot to help 8 young

individuals with autism spectrum disorder play the Tangram puzzle game in instructional

and peer mode which had positive outcomes (Bernardo et al. 2016).

Industrial robots are another category of robots that are frequently employed in HRI.

Kronader and Billard used KUKA LWR and Barrett WAM industrial robots to construct

physical HRI and user interface applications for beverage filling. When both the softwares

were tested on the task load index and system usability scale by two groups of 14 people,

the physical HRI was observed to be more responsive (Kronander & Billard 2014). In

another research on the KUKA LWR robot, it was found that using a combination of

variable impedance and kinematic redundancy resolution in physical HRI applications

may achieve the best accuracy and processing time (Ficuciello et al. 2015). With the aid

of the developed wearable sensors, the ABB YuMi robot was able to imitate human arm

movements in another study (Zhou et al. 2020, F. Chen et al. 2019).

3.1.4 Safety in HRI

Governments and employers have agreed on certain safety regulations to mitigate the

dangers associated with the human work environment that have evolved as a result of

the industrial revolutions. The ISO 10218 standard and the ISO/TS 15066:2016 technical

specification (Robla-Gomez et al. 2017) govern the connection between people and

robots in terms of safety. More specifically, the safety requirements for industrial robots

34

are established by ISO 10218, whereas safety standards for robot and controller

manufacturers are established by ISO 10218-1, and safety standards for robot and

assistive device integrators are established by ISO 10218-2. The ISO TS 10566 standard,

on the other hand, contains standards for collaborative robots.

Due to the advancement in technology and continuous evolution of the human-robot

interaction domain, the vast majority of HRI scientists are focused on developing a safer

HRI. In the research conducted by Liu and Wang, RGB-D sensors installed in the robot's

working environment were used to identify whether people approached the robot,

allowing a new trajectory to be designed to prevent an accident (H. Liu & Wang 2021).

Another research (Landi et al. 2019) used a Kinect sensor to predict if a person in the

robot's working area would approach the robot. In another investigation, infrared

sensors were mounted at intervals over the designated joint of the ABB IRB 140 robot,

and the information obtained from these sensors was calculated. With this, the presence

of a human in the vicinity who may constitute a threat was perceived (Buizza Avanzini et

al. 2014). Raiola and his colleagues, on the other hand, have successfully established a

safe HRI by analyzing the energy of the robot joints without the need for an external

sensor (Raiola et al. 2018).

3.1.5 Use of Machine Learning & Artificial Intelligence in HRI

Machine learning is an application area of artificial intelligence that learns by analyzing

data, detecting patterns, and making inferences without the need of human

programming. With the rise of this branch, algorithms have started to leave the field of

mathematics and enter the field of natural sciences, as the nature of machine learning is

to make statistical inferences from the data representing the existing world and to

operate the patterns.

Perhaps the biggest contribution of machine learning algorithms to programmers is that

they are very time-saving. For example, if a programmer wants to write a spelling

correction program code, instead of describing all the examples of spelling errors one by

one, he/she can feed a set of existing spelling error examples into machine learning

algorithms and come up with a much more comprehensive program in a very short time.

Another area of use is the ability to customize products for specific audiences. Let's say

35

that the spelling correction program produced by the programmer was very successful

and he/she wanted to adapt it to other languages. Thanks to machine learning algorithms,

the program can be adapted to other languages by operating the same model for the

languages closest to the language in which the program is written. Another possibility

offered by machine learning is that it can distinguish and recognize data outside the

threshold of human perception.

Of course, the contributions of machine learning to a programmer's life are numerous,

but what are the most common technologies with which we interact as humans in our

daily lives that incorporate these machine learning algorithms?

• Recommendation Systems

One of the areas where machine learning is most commonly used is

recommendation systems, which allow websites to offer a more personalized

experience to their users. For sites such as Netflix, Youtube, or Amazon, which

have a wide range of content and are growing and developing every day, the ability

to bring this content to users at any time and in a need-oriented manner is one of

the most important factors that keeps these sites ahead of the competition. For

example, Netflix can show different content to different users to promote a

production on its interface. On online shopping sites such as Amazon, on the other

hand, recommendation systems can offer options about product combinations

that the user can add to the shopping cart.

• Spam/Mail Subject Filtering

All of us, at some point in our lives, have suffered from junk mail that has fallen

into our mailbox. When this is the case, it can be quite difficult to distinguish

important messages from others. But now, mail services such as Gmail make the

user's job much easier by scanning the subject and content of the mails received

by the user with machine learning algorithms and placing them in appropriate

categories. A similar system is also used to filter spam and phishing emails.

• Search Engines & Internet Search

36

Search engines such as Google, Yandex, etc. that we use almost every day in our

lives to access the resources available on the internet and that act as a bridge

between the human user and the internet incorporate machine learning

algorithms as their prime working mechanisms. These algorithms are used in

many stages, such as indexing data on the internet (web crawling), optimizing the

ordering of results, and extracting the most appropriate results for the context of

the search term.

• Smart Personal Assistants

If anyone has ever spoken to their smart assistant on their phone or at home,

they've experienced natural language processing and deep learning algorithms,

which are a subset of machine learning. The difference between these algorithms

and classical machine learning is that they can also process unstructured data.

While 80% of the data we produce is unstructured, only 20% is classified as

structured. Unstructured data is a data group with a wide variety such as visual,

audio, video, mobile activity, social media activity and is therefore difficult to

analyze, whereas structured data includes data that is easy to analyze and

collected in accordance with a predetermined data model.

Voice-activated devices like Siri, Alexa, Cortana, or Google Assistant have already

started coming into our lives and making them easier by hearing accurately what

is being said, understanding the context, and responding in the most appropriate

way for the situation and in a language that we can understand. In order to do all

of these and to make sense of the unstructured data in the form of natural

language, machine learning algorithms are used.

While most of the above-mentioned systems have the ability to learn from the data

supplied explicitly through questionnaires or implicitly through the learning algorithms,

some specific systems could also be coached in real time in order to achieve outcomes

that are most suitable to the user’s desires. For example, smart personal assistants could

be taught to play a certain song when the user is sad instead of a random song that the

assistant thinks fits the mood.

37

At today's technological level, the employment of artificial intelligence and machine

learning algorithms in HRI is unavoidable so that the robots can provide the most suitable

responses to unanticipated inputs. The DT (Decision tree) algorithm was utilized in Kim

and his team's work to classify the touch types in the HRI established using the touch

channel (Kim et al. 2010). Emotion categorization was accomplished with the SVM

machine utilizing characteristics collected from facial pictures (Ge et al. 2008). In another

study, the data collected with the surface EMG sensor was classified using SVM, and the

robot reproduced human hand motions (Meattini et al. 2018). The GMM (Gaussian

Mixture Model) is used by the robot to learn the movement of the parts required for table

construction (Rozo et al. 2016). Fujii and his colleagues used the k-means algorithm and

the Hidden Markov Model (HMM) to move the camera on the laparoscopic robot (Fujii et

al. 2018). In speaker and speech identification software built for use in humanoid robots,

structures such as SVM, GMM, and fuzzy classifier are employed (Ding & Shi 2017). A two-

layer fuzzy multiple random forest method was used in another work to investigate

emotion prediction without speech (L. Chen et al., 2020). Fang and his colleagues used a

Deep Neural Network (DNN) to interpret the depth image and used the human arm angles

in the image to alter the arm angles of the Baxter robot (Fang et al. 2020). Using Deep

Convolutional Neural Networks (DCNN), the robot was able to locate locations where it

could grasp unfamiliar items in other research (Bergamini et al. 2020). Another study

utilizing DCNN found that the generated system could recognize two hands with the aid

of DCNN and use the motions of these hands to establish human-robot communication

(Gao et al. 2019). In another similar work (Li 2020), it was attempted to simulate human

arm motions by the robot with the use of DCNN and RGB-D sensors. PoseNET, a DCNN

model, ensures the human's safety while working with the robot (H. Liu & Wang 2021).

According to research done for a robot to learn humanoid qualities, reinforcement

learning allows the robot to have both social and decision-making characteristics similar

to humans on certain topics (Qureshi et al. 2018).

3.2 Defeasible Logic
Introduced for the formulation of defeasible reasoning, defeasible logic (Nute 1994) is a

logic in which the relationship between the consequences of the logical assertions is not

monotonic. Due to this fact, defeasible logic could be referred to as non-monotonic logic.

38

It can therefore reason on contradictory logical statements by employing defeat relations

among defeasible logical propositions, unlike in monotonic logic. Defeasible logic is built

up of strict evidence or facts, strict guidelines or rules, defeasible rules, undermining

defeaters, and priority relations among defeasible rules.

• Strict Evidence/Fact

It is represented with an atomic formula α whose complement is denoted by ¬α.

E.g. animal(Tiger) is an strict evidence.

• Strict Guidelines/Rules

They are denoted by implication representation in the form (α0 ⇐ α1 ˄ …. ˄ αn)

which states that if (α1 ˄ …. ˄ αn) is true then α0 should also be true where α0 is

referred to as the rule’s claim. Therefore, strict rules are said to be undefeatable

rules.

E.g. animal(X) ⇐ tiger(X) which states that a tiger is an animal.

• Defeasible Rules

Like the strict rules, they are also denoted by implication representation in the

form (α0 ⃪ α1 ˄ …. ˄ αn). However, they bear weaker connections as compared to

the strict rules as they are prone to be defeated by other defeasible rules. Two

rules (α and ¬α) that make conflicting assertions or claims clash and may defeat

each other.

E.g. herbivorous(X) ⃪ animal(X) and ¬herbivorous(X) ⃪ tiger(X) according to

which animals may be herbivorous and tigers may not be herbivorous.

• Priority Relations

Among the non-strict rules, priority is established by the priority relations, which

are acyclic binary relations specified in order to choose amongst the defeasible

rules based on their defeat relations or priority. As we know from the previous

example, a tiger is an animal. Animals may be herbivorous and tigers may not be

herbivorous. Therefore, we may claim both that a tiger is an animal, so it may be

herbivorous, or that a tiger may not be herbivorous. Hence, to reason on them, a

defeat relation between these rules is required. When the defeasible rule that a

39

tiger may not be herbivorous gets a higher priority, it is concluded that even in the

presence of the opposing defeasible rules that a tiger may not be herbivorous. In a

real-time scenario, the definition of these priority relations is user-dependent.

• Undermining Defeaters

These are the less defeasible versions of defeasible rules. Because of their weaker

claims, they are not employed as supporting rules in inference. Their objective is

to keep us from making decisions that we might otherwise make.

3.2.1 Defeasible Logic Programming

As per (García & Simari 2004), DeLP came into existence due to the need for combined

results that involve Logic Programming and Defeasible Argumentation. As DeLP is based

on defeasible logic, therefore, it also incorporates its characteristics such as evidence or

facts, strict rules, defeasible rules, and priority relations. DeLP enables us to build a

defeasible argumentation inference process for queries such as YES, NO, UNDECIDED,

and UNKNOWN. A claim or its counterpart is justified if the answer is YES or NO.

UNDECIDED indicates that neither the claim nor its complement is supported by

evidence. If the claim does not exist in the language, the query returns UNKNOWN.

A Defeasible Logic Program is an endless set of evidence/facts, stringent rules, and

defeasible rules that are used to come up with answers to questions. During the inference

cycle of DeLP, defeasible argumentation is used. An argument Ai among a group of

arguments (Ai ϵ ω) connects a claim, claim(Ai) to a consistent collection of evidences,

stringent rules, and defeasible rules. The support set is always the smallest consistent set

that can be used to prove the claim.

Table 1 below describes a DeLP example which is made up of facts and defeasible rules

as described in (García & Simari 2004).

a ⃪ b ¬b ⃪ e ¬b ⃪ c ˄ f ¬f ⃪ i

b ⃪ c e f ⃪ g i

c ¬f ⃪ g ˄ h g ¬h ⃪ k

¬b ⃪ c ˄ d h ⃪ j k

d j

40

Table 1. Facts & Defeasible Rules

It is to be noted here that the negation of x is represented by ¬x. Also, if Xj contains all of

Xi's supports, Xi is considered a sub-argument of Xj. If claim(Xi) = α and claim(Xj) = ¬α,

the two arguments, Xi and Xj, are said to be in conflict with each other. When argument

Xi is in conflict with a sub-argument of Xj, we say that argument Xi attacks Xj. Therefore,

we may derive the arguments as in Table 2 below from the facts and defeasible rules

mentioned in Table 1 above.

Xi Claim(Xi) Xj (Supporting Argument set of Xi)

X1 a (a ⃪ b), (b ⃪ c), c

X2 ¬b (¬b ⃪ c ˄ d), c, d

X3 ¬b (¬b ⃪ c ˄ f), c, (f ⃪ g), g

X4 ¬b (¬b ⃪ e), e

X5 ¬f (¬f ⃪ g ˄ h), (h ⃪ j), g, j

X6 ¬f (¬f ⃪ i), i

X7 ¬h (¬h ⃪ k), k

Table 2. Derived arguments from Table 1

Table 2 only lists the argument (X1) that asserts a and the arguments that may be used to

refute any other argument.

From above, the argument X2 opposes argument X1 because it claims ¬b, while X1's sub-

argument asserts b. If argument Xi rebuts argument Xj and is better than Xj in terms of

the given evaluation criteria, argument Xi becomes a blocking defeater for argument Xj.

Therefore, the arguments are blocking defeater for each other if the compared arguments

are equivalent in terms of the evaluation criterion.

In DeLP, any claim's conclusion is obtained by developing its appropriate argumentation

lines (AL), where each subsequent argument is in conflict with the sub-arguments of the

prior one in an ordered sequence of arguments (X0, X1….Xn). The claim is considered to

be justified if an argument that supports it cannot be refuted in any accepted

argumentation line.

41

As per (García & Simari 2004), a valid argumentation line shows the following properties.

• It is a set of arguments with a finite number of entries.

• No argument that exists in AL is a sub-argument of any of the preceding

arguments.

• No conflicting arguments exist between the even indices (X0 ⨆ X2 ⨆ X4 ⨆…) and

the odd indices (X1 ⨆ X3 ⨆ X5 ⨆…) argument sets.

• If a blocking defeater exists in AL then the following argument must be a valid

defeater

3.2.2 Defeasible Logic Programming Applications

As the primary aim of DeLP was to bring the results of Logic Programming and Defeasible

Argumentation together (García & Simari 2004), it paved ample scope for research that

offered several expansions to the basic formalism. In the work by (Governatori 2004)

defeasible rules were used to expand description logic. As per (Governatori & Terenziani

2007), temporal rules have been added to DeLP to cope with long-term facts and delays

between rules. The robotic domain has seen numerous applications of defeasible logic

programming. DeLP has been employed in Khepera mobile robots to form a layered

framework in order to deal with contradictory information [Feretti et al. 2006]. In the

work by (Feretti et al. 2007), DeLP is used to determine the activities of a cleaning service

robot. In a more recent and common robotic application, DeLP is also offered for

resolving potential collisions between unmanned autonomous vehicles (UAVs) via

communication (Lam and Governatori 2012).

As defeasible logic forms the basis of argumentative reasoning, it has been incorporated

in various approaches lately that introduce learning and reasoning capability in smart

machines and devices. A similar approach that formulates argumentative reasoning to

offer machine coaching is described in (Michael 2019), where all the inputs are given in

the form of rules or literals in first-order language. A fair implementation of this machine

coaching formulation is seen in PRUDENS (Personalized User-Deliberation Support),

which is a software tool that has been developed by the research group of the

42

Computational Cognition Lab of the Open University of Cyprus led by Dr. Loizos Michael.

Through an interaction interface, it makes it easier for both humans and machines to

learn new things.

3.3 Argumentation based Communication Theory
Argumentation is an important part of communication, and it has been around for

generations in our civilization. This approach finds its roots in the philosophical theory

of justification and reasoning, which was initially based on oratory and reasoning

proposed by Aristotle. However, with time, Aristotle’s views were rejected and

questioned by scholars, and a premise for argument that was larger than that proposed

by Aristotle was discovered. Several scientists attempted to create ways for people to get

support for their thoughts and views between the 60s and 70s. Many others have

developed reasoning in other ways as well.

Communication has played an important part in our evolution as human beings convey

their thoughts through speech. The speaker would provide knowledge while conversing,

and the listener would listen. The listener must be able to distinguish between legitimate

information and falsehoods and treachery in this situation. As per Dan Sperber, the

listener must possess a mechanism that would distinguish between the legitimacy of the

received information. For instance, we believe what is taught in class as we trust the

teacher and the school. Among the various scholars that have proposed different

approaches to argumentation, Stephen Toulmin’s argumentation theory has achieved

wide recognition in this domain. Being an English philosopher and logician, in his work

he has described how an argument is built up through its elements (Toulmin 2003). A

brief explanation of these elements can be seen below.

• Claim

It is a statement presented by the speaker or listener for the acceptance of the

information conveyed through it as true. For instance, one will not perform an

action when asked by someone unless inquiring and understanding the

requirements associated with the action. Therefore, one will ask for the support

of their claim, which would require the grounds associated with the claim. For

instance, Sam is a British national.

43

• Ground

It is the foundation of the claim which might be made-up data used to influence

the audience. More precisely, it is the foundation upon which an argument is

built, and it may also provide proof for reasoning. Therefore, the information

plays a vital role in the persuasion mechanism. For instance, Sam was born in

Bermuda.

• Warrant

The justification of the claim relies on the warrant which determines that the

ground to the claim is proper. It might be a simple statement or a lengthy

argument which might be correct, implied, or unstated. For instance, someone

born in Bermuda is usually of British nationality.

• Backing

Backing is directly proportional to the warrant associated to a claim as the

warrant receives additional support when the argument receives backing. For

instance, the rights granted by the law.

• Qualifier

Terms like 'most,' 'generally,' 'always,' and 'sometimes' that limit the

comprehensiveness of the claim are referred to as the qualifiers. For instance,

probably.

• Rebuttal

It refers to circumstances that are not covered by the warrant. Simply, rebuttals

are the statements that explain circumstances in which the argument will be

invalid. The denier serves as the annulter and allows for the demonstration of

revocable logic. For instance, both parents might be of foreign nationality or hold

American citizenship.

3.3.1 Use of Argumentation theory in HRI

Under standardized cases, it has been observed that the human-robot relationship is

merely a master-slave relationship where the slave (robot) works as per the guidelines

44

defined by the master (human). This methodology creates a barrier in the communication

where the slave (robot) could also propose options through its analysis which could be

utilized by the master (human) for the optimum workflow of the task. However, the

functioning of the robot is only limited to reporting errors besides discussing the reasons

for the failure. The robot cannot anticipate for better opportunities or stop its current

task to suggest alternative actions. In order to achieve a more dynamic HRI where both

the humans and the robots could engage in a dialogue exchange, the use of argumentation

theory comes into recognition to be utilized in this domain. (Sklar et al. 2013) propose an

approach where a human and a robot are engaged in a dialogue-based game. Here they

use an argumentation-based dialogue protocol to exchange inflictions to obtain an

agreement on goals and plans. The dialog protocols between the human and the robot

which include information (advice) seeking, inquiry, persuasion, negotiation and

delibration are modeled for a dynamic setting implementation. Using a similar approach

(Sklar & Azhar 2015) demonstrate how argumentation-based dialog system enables a

dynamic HRI under a gameplay environment where they focus on a Treasure Hunt game.

(Black & Sklar 2016) have explored the addressing of the issues pertaining to trust,

privacy and ethics when it comes to sharing information and modeling others’ beliefs

through computational argumentation strategies. In another study by (Azhar & Sklar

2017), objective and subjective performance analysis has been studied for a shared

decision making in a human-robot team. Positive results were achieved under human-

robot collaboration and argumentation based collective decision making whereas

subjective results varied when it comes to the preference of choosing a robot over a

human as a teammate. As argumentation-based communication facilitates a mutual

explanation and understanding based outcome generation between two parties,

therefore scholars have proposed studies that utilize argumentation framework to coach

a machine or a cognitive agent. As per (Michael 2019), a calling assistant could be coached

through a similar approach to accept or reject a call based on the user’s location, time

frame, caller priority, emotion etc.

3.3.2 Argumentation in Machine Learning

As machine learning is the process of learning from data and improving over time, its

application has become increasingly essential in recent years since it is used in almost

every domain around us. Argumentation and Machine Learning (ML) are brought

45

together in a variety of contexts, such as to enhance ML or to aid in the extraction of

arguments (Lippi & Torroni 2016, Grosse et al. 2015). The existing methods of machine

learning that involve argumentation differ in their machine learning approach and

strategy. For the supervised learning domain, the CN2 rule induction algorithm (Clark &

Niblett 1989) has been improvised in the Argumentation-Based Machine Learning

(ABML) approach by (Možina et al. 2007). (Bratko et al. 2009) propose the Argument-

Based Inductive Logic Programming (ABILP) approach that finds its roots in Inductive

Logic Programming (ILP). Another study by (Amgoud & Serrurier 2007) emphasizes on

the version space learning framework (Hierons 1999) in their concept learning technique

that is completely based on argumentation. Other studies by (Ontañón et al. 2012) which

describe multi-agent inductive concept learning, and by (Ontañón & Plaza 2014) which

describe the computational implementation of (Ontañón et al. 2012)’s work use concept

learning (Hierons 1999) for supervised learning. In their works, (Carstens & Toni 2015,

Carstens & Toni 2016) describe the Classification Enhanced with Argumentation (CleAr)

technique that has been tested using Naive Bayes classifiers (John & Langley 1995),

Support Vector Machines (SVMs) (Cortes & Vapnik 1995), and Random Forests (Breiman

2001). Therefore, it works as a global technique for any supervised learning

methodology. For the unsupervised learning domain, (Gómez & Chesnevar 2004) use the

Fuzzy Adaptive Resonance Theory (ART) model (Carpenter et al. 1991) for the hybrid

approach they propose in their work. For the reinforcement learning domain, the

Argumentation Accelerated Reinforcement Learning (AARL) described by (Gao & Toni

2013, Gao & Toni 2014, Gao & Toni 2015) finds its roots in SARSA (Rummery & Niranjan

1995). We can say that, depending upon the reasoning approach and the argumentation

technique employed, the existing machine learning techniques differ from each other,

which is evident from their varied outcomes, which are not limited to performance

improvement and transparency enhancement through improved explanation.

46

Chapter 4
Methodology

As argumentation facilitates a bilateral reasoning framework under which knowledge

could be developed through arguments or explanations, we utilize this approach through

Prudens in order to develop a Human-Robot Interaction mechanism that would offer

information flow between Prudens and the industrial robot.

4.1 Implementation
An approach to interact, control, and coach an industrial robotic arm through

argumentative inferential deductions has been proposed below. PRUDENS has been used

as a tool which facilitates the argumentative behavioral machine coaching paradigm

through inference generation, which is based on the rules present in its knowledge base

under the contextual information that has been sent by the robotic arm during its

operation. The system has been implemented using the Web Interface (HTML) version of

PRUDENS, a product of the Computational Cognition Lab of the Open University of Cyprus

led by Dr. Loizos Michael, which can be downloaded from the link

https://github.com/VMarkos/prudens-js and Staubli Robotics Suite (SRS) 2019.9.0,

which is a licensed software development and simulation program for Staubli Robotic

Arms. The robotic arm model used for the system integration is the Staubli Tx2-40, which

consists of six degrees of freedom, each with a specific joint limit. The arm has a maximum

extension of 515mm and a load capacity of 2Kg.

47

Figure 2. Robotic Arm

The arm periodically sends its status information to PRUDENS, which, based on the rules

present in its knowledge base, builds an inference which is sent back to the robotic arm.

Based on the inference, the robotic arm performs an action to pick a part, place the picked

part, move to the home position or stop working. The coaching of the arm is facilitated by

the modification or addition of the rules in the knowledge base of PRUDENS. The

implementation has been tested in the simulation environment in SRS as well as on the

real robotic arm.

4.1.1 Architecture

Figure 3. System Architecture

At a high level, the proposed system is a cognitive agent that models the human

argumentation capability in order to interact with the environment where a robotic arm

48

or simply a machine is present. Therefore, as a whole, the architecture is comprised of an

Argumentation Framework, which has been facilitated by the PRUDENS software

interface, the Environment, which consists of the Staubli Robotic Arm, and Feedback or

Knowledge Input by the User or the Assistance Requester about a specific task.

4.1.1.1 Argumentation Framework

The Argumentation Framework consists of four main blocks, which are the Knowledge

Base, the Context Interpreter, the Reasoning Engine, and the Inference Generator. The

knowledge base consists of some predefined rules related to the ecosystem in which the

interface is established. The various types of knowledge in this module are the expert

knowledge, which is hard coded in the form of predefined rules; the commonsense

knowledge, which is machine learned based on the robot's status and environmental

data; and the knowledge based on personal biases through user feedback. The context is

built up of the internal knowledge based on the arm’s status and its environment, which

arrives cyclically to the context interpreter. The job of the context interpreter is to

prepare the incoming context information for the deductive interpretation required for

reasoning. The argumentative reasoning is facilitated by the Reasoning Engine, which

provides an inference based on the rules in the knowledge base under the respective

context (Michael 2019). This resulting inference (advice or explanation) could be

evaluated by the user or assistance requester. The Inference Generator filters the output

of the Reasoning Engine which could be sent to the machine, which in our case is the

robotic arm.

4.1.1.2 Environment

The environment is composed of an industrial robotic arm which has an independent CPU

(Central Processing Unit) that hosts the execution of the sequential program that drives

the arm to perform a task of picking a part from a point A, placing it at a point B, and then

going to point C, which is the home position of the arm.

49

Figure 4. Arm's Motion Task

The signal determining the availability of the part is received by the arm from its

environment via an optic or vision sensor. The internal status or knowledge block

cyclically updates the arm’s status information such as the arm’s power status, arm’s

motion status, arm’s gripping status, alarm status, etc. Besides containing the application

specific status information, this block also holds some dynamic knowledge in the form of

the current day of the week, current hour etc. Based on the environmental and status

information, the context generator generates several contexts which are cyclically sent to

the argumentation framework. The inferences generated by the argumentation

framework are sent to the Inference Interpreter, which interprets the received inferences

into the robot’s recognizable instructions. Based on these inferences, the robot performs

its Pick-Place routine, which affects its immediate environment.

The user or assistance requester could thereby coach and control the robotic arm by

modifying the existing rules or appending new rules in the knowledge base of the

argumentation framework (Michael 2019).

4.2 The Language of Staubli Robotic Arm – VAL3
Variable Assembly Language (VAL) is a computer-based control system and language

designed specifically for programming Unimation Industrial Robots. The instruction sets

used in VAL are easy to understand and self-explanatory in nature, which makes the

syntax easy to read and interpret (Shimano 1979). VAL3 finds its roots in VAL and is a

high-level programming language designed specifically to program and drive Staubli

robots. It facilitates the combination of the basic features of a standard real-time high-

level computer language with the specific functionalities required to control an industrial

50

robot cell, such as tools for robot control, tools for geometrical modeling, tools for

input/output, etc. (Akdogan 2019).

4.2.1 VAL3 Application

A VAL3 application is a complete software package that includes programs, global and

local data, libraries, user data types, HMI user pages, and a multi-tasking option for

concurrent program execution. A new application upon creation is generated with a

start() program which is called when the application is started and a stop() program

which is called when the application is stopped (Akdogan 2019).

Figure 5. Sample VAL3 Application

4.3 Communication over Socket TCP IP
One of the prominent protocols of the Internet protocol suite is the Transmission Control

Protocol (TCP). The data packets or streams of octets (bytes) delivered by TCP between

applications running on hosts over an IP network are reliable, ordered, and error-

checked (Kurose & Ross 2013).

51

Figure 6. Socket Communication

The use of TCP for communication is so prevalent that we can easily get examples from

our daily interaction with computers and the internet. Our emails, the World Wide Web,

etc. are some of the most common examples that rely on TCP. Another protocol that

resembles TCP but lacks reliability is the User Datagram Protocol (UDP), which does not

perform error checking on the data stream and emphasizes reduced latency. Online

gaming, video streaming, etc. rely on UDP.

52

4.3.1 Client & Server in TCP IP

Figure 7. Client-Server Connection

The working principle of TCP/IP connections resembles that of a telephone call where a

connection is required to be initiated by a person by dialing the phone number. Once

connection is established, the person at the receiver’s side must be listening to the call

and pick up the line. In TCP/IP, the IP address is like the phone number, and the port

number is like the extension code. In the TCP/IP connection, the device that dials the

phone number is the Client, and the device that listens to the incoming calls is the Server.

Therefore, in a TCP/IP connection, the IP address and the port number of the server are

required to be known by the client.

53

Figure 8. Communication Flow

4.4 The PRUDENS Tool
PRUDENS is a Java application that has been developed by the research group at the

Computational Cognition Lab of the Open University of Cyprus led by Dr. Loizos Michael.

When it is given a knowledge base about a certain task and context-encoding information

about a specific scenario pertaining to that task, it gives the requestor some piece of

advice along with an explanation as anticipated by the appropriate machine coaching

theory.

4.4.1 The Language of PRUDENS Tool

As PRUDENS permits predicates to be used to represent relationships between universal

entities, we can say that it resembles Prolog to some extent in that sense. Each predicate

is made up of two parts, such as its name and a list of arguments. Anything starting with

lower case Latin alphabets (a to z) and following a limited sequence of letters, digits, or

underscore might be used as the predicate name. The arguments are in the form of a list,

with each argument separated by a comma and enclosed by left and right parenthesis.

For example,

54

predicateName(X1, X2, X3, …., Xn)

where, X1, X2, X3, …., Xn are the arguments.

In the above example, the length of the arguments appearing in the argument list is n.

Therefore, we may say that the predicate’s arity is n.

The arguments are bound to have the following properties:

• Arguments could be constants that appear as strings of lower-case letters (a-z)

which might follow a limited sequence of letters, digits, and underscores.

Constants are distinct universal entities. E.g., animal(tiger), where tiger is a

distinct universal entity.

• Arguments could be variables that appear as strings of upper-case letters (A-Z)

which might follow a limited sequence of letters, digits, and underscores. The

variables are used as placeholders for the constants. E.g., herbivorous(X), where X

is the placeholder for a constant.

It is possible for a predicate to contain both constants and variables as the elements of

the argument list. E.g. marriedTo(X, sam) which is interpreted as ‘’X is married to some

universal entity Sam’’. Besides the standard user defined predicates, Prudens also provide

built-in predicates for equality and inequality which are represented as ?=(something,

something) and ?<(something, something). In some cases, these predicates can also be

used as a condition to allow a baseless variable to be united with a constant. Simply,

?=(X,Y) is read as ‘’X is equal to Y” and ?<(X,Y) is read as “X is less than Y”.

The rules play a key role in the language of Prudens as through them one can capture

desirable behaviors or establish new relationships between the elements of the universe

to create a knowledge base. The rules are built up of predicates, variables and constants

or simply literals. A literal could be a predicate itself or its negation which is represented

with a minus (-) sign which follows no space between the minus sign and the name of the

predicate. For instance, herbivorous(X), -herbivorous(X) or marriedTo(X, sam), -

marriedTo(X, sam). In Prudens, the negation is regarded as classical negation due to the

55

absence of the Closed World Assumption theory where it is possible to draw inferences

under a similar context about something which is not declared in the knowledge base.

For instance, in Closed World Assumption (CWA) it is possible to infer -brotherOf(sam,

tom) from brotherOf(sam, rose) and brotherOf(jack, sam) as brotherOf(sam, tom) does not

exist in the knowledge base. However, in Prudens, it is not possible to infer the above due

to the absence of any CWA.

In PRUDENS, rules follow a specific structure which includes the rule’s name, rule’s body

and rule’s head where either of the three should not be null or empty. The rule’s name is

separated from the body and the head through a combination of two colons (::). The rule’s

head is referred to as a single literal whereas the rule’s body is referred to as the literal

list separated by commas. The head and the body together form the main part of the rule.

An entire rule ends with a semicolon (;). For instance, Rule_1 :: eatsGrass(X), animal(X)

implies herbivorous(X);. An ordered list of these rules together forms the knowledge base.

The order of appearance of the rules in the list adds a priority relation to them with the

rule appearing first in the list having the highest priority i.e. it is liable to be triggered first

in comparison to the ones appearing below.

In Prudens language, there are two ways by which knowledge could be encoded namely

the knowledge base and the contexts. Contexts are the pairwise non-conflicting literals

that contain only constants as their argument and are separated from each other using

semicolon (;). They act as solid facts that describe a certain situation whereas knowledge

bases are built up of rules that depict a certain pattern of behavior in a variety of settings

through a priority order which are provoked by the facts that appear as context. For

example,

KB1

Rule_3 :: holiday(X), tired(X) implies perform(takeRest);

Rule_2 :: holiday(X), tired(X) implies -perform(longDrive);

Rule_1 :: holiday(X) implies perform(longDrive);

From the rules above, it is evident that a policy about what is to be performed on a holiday

is encoded in the knowledge base. Rule_1 depicts that on a holiday we must go on a long

56

drive in a general manner. Rule_2 depicts an exception to Rule_1 that if we are tired on a

holiday we must not go on a long drive. Rule_3 depicts that if we are tired on a holiday

then we must take rest. Hence, the knowledge base encodes that on a holiday we must go

on a long drive and on a holiday if we are tired then we must take rest. These two

scenarios could be encoded through two separate contexts namely S1 holiday(today);

which depicts that today is a holiday and we are not tired and S2 holiday(today);

tired(today); which depicts that today it’s a holiday and we are tired. Hence, for the

context S2 from KB1 we can say that Rule_3 and Rule_2 are triggered and as the priority

of Rule_3 is higher than Rule_2 therefore Rule_2 is ignored for the inference.

If our knowledge base is somewhat similar to the one below as KB2, the outcomes

achieved would have differed as compared to the above.

KB2

Rule_1 :: holiday(X) implies perform(longDrive);

Rule_3 :: holiday(X), tired(X) implies perform(takeRest);

Rule_2 :: holiday(X), tired(X) implies -perform(longDrive);

Under both the contexts S1 and S2, as the priority of Rule_1 is the highest as compared to

Rule_2 and Rule_3, the inference generated is based on Rule_1 (Markos nd).

57

4.5 Linking PRUDENS and the Robotic Arm

Figure 9. Robotic Arm Coaching Interface

58

The TCP/IP socket communication protocol is used in order to establish the link between

the PRUDENS software interface and the robotic arm. The PRUDENS software interface

acts as a server that sends responses to the client’s requests, which is the Robotic Arm.

To achieve this, a JavaScript application index.js is developed on the PRUDENS side. This

application opens one particular port on the server, and the robotic arm communicates

with this server’s IP at the specified port. The robotic arm will send requests (context) to

the server in a predefined format. The incoming request is then processed to generate the

necessary inferences through the argumentation functionality, and the output is then

parsed to generate a message in a format suitable for the robotic arm to understand. If

Automatic Reply functionality is not used on the front end, the parsed response could be

seen populated in the Processed Result column. The Automatic Reply functionality

enables the server to send the processed response automatically to the client without the

need for human intervention. By selecting the Use Memory option at the front end, the

server starts operating in cache mode where it generates a cache memory and stores the

responses against the incoming context such that when the same context arrives at the

server next time, its inference is directly sent to the client from the cache memory without

waiting for the deductive reasoning process. This enables the server to generate quick

responses at a low processing time.

For the backend services, Node.js is used as a scripting language, and for the front end,

the prudens-js project is used from the github repository to add the Auto Reply and Use

Memory checkboxes as well as the Clear Memory button. In order to start the application,

we need to navigate to the root directory and start the application using the command

NPM START in the command prompt window. This will start the application on the

localhost:3000 url and, by default, it will also open 1258 as a telnet port for client-server

communication. In order to terminate the application, ctrl+C keyboard input could be

used in the command prompt window.

4.5.1 Code Description - PRUDENS

Index.js: This routine is used to implement socket communication.

const app = require('express')();

const http = require('http').Server(app);

59

const io = require('socket.io')(http);

const net = require("net");

To achieve this functionality, at the PRUDENS side we used the require() function. As part

of the basic functionality of this function, reading of a JavaScript file, executing it, and

returning the output as an exports object is achieved.

The above code displays the basic module imports that are required to implement socket

connection. Here by the use of express() function, an Express application is created

denoted by app. The app returned by express() is originally a JavaScript function that is

designed to be passed to the Node’s HTTP servers as a callback to handle requests. The

import of the http module enables Node.js for data transfer over Hyper Text Transfer

Protocol (HTTP). The socket.io library import allows real time, two-way and event driven

communication between the client and the server. The net module supplies an

asynchronous or half-duplex network binding such that the data flows only in one

direction at a time.

const port = process.env.PORT || 3000;

Here we create a default port 3000. It tells the application to use port 3000 unless there

exists a preconfigured port in the environment.

var express = require('express');

var cache = new Object();

var lastReq;

Here we create an express application and a cache object which creates a cache memory

functionality to map incoming requests to their responses.

app.get('/', (req, res) => {

 res.sendFile(__dirname + '/index.html');

});

60

Here we map the index.html as our default html page.

app.use(express.static(__dirname + '/'));

Here we map the static resources like CSS using the express.static(root, [options])

function. This function enables us to use static files such as images, css files, Javascript

files etc. The root argument specifies the root directory where the static files are available

and options argument which in our case is the “/”. When the path name is a directory, this

argument redirects to the trailing “/”.

var globalSocket;

var useMemory;

const server = net.createServer((socket)=>{

 globalSocket = socket;

 globalSocket.write("Hello From Server!")

 var input = "";

Here we create a global socket server and send a greeting message to the client. In order

to know that a communication has been established with the client, the server open the

port and starts listening to the request and when a ping request from the client is

received, it sends back the greeting response once at initialization of the communication

phase.

socket.on("data",(data)=>{

 input +=data.toString()

Post initialization of the handshake between the server and the client this function is

called on each receipt of the data from the client i.e. the robotic arm. One we receive a

data packet from the client we iterate it inside a for loop until we find the end character

which is 13 in ASCII format. As soon as the end character is found, the received request

or rather context is sent for processing. Here we also check the status of the Memory

function. If it is enabled and the processed response is already available in the cache

memory then the response is sent to the client directly without processing.

61

for (let i = 0; i < input.length; i++) {

 if(data.toString().charCodeAt(i)== 13){

 lastReq = input;

 if(useMemory && cache[lastReq]){

 globalSocket.write(cache[lastReq])

 }else{

 io.emit('context', input);

 }

 input =""

 }

 };

In order to close the socket the below function is called.

socket.on("close",()=>{

 console.log("Connection closed.!!!")

 })

});

server.listen(1258);

Here we determine the port number on which we want the server to listen. Once the

connection is established, the below function is called.

io.on('connection', (socket) => {

This below function will be called on receiving response from server which includes the

processed result.

 socket.on('ServerResponse', msg => {

Here in order to make the response interpretable by the client or the robotic arm, extra

curly braces are appended in the response.

62

 msg="{"+msg+"}"

In order to Send the response back to robot, we use the socket.write() command.

 globalSocket.write(msg)

Here we check that if the memory function is enabled then we cache the incoming request

for future use.

 if(useMemory)

 cache[lastReq]=msg;

 });

This function is called on the clear memory event and will clear the stored responses in

the memory.

 socket.on('clearMemory', msg => {

 cache = new Object();

 });

This function will activate or deactivate the memory function based on front end

checkbox selection.

 socket.on('useMemory', msg => {

 console.log(msg)

 useMemory = msg;

 });

});

This is the main function to start the application on the given port.

http.listen(port, () => {

 console.log(`Socket.IO server running at http://localhost:${port}/`);

63

});

Index.html: The front end interface of the PRUDENS application has been designed using

the index.html code. In order to catch several events from the objects that are added on

the front end for their execution by the backend program, several commands are added

in the original index.html code.

<script src="/socket.io/socket.io.js"></script>

In the html head, the socket.io.js script is added to load the socket.io client which enables

the front end to communicate with the backend for data exchange over Socket.IO.

<script>

Socket is established at client side (html page) to send data to backend server.

var socket = io();

Once data is received the context will be set to the processed column on the html page.

socket.on('context', function(msg) {

document.getElementById('deduce-tab context').value=msg.toString().trim();

consoleOutput();

Here we execute the auto send function to inform the server to automatically send the

processed response back to robot without manual intervention.

if(document.getElementById('autoSend-checkbox').checked)

sendResponse()

});

This below is the function that sends response back to server on the serverResponse

event.

64

function sendResponse(){

console.log("Emitting:"+document.getElementById("processedResult").value)

socket.emit('ServerResponse', document.getElementById("processedResult").value);

document.getElementById("processedResult").value='';

}

This function is used to clear the server's memory using the clear memory event.

function clearMemory(){

socket.emit('clearMemory', '');

}

This is the function that enables or disables the use of memory function of the server

using the useMemory event.

function useMemory(){

socket.emit('useMemory', document.getElementById('memory-checkbox').checked);

 }

</script>

Utils.js: The parsing of the processed result prior sending to the client is performed in

this program. This following block of code is for filtering the processed output until “;

true;” so that it results only the inferences deduced after processing.

var filter ="; true; ";

try{

let processed = contextToString(inferences);

 processed =

processed.substring(processed.indexOf(filter)+filter.length,processed.length-1)

 document.getElementById("processedResult").value = processed;

}catch(err){

console.error(err);

65

}

 return outputString + "Inferences: " + contextToString(inferences) + "\nGraph: " +

graphToString(graph);

4.5.2 Code Description – ROBOTIC ARM

Figure 10. Manual Socket Implementation

The VAL3 language enables the user to define sockets which could either be Server or

Client manually from the HMI or dynamically from within the code.

A Client socket is created at the Robotic Arm’s side manually from the HMI as shown in

Figure 9 A client socket at the Staubli Robotic Arm requires four typical parameters which

are the Port Number, Timeout in seconds, End of String character and the Server IP

address.

66

The port number at both the server and the client side should be identical. The Server IP

should contain the IP address of the system on which the server application is running.

Once the client socket is implemented from the HMI, we create two programs namely

sockets and test01 in the robot’s controller. The sockets program acts as a library to the

test01 program and consists of a variable named siocam of data type SIO (socket input

output). This variable is linked to the physical client socket which we implemented

manually from the HMI in order to be used dynamically inside the program.

Figure 11. Robot's HMI Interface

A user interface in the form of an HMI page is created which enables the user to start the

communication between the robotic arm and the PRUDENS server, a text field that

displays the context message generated by the code to be sent to the server, a text field

that displays the status of the send request to server function, a list box that displays the

received inference from the server, a learn mode activation button which increases the

cyclic delay of the send-receive process to compensate the processing delay at the server

67

side, and a part available button that simulates the availability of a part that is required

to be grabbed by the robotic arm.

On execution of the test01 application, six parallel tasks are created as follows.

• taskCreate "hmi",10,hmi()

This task catches the button press events on the HMI page and manages their color on

activation and deactivation.

• taskCreate "calender",10,getCalender()

This task returns the day of the week based on the current date as a number between 1

and 7 where 1 represents Monday.

• taskCreate "time",10,getTime(sHour)

This task returns the current hour in 24Hr format.

• taskCreate "stat",10,getStat()

This task cyclically gets the arm’s status information and concatenates them as a string of

contexts to be sent to the PRUDENS server. These contexts include the arm power status

(powered/-powered), the mode of operation (manual/-manual), end effector tooling

status (open/-open), part availability (available/-available), part picked status (picked/-

picked), part placed status (placed/-placed), home position status (at home/-at home),

current day of the week and current hour.

• taskCreate "refList",10,refBinding()

This task cyclically refreshes the list box on the HMI to display the latest inferences

received from the server as contents of the list.

68

• taskCreate "prod",10,production()

This task consists of three motion commands namely Pick Part, Place Part and Go Home

which are executed on parsing the received inferences from the PRUDENS server.

Post creation of the above parallel tasks, the program enters an endless loop where it

waits for the user to switch on the Learning Mode and provide a numeric start command

to initiate the communication with the PRUDENS server.

while true

 //

 wait(nCmd==1)

 //

 while !bLearning

 popUpMsg("Switch on Learning Mode")

 delay(0.1)

 endWhile

 //

When the user enters 1 at the numeric command, the initialize communication procedure

starts where the robot’s application sends a message “Client Calling” to the server. On

successful delivery of the message to the server, “Pinged Server” message is printed in the

status field of the robot’s HMI.

call sendRequestInit(0,"Client Calling",bErr)

 if !bErr

 sStatus="Pinged Server"

 call getResponse(0,l_sResp)

 sRequest=l_sResp

 if sRequest!=""

 call resetSocket(0,-1,bErr)

 if !bErr

 nCmd=2

69

 delay(0.5)

 sRequest=""

 else

 nCmd=0

 sStatus="Reinitialize Communication!"

 endIf

 endIf

 else

 sStatus="Ping Failed"

 call resetSocket(0,1,bErr)

 if bErr

 nCmd=0

 sStatus="Reinitialize Communication!"

 endIf

 endIf

The server sends the greeting message subsequently, which on reception at the robot’s

side the program enters the main cyclic loop where the processed contexts are sent to the

PRUDENS server, and the respective received messages are parsed and filtered to be

populated as elements of a list of inferences which are filtered for the motion commands

by the “Production” task running in parallel.

while nCmd==2

 //

 sSendMsg=sSendData

 call sendRequest(0,sSendMsg,bErr)

 if !bErr

 sStatus="Success"

 //

 call getResponse1(0,l_sResp)

 //

 call parsing(nLengthServ,nStreamServ,sData,false,bErr)

 if !bErr

70

 call filterData(sData,sFilter)

 call getInference(sFilter,sInf,bErr,sRequest)

 //

 endIf

 else

 sStatus="Failed"

 call resetSocket(0,1,bErr)

 if !bErr

 nCmd=1

 else

 nCmd=0

 sStatus="Reinitialize Communication!"

 endIf

 endIf

 delay(nDelay)

 endWhile

 delay(0)

 endWhile

Data Parsing: The received data from the PRUDENS server is parsed using the parsing()

function. This function looks for the initial character, the separator, and the end character

for data parsing. The characters starting after the initial character up to the separator are

combined to form a message chunk and stored in a data array. This process is repeated

until the appearance of the end character.

Data Filtration: If the parsed message chunks include white spaces, they are required to

be filtered through the filterData() function. This function checks each element of the data

array to filter the white spaces if present and stores the filtered message chunks into the

filtered data array.

Inference acquisition: The inferences are acquired from the filtered data array using the

getInference() function. This function outputs the inferences as text keys of a collection

71

data type. These keys are checked for the motion commands in the “Production” task

running in parallel. For example, if the inference collection has a key named

pick_part(true) then the robotic arm moves to the pick position to grab the part. Similarly,

if the key named place_part(true) is available then the robotic arm moves to the place

point in order to release the part and if the key named go_home(true) is available then the

robotic arm moves to the home position.

Error Handling: The error handing in the communication is handled in a very

sophisticated manner through reporting the user with the status information on the HMI.

This enables the user to understand about the communication status that whether it is

successful in each cycle or failed.

In case of communication failure at any instance, the program automatically goes into

communication initialization by using the resetSocket() function. With the help of this

function, the timeout parameter of the socket is modified dynamically to 1 second which

is otherwise –1. This enables the socket to wait 1 second at each send and receive

instance. In case the resetSocket() function returns error, the program informs the user

to reinitialize the communication manually. Upon successful automatic restoration of the

client-server communication the timeout parameter of the socket is restored to -1 which

means that the send and receive cycles process whatever message is available at the port

without any delay.

72

Chapter 5
Evaluation

In order to evaluate our proposed system in the previous chapter we proceed with two

real time experiments where the robotic arm is tested in two separate production

environments by ten volunteers belonging to distinct industrial domains and expertise.

Fifty percent of the volunteers participated in experiment 1 and the remaining

participated in experiment 2. The volunteers remained engaged in the actual coaching of

the robotic arm for ten minutes each where they controlled the robotic arm through

PRUDENS interface and tried to improve the robot’s performance through various

policies shown below. However, we discuss in the text the most suitable policies that

attained maximum performance in terms of the robot’s operational tasks under various

constraints. In these experiments we monitor the system’s performance based on

intrinsic factors. We also evaluate the system performance extrinsically based on the

collective feedback of the ten volunteers.

Experiment 1: Part Handling between two points

In this experiment the robot’s task is to Pick a part from the pick point and place it to the

place point. After placing the part the arm has to return to the home position and loop in

a similar fashion. All the three Pick, Place and Home positions are static locations which

have already been taught manually to the robotic arm. The robotic arm is interfaced with

the PRUDENS server which tells it to pick, place or go to home depending upon the

deductive reasoning utilizing the rules in the knowledge base under the incoming

contexts as status information from the robotic arm.

73

Figure 12. Arm's Pick-Place Cycle

In the initial phase the robot follows a standard policy with the following rules in the

knowledge base of the PRUDENS server that drive the robot based on the context.

Rule_0 :: auto_perm, part_avl, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: auto_perm, -part_avl, grip_open implies wait_part;

Rule_4 :: -sleep, auto implies auto_perm;

Rule_5 :: -powered implies sleep;

Rule_6 :: powered implies -sleep;

Rule_7 :: manual implies -auto;

Rule_8 :: -manual implies auto;

At an instant the context received from the robotic arm is as under.

powered; -manual; grip_open; -part_avl; -part_picked; -part_placed; at_home; day(5);

time(2);

The inferences received by the robotic arm are -sleep; auto; auto_perm; wait_part.

As human could be directly involved with the robotic arm in collaborative working

scenarios or as the production is directly affected by this arm under the non-collaborative

scenarios it becomes necessary for this system to explain each of its unexpected move.

74

The explainability method of knowledge extraction is a close fit for such a system to

increase its interpretability (Adadi & Berrada 2018). As the building block of this system

is argumentation theory through hypothesis generation based on the rules present in its

knowledge base as well as the rules learnt and generated through counter argumentation,

this system explains about what it is supposed to do when asked to perform a new task

or modify its current task or learn new challenges.

It becomes quite a challenge for the machine operators or blue-collar workers to establish

communication with complex machines such as the robotic arms. Our proposed system

enhances the ability of the non-technical staff in a production facility to interact with the

machine through argumentation. In the above case when the operator seeks guidance to

understand the cause of robot’s stalling, the console section on the PRUDENS interface

describes its inferences in the following manner.

-sleep: [Rule_6 :: powered implies -sleep;]

Rule 6 suggests that when the robot is powered on it is not in sleep mode.

auto: [Rule_8 :: -manual implies auto;]

Rule 8 suggests that when the robot is not in manual mode, it is in automatic mode.

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;]

Rule 4 suggests that when the robot is not in sleep mode and automatic mode is available

then robot is ready to work in automatic cycle.

wait_part: [Rule_3 :: auto_perm, -part_avl, grip_open implies wait_part;]

Rule 3 suggests that when part is not available and other conditions are true then it is

waiting for part.

75

This functionality of self-explanation makes the Human Machine Interaction easy to

everyone. The operator thus understands that he needs to make the parts available so

that the robot could proceed with its regular operation. In this first case, the operator

creates an exception in the form of his counter argument to coach the robot by modifying

Rule 0 and deleting Rule 3.

The knowledge base now looks as below.

Rule_0 :: auto_perm, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_4 :: -sleep, auto implies auto_perm;

Rule_5 :: -powered implies sleep;

Rule_6 :: powered implies -sleep;

Rule_7 :: manual implies -auto;

Rule_8 :: -manual implies auto;

Now under the similar context as above the inferences generated are -sleep; auto;

auto_perm; pick_part.

The description of the generated inferences is as under.

-sleep: [Rule_6 :: powered implies -sleep;]

auto: [Rule_8 :: -manual implies auto;]

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;]

pick_part: [Rule_0 :: auto_perm, grip_open implies pick_part;]

Here the robot moves to pick the part because the conditions of Rule 0 are satisfied and

iterates in a loop to place the part and moving to the home position subsequently.

In the second case, the operator seeks guidance to understand why the robot works non-

stop without caring about the weekends. As evident from the above robot’s standard

policy and the relevant explanations which does not include the time constraint even

76

though the context contains it, the operator understands the need to add exceptions in

order to coach the robotic arm such that it should only work during the weekdays. The

knowledge base is then modified with the following exceptions.

Rule_0 now contains an additional predicate named at_home as the operator desires that

the robot should only go to pick the part once it arrives to the home position.

Rule_0 :: at_home, auto_perm, part_avl, grip_open, weekday implies pick_part;

Rule_1 :: auto_perm, part_picked, -grip_open, weekday implies place_part;

Rule_2 :: auto_perm, part_placed, grip_open, weekday implies go_home;

Rule_3 :: day(X), ?=(X,1) implies monday;

Rule_4 :: day(X), ?=(X,2) implies tuesday);

Rule_5 :: day(X), ?=(X,3) implies wednesday;

Rule_6 :: day(X), ?=(X,4) implies thursday;

Rule_7 :: day(X), ?=(X,5) implies friday;

Rule_8 :: day(X), ?=(X,6) implies saturday;

Rule_9 :: day(X), ?=(X,7) implies sunday;

Rule_10 :: saturday implies weekend;

Rule_11 :: sunday implies weekend;

Rule_12 :: monday implies -weekend;

Rule_13 :: tuesday implies -weekend;

Rule_14 :: wednesday implies -weekend;

Rule_15 :: thursday implies -weekend;

Rule_16 :: friday implies -weekend;

Rule_17 :: -weekend implies weekday;

Rule_18 :: weekend implies -weekday;

Rule_19 :: -sleep, auto implies auto_perm;

Rule_20 :: -powered implies sleep;

Rule_21 :: powered implies -sleep;

Rule_22 :: manual implies -auto;

Rule_23 :: -manual implies auto;

77

The operator therefore adds exceptional rules (Rule_3 to Rule 18) apart from the

standard policy rules to incorporate the feature of weekend off for the robot.

In the third case, the operator inquires about the status of the Gripper and the permission

to manually jog the robot. As the knowledge base does not contain any fact or exception

regarding the operator’s query therefore the operator defines further facts and

exceptions regarding the same. Now the knowledge base looks as below.

Rule_0 :: at_home, auto_perm, part_avl, grip_open, weekday implies pick_part;

Rule_1 :: auto_perm, part_picked, -grip_open, weekday implies place_part;

Rule_2 :: auto_perm, part_placed, grip_open, weekday implies go_home;

Rule_3 :: day(X), ?=(X,1) implies monday;

Rule_4 :: day(X), ?=(X,2) implies tuesday);

Rule_5 :: day(X), ?=(X,3) implies wednesday;

Rule_6 :: day(X), ?=(X,4) implies thursday;

Rule_7 :: day(X), ?=(X,5) implies friday;

Rule_8 :: day(X), ?=(X,6) implies saturday;

Rule_9 :: day(X), ?=(X,7) implies sunday;

Rule_10 :: saturday implies weekend;

Rule_11 :: sunday implies weekend;

Rule_12 :: monday implies -weekend;

Rule_13 :: tuesday implies -weekend;

Rule_14 :: wednesday implies -weekend;

Rule_15 :: thursday implies -weekend;

Rule_16 :: friday implies -weekend;

Rule_17 :: -weekend implies weekday;

Rule_18 :: weekend implies -weekday;

Rule_19 :: awake, auto implies auto_perm;

Rule_20 :: -sleep, manual implies jog_perm;

Rule_21 :: -powered implies sleep;

Rule_22 :: powered implies -sleep;

Rule_23 :: grip_open implies -grip_closed;

Rule_24 :: -grip_open implies grip_closed;

78

Rule_25 :: jog_perm implies -auto_perm;

Rule_26 :: sleep implies -awake;

Rule_27 :: -sleep implies awake;

Rule_28 :: manual implies -auto;

Rule_29 :: -manual implies auto;

Under the context which says that, powered; -manual; grip_open; part_avl; -part_picked; -

part_placed; at_home; day(1); time(8);

The PRUDENS server now generates the inferences as monday; -weekend; weekday; -

sleep; -grip_closed; awake; auto; auto_perm; pick_part which are explained in the following

way.

monday: [Rule_3 :: day(1), ?=(1, 1) implies monday;]

Rule 3 suggests that it is Monday.

-weekend: [Rule_12 :: monday implies -weekend;]

Rule 12 suggests that it is not weekend.

weekday: [Rule_17 :: -weekend implies weekday;]

Rule 17 suggests that it is a weekday.

-sleep: [Rule_22 :: powered implies -sleep;]

Rule 22 suggests that when the robot is powered on it is not in sleep mode.

-grip_closed: [Rule_23 :: grip_open implies -grip_closed;]

Rule 23 suggests that gripper is not closed.

79

awake: [Rule_27 :: -sleep implies awake;]

Rule 27 suggests that as the robot is not in sleep mode, it is awake.

auto: [Rule_29 :: -manual implies auto;]

Rule 29 suggests that the robot is in automatic mode.

auto_perm: [Rule_19 :: awake, auto implies auto_perm;]

Rule 19 suggests that as the robot is awake and is in automatic mode that means it has

permission to work automatically.

pick_part: [Rule_0 :: at_home, auto_perm, part_avl, grip_open, weekday implies

pick_part;]

Rule 0 suggests that the robot must pick the part as all of its conditions are satisfied.

If the day is a weekend for example, then the context becomes powered; -manual;

grip_open; part_avl; -part_picked; -part_placed; at_home; day(6); time(2);

Then based on the above rules in the knowledge base the following inferences are

generated, saturday; weekend; -weekday; -sleep; -grip_closed; awake; auto; auto_perm;

whose explanations are inferred from the following rules.

saturday: [Rule_8 :: day(6), ?=(6, 6) implies saturday;]

weekend: [Rule_10 :: saturday implies weekend;]

-weekday: [Rule_18 :: weekend implies -weekday;]

-sleep: [Rule_22 :: powered implies -sleep;]

-grip_closed: [Rule_23 :: grip_open implies -grip_closed;]

awake: [Rule_27 :: -sleep implies awake;]

auto: [Rule_29 :: -manual implies auto;]

auto_perm: [Rule_19 :: awake, auto implies auto_perm;]

80

From rules 8, 10 and 18, it is evident that the current day is a weekend and therefore the

inference to pick the part is not generated. In this manner the robotic arm is coached for

not working on weekends.

In the fourth case, the operator enquires about the robot working beyond the standard

production hours of 8:00 and 18:00. The operator does not receive a satisfactory

explanation due to the evidence that no such exceptions exist in the robot’s standard

policy as well as the modified knowledge base. Therefore, the operator further adds the

relevant exceptions (Rule_4 to Rule_12) which modifies the knowledge base in the

following manner.

Rule_0 :: at_home, auto_perm, part_avl, grip_open, shift_active implies pick_part;

Rule_1 :: auto_perm, part_picked, -grip_open, shift_active implies place_part;

Rule_2 :: auto_perm, part_placed, grip_open, shift_active implies go_home;

Rule_3 :: -shift_active implies prod_hold;

Rule_4 :: time(X), ?<(X,8), weekday implies -cond1;

Rule_5 :: time(X), ?=(8,X), weekday implies cond1;

Rule_6 :: time(X), ?<(8,X), weekday implies cond1;

Rule_7 :: time(X), ?=(X,18), weekday implies cond2;

Rule_8 :: time(X), ?<(X,18), weekday implies cond2;

Rule_9 :: time(X), ?<(18,X), weekday implies -cond2;

Rule_10 :: -cond1, cond2 implies -shift_active;

Rule_11 :: cond1, -cond2 implies -shift_active;

Rule_12 :: cond1, cond2 implies shift_active;

Rule_13 :: day(X), ?=(X,1) implies monday;

Rule_14 :: day(X), ?=(X,2) implies tuesday;

Rule_15 :: day(X), ?=(X,3) implies wednesday;

Rule_16 :: day(X), ?=(X,4) implies thursday;

Rule_17 :: day(X), ?=(X,5) implies friday;

Rule_18 :: day(X), ?=(X,6) implies saturday;

Rule_19 :: day(X), ?=(X,7) implies sunday;

Rule_20 :: saturday implies weekend;

81

Rule_21 :: sunday implies weekend;

Rule_22 :: monday implies -weekend;

Rule_23 :: tuesday implies -weekend;

Rule_24 :: wednesday implies -weekend;

Rule_25 :: thursday implies -weekend;

Rule_26 :: friday implies -weekend;

Rule_27 :: -weekend implies weekday;

Rule_28 :: weekend implies -weekday;

Rule_29 :: awake, auto implies auto_perm;

Rule_30 :: -sleep, manual implies jog_perm;

Rule_31 :: -powered implies sleep;

Rule_32 :: powered implies -sleep;

Rule_33 :: grip_open implies -grip_closed;

Rule_34 :: -grip_open implies grip_closed;

Rule_35 :: jog_perm implies -auto_perm;

Rule_36 :: sleep implies -awake;

Rule_37 :: -sleep implies awake;

Rule_38 :: manual implies -auto;

Rule_39 :: -manual implies auto;

Then under the context which contains the following information, powered; -manual;

grip_open; part_avl; -part_picked; -part_placed; at_home; day(1); time(8);

The following explanations are generated by the system.

cond1: [Rule_5 :: time(8), ?=(8, 8), weekday implies cond1;]

cond2: [Rule_8 :: time(8), ?<(8, 18), weekday implies cond2;]

shift_active: [Rule_12 :: cond1, cond2 implies shift_active;]

monday: [Rule_13 :: day(1), ?=(1, 1) implies monday;]

-weekend: [Rule_22 :: monday implies -weekend;]

weekday: [Rule_27 :: -weekend implies weekday;]

-sleep: [Rule_32 :: powered implies -sleep;]

-grip_closed: [Rule_33 :: grip_open implies -grip_closed;]

82

awake: [Rule_37 :: -sleep implies awake;]

auto: [Rule_39 :: -manual implies auto;]

auto_perm: [Rule_29 :: awake, auto implies auto_perm;]

pick_part: [Rule_0 :: at_home, auto_perm, part_avl, grip_open, shift_active implies

pick_part;]

The above inferences suggest that from rules 13, 22 and 27 that it is a weekday and from

rules 5, 8 and 12 that it is a standard shift hour and from rules 32, 33, 37, 39, 29 and 0

that it should pick the part.

When it is a weekday and the time is beyond the standard production hour, the robot now

operates as desired.

Under the context, powered; -manual; grip_open; part_avl; -part_picked; -part_placed;

at_home; day(1); time(19);

The following explanations are generated.

cond1: [Rule_6 :: time(19), ?<(8, 19), weekday implies cond1;]

-cond2: [Rule_9 :: time(19), ?<(18, 19), weekday implies -cond2;]

-shift_active: [Rule_11 :: cond1, -cond2 implies -shift_active;]

monday: [Rule_13 :: day(1), ?=(1, 1) implies monday;]

-weekend: [Rule_22 :: monday implies -weekend;]

weekday: [Rule_27 :: -weekend implies weekday;]

-sleep: [Rule_32 :: powered implies -sleep;]

-grip_closed: [Rule_33 :: grip_open implies -grip_closed;]

awake: [Rule_37 :: -sleep implies awake;]

auto: [Rule_39 :: -manual implies auto;]

prod_hold: [Rule_3 :: -shift_active implies prod_hold;]

auto_perm: [Rule_29 :: awake, auto implies auto_perm;]

83

From these explanations it becomes evident that from rules 13, 22 and 27 that it is a

weekday and from rules 6, 9 and 11that it is a no production hour and from rules 32, 33,

37, 39, 3, and 29 that the robot should hold the production.

In this way the operators managed to coach the robotic arm based on various scenario

demands to achieve the desired performance.

The various policies provided by the remaining four volunteers could be seen in the

following table for experiment 1.

Volunteer Policy Context Constraint Result

1 Rule_0 :: auto_perm, -part_avl,
grip_open implies pick_part;
Rule_1 :: auto_perm, part_picked
implies place_part;
Rule_2 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies sleep;
Rule_6 :: powered implies -sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

grip_open;
-part_avl;

-part_picked;
-part_placed;

at_home;
day(5);
time(2);

Part
Availability

(Robot
should

work even
though part
is available

or not)

Pass

Rule_0 :: at_home, auto_perm,
part_avl, grip_open, weekday
implies pick_part;
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday implies
place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, weekday implies
go_home;
Rule_3 :: awake, auto implies
auto_perm;
Rule_4 :: -sleep, manual implies
jog_perm;
Rule_5 :: -powered implies sleep;
Rule_6 :: powered implies -sleep;
Rule_7 :: grip_open implies -
grip_closed;
Rule_8 :: -grip_open implies
grip_closed;

powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Weekend
(Robot
should

work only
on

weekdays)

Failed

84

No response powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Time
Period
(Robot
should

work only
between
standard

production
hours of
8:00 and

18:00)

Failed

2 Rule_0 :: auto_perm, grip_open
implies pick_part;
Rule_1 :: auto_perm, part_picked
implies place_part;
Rule_2 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies sleep;
Rule_6 :: powered implies -sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

grip_open;
-part_avl;

-part_picked;
-part_placed;

at_home;
day(5);
time(2);

Part
Availability

(Robot
should

work even
though part
is available

or not)

Pass

Rule_0 :: auto_perm, part_avl,
grip_open, weekday implies
pick_part;
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday implies
place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, weekday implies
go_home;
Rule_3 :: day(X), ?<(X,6) implies
weekday;
Rule_4 :: awake, auto implies
auto_perm;
Rule_5 :: -sleep, manual implies
jog_perm;
Rule_6 :: -powered implies sleep;
Rule_7 :: powered implies -sleep;
Rule_8 :: jog_perm implies -
auto_perm;
Rule_9 :: sleep implies -awake;
Rule_10 :: -sleep implies awake;
Rule_11 :: manual implies -auto;
Rule_12 :: -manual implies auto;

powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Weekend
(Robot
should

work only
on

weekdays)

Pass

85

Rule_0 :: auto_perm, part_avl,
grip_open, weekday, start_work
implies pick_part;
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday, start_work
implies place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, weekday, start_work
implies go_home;
Rule_3 :: time(X), ?<(X,18) implies
start_work;
Rule_4 :: day(X), ?<(X,6) implies
weekday;
Rule_5 :: awake, auto implies
auto_perm;
Rule_6 :: -sleep, manual implies
jog_perm;
Rule_7 :: -powered implies sleep;
Rule_8 :: powered implies -sleep;
Rule_9 :: jog_perm implies -
auto_perm;
Rule_10 :: sleep implies -awake;
Rule_11 :: -sleep implies awake;
Rule_12 :: manual implies -auto;
Rule_13 :: -manual implies auto;

powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Time
Period
(Robot
should

work only
between
standard

production
hours of
8:00 and

18:00)

Failed

3 Rule_0 :: auto_perm, part_avl,
grip_open implies pick_part;
Rule_1 :: auto_perm, part_picked
implies place_part;
Rule_2 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies sleep;
Rule_6 :: powered implies -sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

grip_open;
-part_avl;

-part_picked;
-part_placed;

at_home;
day(5);
time(2);

Part
Availability

(Robot
should

work even
though part
is available

or not)

Failed

No Response powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Weekend
(Robot
should

work only
on

weekdays)

Failed

86

No Response powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Time
Period
(Robot
should

work only
between
standard

production
hours of
8:00 and

18:00)

Failed

4 Rule_0 :: auto_perm, grip_open
implies pick_part;
Rule_1 :: auto_perm, part_picked
implies place_part;
Rule_2 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies sleep;
Rule_6 :: powered implies -sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

grip_open;
-part_avl;

-part_picked;
-part_placed;

at_home;
day(5);
time(2);

Part
Availability

(Robot
should

work even
though part
is available

or not)

Pass

Rule_0 :: auto_perm, grip_open,
weekday implies pick_part;
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday implies
place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, weekday implies
go_home;
Rule_3 :: day(X), ?<(X,6) implies
weekday;
Rule_4 :: awake, auto implies
auto_perm;
Rule_5 :: -sleep, manual implies
jog_perm;
Rule_6 :: -powered implies sleep;
Rule_7 :: powered implies -sleep;
Rule_8 :: jog_perm implies -
auto_perm;
Rule_9 :: sleep implies -awake;
Rule_10 :: -sleep implies awake;
Rule_11 :: manual implies -auto;
Rule_12 :: -manual implies auto;

powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Weekend
(Robot
should

work only
on

weekdays)

Pass

87

Rule_0 :: auto_perm, part_avl,
grip_open, weekday, start_work,
start_work1 implies pick_part;
Rule_1 :: auto_perm, part_picked, -
grip_open, weekday, start_work,
start_work1 implies place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, weekday, start_work,
start_work1 implies go_home;
Rule_3 :: time(X), ?<(8,X) implies
start_work;
Rule_4 :: time(X), ?<(X,18) implies
start_work1;
Rule_5 :: day(X), ?<(X,6) implies
weekday;
Rule_6 :: awake, auto implies
auto_perm;
Rule_7 :: -sleep, manual implies
jog_perm;
Rule_8 :: -powered implies sleep;
Rule_9 :: powered implies -sleep;
Rule_10 :: jog_perm implies -
auto_perm;
Rule_11 :: sleep implies -awake;
Rule_12 :: -sleep implies awake;
Rule_13 :: manual implies -auto;
Rule_14 :: -manual implies auto;

powered;
-manual;

grip_open;
part_avl;

-part_picked;
-part_placed;

at_home;
day(1);
time(8);

Time
Period
(Robot
should

work only
between
standard

production
hours of
8:00 and

18:00)

Failed
(The
robot
works

between
9:00 and

17:00
though)

Table 3. Policies provided by volunteers under various constraints for Experiment 1

Experiment 2: Part handling between multiple points.

In the second experiment the robot’s task is to Pick a part from the pick point on the

infeed conveyor and place it to the place point on the outfeed conveyor. After placing the

part, the arm has to return to the home position and loop in a similar fashion. As an

additional complexity, the parts that arrive on the conveyor could be faulty or non-faulty

which are sensed through the vision system dynamically on the conveyor and the

respective part status is sent to the robot as an input. The peripheral devices connected

to the robot also suggest any human presence in the vicinity of the robot. All the three

Pick, Place and Home positions are static locations which have already been taught

manually to the robotic arm. In order to enhance the user’s comprehension of the

system’s explanations, an additional Download button is added on the console of the

PRUDENS interface.

88

Figure 13. PRUDENS Console Download Button

This download button enables the user to download the explanations generated by the

system in the form of text file as below. This further enhances the user to keep a record

of the agent’s arguments as part of the coaching process.

Figure 14. Example Text file on Download

In the initial phase the robot follows a standard policy with the following rules in the

knowledge base of the PRUDENS server that drive the robot based on the context.

Rule_0 :: auto_perm, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked implies place_part;

Rule_2 :: auto_perm, part_placed implies go_home;

Rule_3 :: -sleep, auto implies auto_perm;

Rule_4 :: -powered implies sleep;

Rule_5 :: powered implies -sleep;

89

Rule_6 :: manual implies -auto;

Rule_7 :: -manual implies auto;

At an instant the context received from the robotic arm is as under.

powered; -manual; grip_open; -part_avl; -part_picked; -part_placed; -human_det; -part_def;

-rob_run; at_home; day(1); time(8);

The inferences received by the robotic arm are -sleep; auto; auto_perm; pick_part. When

the robot picks the part then it moves to place it through the inferences -sleep; auto;

auto_perm; place_part. On placing the part, the robot goes to its home position through -

sleep; auto; auto_perm; pick_part; go_home.

In another instance, the operator observes the arrival of the defected part which the robot

picks and places at the non-defected part position in the generic manner. This is observed

as below.

Context under which Picking of the part takes place.

powered; -manual; grip_open; part_avl; -part_picked; -part_placed; -human_det; part_def;

-rob_run; at_home; day(1); time(8);

Explanations generated as -sleep; auto; auto_perm; pick_part.

Context under which Placing of the part takes place.

powered; -manual; -grip_open; part_avl; part_picked; -part_placed; -human_det; part_def;

rob_run; -at_home; day(1); time(8);

Explanations generated as -sleep; auto; auto_perm; place_part.

The robot then moves to its home position as part of its standard policy.

90

On enquiring about this behavior of placing the defected part to the non-defected part’s

position, the operator gets the following explanation.

-sleep: [Rule_5 :: powered implies -sleep;]

auto: [Rule_7 :: -manual implies auto;]

auto_perm: [Rule_3 :: -sleep, auto implies auto_perm;]

place_part: [Rule_1 :: auto_perm, part_picked implies place_part;]

The operator agrees with the system’s explanation and decides to add exception in the

knowledge base in order to place the defected part at its respective location which has

already been taught to the robot. The modified knowledge base now looks as below.

Rule_0 :: auto_perm, grip_open implies pick_part;

Rule_1 :: auto_perm, part_picked, part_def implies place_def;

Rule_2 :: auto_perm, part_picked, -part_def implies place_part;

Rule_3 :: auto_perm, part_placed implies go_home;

Rule_4 :: -sleep, auto implies auto_perm;

Rule_5 :: -powered implies sleep;

Rule_6 :: powered implies -sleep;

Rule_7 :: manual implies -auto;

Rule_8 :: -manual implies auto;

The operator has added an exception as Rule_1 and added an additional predicate in

Rule_2 in order to place the defected part to its respective location.

Now under the similar context as above, the following explanations are generated,

-sleep; auto; auto_perm; place_def.

-sleep: [Rule_6 :: powered implies -sleep;]

auto: [Rule_8 :: -manual implies auto;]

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;]

place_def: [Rule_1 :: auto_perm, part_picked, part_def implies place_def;]

91

In the third instance, the operator observes human presence in the vicinity of the robot

but the robot continues to operate without stopping. This is observed as below.

Context under which Picking of the part takes place.

powered; -manual; grip_open; part_avl; -part_picked; -part_placed; human_det; -part_def;

-rob_run; at_home; day(1); time(8);

Explanations generated as -sleep; auto; auto_perm; pick_part.

Context under which Placing of the part takes place.

powered; -manual; -grip_open; part_avl; part_picked; -part_placed; human_det; -part_def;

rob_run; -at_home; day(1); time(8);

Explanations generated as -sleep; auto; auto_perm; place_part.

The robot then moves to its home position as part of its standard policy.

On enquiring about this behavior of continued operation even under human presence in

the vicinity, the operator gets the following explanation.

While Picking the part.

-sleep: [Rule_6 :: powered implies -sleep;]

auto: [Rule_8 :: -manual implies auto;]

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;]

pick_part: [Rule_0 :: auto_perm, grip_open implies pick_part;]

While Placing the part.

-sleep: [Rule_6 :: powered implies -sleep;]

auto: [Rule_8 :: -manual implies auto;]

92

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;]

place_part: [Rule_2 :: auto_perm, part_picked, -part_def implies place_part;]

While Going to home position.

-sleep: [Rule_6 :: powered implies -sleep;]

auto: [Rule_8 :: -manual implies auto;]

auto_perm: [Rule_4 :: -sleep, auto implies auto_perm;]

pick_part: [Rule_0 :: auto_perm, grip_open implies pick_part;]

go_home: [Rule_3 :: auto_perm, part_placed implies go_home;]

The operator presents its counter argument in the form of several exceptions pertaining

to human safety to achieve the required behavior such that the robot stops working on

the detection of human in its vicinity. The knowledge base now looks as under.

Rule_0 :: auto_perm, rob_run, human_det implies rob_stop;

Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;

Rule_2 :: at_home, auto_perm, grip_open, -rob_stop implies pick_part;

Rule_3 :: auto_perm, part_picked, -grip_open, -rob_stop, part_def implies place_def;

Rule_4 :: auto_perm, part_picked, -grip_open, -rob_stop, -part_def implies place_part;

Rule_5 :: auto_perm, part_placed, grip_open, -rob_stop implies go_home;

Rule_6 :: -sleep, auto implies auto_perm;

Rule_7 :: -powered implies sleep;

Rule_8 :: powered implies -sleep;

Rule_9 :: manual implies -auto;

Rule_10 :: -manual implies auto;

Rule_11 :: rob_run, -human_det implies -rob_stopped;

Rule_12 :: -rob_run, human_det implies rob_stopped;

Now under the similar context as above, the following explanations are generated,

-sleep; auto; rob_stopped; auto_perm

-sleep: [Rule_8 :: powered implies -sleep;]

93

auto: [Rule_10 :: -manual implies auto;]

rob_stopped: [Rule_12 :: -rob_run, human_det implies rob_stopped;]

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;]

In the fourth instance, the operator enquires about the robot not switching off its power

during the lunch interval which takes places between 12:00 – 13:00 hours everyday.

Context under which Picking of the part takes place.

powered; -manual; grip_open; part_avl; -part_picked; -part_placed; -human_det; -part_def;

-rob_run; at_home; day(1); time(12);

The following explanations are generated.

-sleep: [Rule_8 :: powered implies -sleep;]

auto: [Rule_10 :: -manual implies auto;]

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;]

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;]

pick_part: [Rule_2 :: at_home, auto_perm, grip_open, -rob_stop implies pick_part;]

Context under which Placing of the part takes place.

powered; -manual; -grip_open; part_avl; part_picked; -part_placed; -human_det; -part_def;

rob_run; -at_home; day(1); time(12);

The following explanations are generated.

-sleep: [Rule_8 :: powered implies -sleep;]

auto: [Rule_10 :: -manual implies auto;]

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;]

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;]

place_part: [Rule_4 :: auto_perm, part_picked, -grip_open, -rob_stop, -part_def

implies place_part;]

94

Context under which Home movement takes place.

powered; -manual; grip_open; part_avl; -part_picked; part_placed; -human_det; -part_def; -

rob_run; -at_home; day(1); time(12);

The following explanations are generated.

-sleep: [Rule_8 :: powered implies -sleep;]

auto: [Rule_10 :: -manual implies auto;]

auto_perm: [Rule_6 :: -sleep, auto implies auto_perm;]

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;]

go_home: [Rule_5 :: auto_perm, part_placed, grip_open, -rob_stop implies

go_home;]

The operator presents its counter argument in the form of several exceptions and facts

such that the robot switches off its power during the lunch interval. The knowledge base

now looks as under.

Rule_0 :: auto_perm, rob_run, human_det implies rob_stop;

Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;

Rule_2 :: at_home, auto_perm, grip_open, -power_off, -rob_stop implies pick_part;

Rule_3 :: auto_perm, part_picked, -grip_open, -power_off, -rob_stop, part_def implies

place_def;

Rule_4 :: auto_perm, part_picked, -grip_open, -power_off, -rob_stop, -part_def implies

place_part;

Rule_5 :: auto_perm, part_placed, grip_open, -power_off, -rob_stop implies go_home;

Rule_6 :: lunch_time implies power_off;

Rule_7 :: -lunch_time implies -power_off;

Rule_8 :: time(X), ?<(X,12) implies -cond1;

Rule_9 :: time(X), ?=(12,X) implies cond1;

Rule_10 :: time(X), ?<(12,X) implies cond1;

Rule_11 :: time(X), ?=(X,13) implies cond2;

95

Rule_12 :: time(X), ?<(X,13) implies cond2;

Rule_13 :: time(X), ?<(13,X) implies -cond2;

Rule_14 :: -cond1, cond2 implies -lunch_time;

Rule_15 :: cond1, -cond2 implies -lunch_time;

Rule_16 :: cond1, cond2 implies lunch_time;

Rule_17 :: -sleep, auto implies auto_perm;

Rule_18 :: -powered implies sleep;

Rule_19 :: powered implies -sleep;

Rule_20 :: manual implies -auto;

Rule_21 :: -manual implies auto;

Rule_22 :: rob_run, -human_det implies -rob_stopped;

Rule_23 :: -rob_run, human_det implies rob_stopped;

Now under the similar contexts as above, the following explanations are generated,

cond1; cond2; lunch_time; -sleep; auto; power_off; auto_perm; -rob_stop

cond1: [Rule_9 :: time(12), ?=(12, 12) implies cond1;]

cond2: [Rule_12 :: time(12), ?<(12, 13) implies cond2;]

lunch_time: [Rule_16 :: cond1, cond2 implies lunch_time;]

-sleep: [Rule_19 :: powered implies -sleep;]

auto: [Rule_21 :: -manual implies auto;]

power_off: [Rule_6 :: lunch_time implies power_off;]

auto_perm: [Rule_17 :: -sleep, auto implies auto_perm;]

-rob_stop: [Rule_1 :: auto_perm, -rob_run, -human_det implies -rob_stop;]

In this way, the robot switches off its power during the lunch interval at the production

facility thereby reducing energy consumption. Therefore, the operators have managed to

coach the robotic arm based on various scenario demands to achieve the desired

performance.

The various policies provided by the remaining four volunteers could be seen in the

following table for experiment 2.

96

Volunteer Policy Context Constraint Result

1 Rule_0 :: auto_perm, part_avl,
grip_open implies pick_part;
Rule_1 :: auto_perm, part_picked
implies place_part_def;
Rule_2 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies
sleep;
Rule_6 :: powered implies -
sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 -human_det;

 part_def;
 -rob_run;
 at_home;
 day(1);
 time(8);

Faulty Parts
(Robot

should place
the faulty

parts faulty
part position
& non-faulty
parts at their

respective
location)

Failed

Rule_0 :: auto_perm, rob_run, -
human_det implies robo_work;
Rule_1 :: at_home, auto_perm,
part_avl, grip_open, robo_work
implies pick_part;
Rule_2 :: auto_perm,
part_picked, -grip_open,
robo_work implies place_part;
Rule_3 :: auto_perm, part_placed,
grip_open, robo_work implies
go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies
sleep;
Rule_6 :: powered implies -
sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
 -manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 human_det;
 -part_def;
 rob_run;
 at_home;
 day(1);
 time(8);

Human
Presence

(Robot
should stop
on detection

of human
nearby)

Pass

97

Rule_0 :: auto_perm, rob_run, -
human_det implies robo_work;
Rule_1 :: at_home, auto_perm,
part_avl, grip_open, robo_work,
halt, halt1 implies pick_part;
Rule_2 :: auto_perm,
part_picked, -grip_open,
robo_work, halt, halt1 implies
place_part;
Rule_3 :: auto_perm, part_placed,
grip_open, robo_work, halt, halt1
implies go_home;
Rule_4 :: time(X), ?=(X,12)
implies halt;
Rule_5 :: time(X), ?=(X,13)
implies halt1;
Rule_6 :: -sleep, auto implies
auto_perm;
Rule_7 :: -powered implies
sleep;
Rule_8 :: powered implies -
sleep;
Rule_9 :: manual implies -auto;
Rule_10 :: -manual implies auto;

powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 part_placed;
 -human_det;

 -part_def;
 -rob_run;
 -at_home;

 day(1);
 time(12);

Power
Consumption
(Robot must
switch off its
power during
lunch hour of

12:00 -
13:00)

Failed

2 No response powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 -human_det;

 part_def;
 -rob_run;
 at_home;
 day(1);
 time(9);

Faulty Parts
(Robot

should place
the faulty

parts faulty
part position
& non-faulty
parts at their

respective
location)

Failed

98

No response powered;
 -manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 human_det;
 -part_def;
 rob_run;
 at_home;
 day(1);
 time(9);

Human
Presence

(Robot
should stop
on detection

of human
nearby)

Failed

Rule_4 :: time(X), ?<(X,12)
implies alarm;
Rule_5 :: -sleep, auto implies
auto_perm;
Rule_6 :: -powered implies
sleep;
Rule_7 :: powered implies -
sleep;
Rule_8 :: manual implies -auto;
Rule_9 :: -manual implies auto;

powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 part_placed;
 -human_det;

 -part_def;
 -rob_run;
 -at_home;

 day(1);
 time(12);

Power
Consumption
(Robot must
switch off its
power during
lunch hour of

12:00 -
13:00)

Failed

3 Rule_0 :: auto_perm, part_avl,
grip_open implies pick_part;
Rule_1 :: auto_perm,
part_picked, part_def implies
place_part_def;
Rule_2 :: auto_perm,
part_picked, -part_def implies
place_part;
Rule_3 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies
sleep;
Rule_6 :: powered implies -
sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 -human_det;

 part_def;
 -rob_run;
 at_home;
 day(2);
 time(8);

Faulty Parts
(Robot

should place
the faulty

parts faulty
part position
& non-faulty
parts at their

respective
location)

Pass

99

Rule_0 :: at_home, auto_perm,
part_avl, grip_open,
robo_continue implies pick_part;
Rule_1 :: auto_perm,
part_picked, -grip_open,
robo_continue implies
place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, robo_work implies
go_home;
Rule_3 :: auto_perm, rob_run, -
human_det implies
robo_continue;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies
sleep;
Rule_6 :: powered implies -
sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
 -manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 human_det;
 -part_def;
 rob_run;
 at_home;
 day(2);
 time(8);

Human
Presence

(Robot
should stop
on detection

of human
nearby)

Pass

No response powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 part_placed;
 -human_det;

 -part_def;
 -rob_run;
 -at_home;

 day(1);
 time(12);

Power
Consumption
(Robot must
switch off its
power during
lunch hour of

12:00 -
13:00)

Failed

100

4 Rule_0 :: auto_perm, part_avl,
grip_open implies pick_part;
Rule_1 :: auto_perm, part_def,
part_picked implies
place_defected;
Rule_2 :: auto_perm, -part_def,
part_picked implies place_part;
Rule_3 :: auto_perm, part_placed
implies go_home;
Rule_4 :: -sleep, auto implies
auto_perm;
Rule_5 :: -powered implies
sleep;
Rule_6 :: powered implies -
sleep;
Rule_7 :: manual implies -auto;
Rule_8 :: -manual implies auto;

powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 -human_det;

 part_def;
 -rob_run;
 at_home;
 day(2);
 time(8);

Faulty Parts
(Robot

should place
the faulty

parts faulty
part position
& non-faulty
parts at their

respective
location)

Pass

Rule_0 :: at_home, auto_perm,
part_avl, grip_open, -human_det
implies pick_part;
Rule_1 :: auto_perm,
part_picked, -grip_open, -
human_det implies place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, -human_det implies
go_home;
Rule_3 :: -sleep, auto implies
auto_perm;
Rule_4 :: -powered implies
sleep;
Rule_5 :: powered implies -
sleep;
Rule_6 :: manual implies -auto;
Rule_7 :: -manual implies auto;

powered;
 -manual;

 grip_open;
 part_avl;

 -part_picked;
 -part_placed;
 human_det;
 -part_def;
 rob_run;
 at_home;
 day(2);
 time(8);

Human
Presence

(Robot
should stop
on detection

of human
nearby)

Pass

Rule_0 :: at_home, auto_perm,
part_avl, grip_open, -human_det
implies pick_part;
Rule_1 :: auto_perm,
part_picked, -grip_open, -
human_det implies place_part;
Rule_2 :: auto_perm, part_placed,
grip_open, -human_det implies
go_home;
Rule_3 :: time(Time),
?<(Time,12) implies no_halt;
Rule_4 :: time(Time),
?<(13,Time) implies no_halt1;
Rule_5 :: -sleep, auto implies
auto_perm;
Rule_6 :: -powered implies

powered;
-manual;

 grip_open;
 part_avl;

 -part_picked;
 part_placed;
 -human_det;

 -part_def;
 -rob_run;
 -at_home;

 day(1);
 time(12);

Power
Consumption
(Robot must
switch off its
power during
lunch hour of

12:00 -
13:00)

Failed

101

sleep;
Rule_7 :: powered implies -
sleep;
Rule_8 :: manual implies -auto;
Rule_9 :: -manual implies auto;

Table 4. Policies provided by volunteers under various constraints for Experiment 2

5.1 Intrinsic System Performance
As our proposed system is a combination of software applications running on distinct

platforms that involve communication between the two nodes, the PC (PRUDENS) and

the robot, we found it crucial to determine the performance of the combined system

based on the internal software parameters. We observed the robot’s response time in the

processing of an information exchange cycle between the two nodes at varied sizes of the

knowledge base where the robot was responsive enough to execute correct motion under

two separate cases. One information exchange cycle consists of the compilation and

transfer of contexts from the robot to PRUDENS, processing of the context, inference

generation based on the rules and transfer of the output to the robot from PRUDENS, and

finally processing of the received information and execution of motion by the robot. This

was achieved by observing the robot’s activity at cyclic delays ranging from 4ms to

200ms. For each cyclic delay, 20 robotic operation cycles were performed. For each KB

size, the cyclic delays at which the robot successfully performed 20 operation cycles were

recorded as the robot’s response time, which is shown in Table 5 below. In the first case,

we kept the Automatic Reply (AR) option on the PRUDENS server active and the Memory

(M) option deactivated. However, in the second case, we kept both the options active. This

test was performed in a standard production environment where the robot controller

was directly connected to the PC through a CAT6 ethernet cable. The PC on which the

PRUDENS server was running consists of an Intel i7-11800H @ 2.30GHz processor, 16.0

GB of RAM, and Windows 11 Enterprise as the operating system. Google Chrome was

102

used as the standard browser for the PRUDENS server. The Robot controller on the other

hand consists of Atom @ 1.9Ghz processor and a 2.0 GB RAM. The internal

communication speed of the CPU is 4 ms. The control pendant of the robotic arm, which

displays the robot’s interface, is a 7-inch touchscreen that displays user pages in HTML

format.

S. No. KB Size (No. of Rules) Case 1 Robot Response

Time(ms)

AR=True; M=False

Case 2 Robot

Response Time(ms)

AR=True; M=True

1. 7 150 90

2. 8 150 90

3. 12 163 101

4. 23 180 119

5. 29 187 125

6. 39 196 138

7. 45 196 138

8. 50 198 138

9. 55 200 138

10. 60 200 138

11. 70 200 138

12. 75 200 138

Table 5. Robot response time data at distinct KB size with Case
1 and Case 2 functionalities

103

Graph 2. KB Size (No. of Rules) vs Robot Response Times

(ms) in Cases 1 & 2

From Graph 2 we observe that with the increase in KB size in Case 1, the Robot’s response

time in one communication cycle shows a sharp increase up to 200ms after which it gets

stabilized irrespective of the increase in the number of rules in the KB. However, it is

observed that in Case 2, the robot response time attains stability much before as

compared to Case 1. Therefore, the cache memory functionality offered an increased

performance at large KB size.

 KB Size (No.

of Rules)
Case 1 Robot

Response
Time(ms)

Case 2 Robot
Response
Time(ms)

KB Size (No. of

Rules)

1

Case 1 Robot

Response

Time(ms)

0.900575074

1

Case 2 Robot

Response

Time(ms)

0.884384466

0.996925001

1

Table 6. Correlation b/w KB Size and Robot Response Times in
Case 1 & 2

0

50

100

150

200

250

7 8 12 23 29 39 45 50 55 60 70 75

Ro
bo

t R
es

po
ns

e
Ti

m
e(

m
s)

KB Size (No. of Rules)

Case 1 Robot Response Time(ms) AR=True; M=False

Case 2 Robot Response Time(ms) AR=True; M=True

104

From Table 6, we observe that the robot response times in both the cases exhibit high

correlation with the size of the KB as well as with each other. It is however observed that

the correlation between the Case 2 response time and the KB is lower as compared to that

in Case 1. This again suggests that after a particular value of robot’s response time in Case

2 the influence of the size of KB is decreased.

5.2 Extrinsic System Performance
In order to have an extrinsic evaluation of the system’s performance from the cognitive

point of view, we prepared several tasks pertaining to the system’s use and functionality

in a real time industrial environment that each participant needs to perform. To achieve

this an initial training regarding PRUDENS and Staubli Robot was provided to the

participants. Subsequent to the task phase, the participants were asked to record their

feedback through a questionnaire. Each participant was informed about the motive of the

evaluation and was asked to give their consent as part of the data collection and data

handling policy before beginning with the survey. Ten volunteers (eight male, two

female) from the industry having ages ranging from twenty-two to fifty-five voluntarily

participated in the evaluation process. All the participants possessed an intermediate to

fluent level of English language. In the initial phase of the evaluation, we proceed with a

demographic survey of the participants as below.

Figure 15

30% of the participants fall under the age group of 34 – 40 years. This suggests that

evaluation would be done by people who are greatly acquainted to advanced industrial

105

technologies. We also observe that there is an equal distribution of participants that lie

in the age groups of 26 – 33 years, 41- 48 years and 18 - 25 years. It suggests that we will

receive equal opinions about the system from distinct age groups. We also found that

10% of the participants fall under the age group of 49 – 55 years which determines that

evaluation will also contain feedback from people who possess a more manual approach

towards industrial solutions.

Figure 16

From figure 16, it is evident that people from three different ethnicities will be evaluating

the system. They would enable us to understand their approach towards the system’s

usage according to which further development of the system could be customized.

Figure 17

106

Majority of the participants possess Intermediate English level whereas the remaining

classify themselves as fluent English users. This has enabled us to test the system on

English comprehension-based factors.

Figure 18

Most of the participants are from a technical background. This implies for a detailed

technology evaluation.

Figure 19

40% of the participants work as Managers whereas the remaining show a mixed

distribution of Engineers, Executives, Technicians and Operators. This would enable an

evaluation pertaining to the user’s approach towards the system from various

professions.

107

Figure 20

Most of the participants possess an industrial experience of over five years. This has

enabled us to get the opinion about the system from industry experts with strong

technical know-how.

Figure 21

All the participants are familiar with working on computers. As our system is a computer-

based application therefore computer proficiency was a major requirement from the

usage and evaluation point of view.

108

Figure 22

80% of the participants know how to use industrial robots. This shows that most of the

participants are acquainted with the usage of industrial robots. Due to this fact they

would evaluate the system keeping in mind the complexities and the challenges they face

while dealing with the standardized robotic applications.

Figure 23

60% of the participants are familiar with industrial robot or machine programming. This

shows that most of the participants are proficient with the programming of the industrial

systems. This would enable them to distinguish between the software-based challenges

and production loss when they need to modify something pertaining to the robot’s or

machine’s action and how they approach towards the same through our system.

109

Figure 24

Most of the participants are engaged with some kind of Human-Machine Interaction. This

determines that they are aware of the challenges they face during the interaction process.

This would in turn help us to get our system evaluated from HMI experienced

professionals.

Figure 25

Much to a surprise, in the era of industry 4.0, most of the participants prefer Manual HMI

methods through touch and visualization. This determines the general human outlook

when it comes to adapting new technology. Humans generally feel comfortable with using

tools that are common among masses.

110

Figure 26

40% of the participants have the experience to work with collaborative robots in the

industry. Collaborative robots are the industrial robots that are designed to work with

humans. They are programmed to work at a speed that would produce minimum energy

such that it should cause no damage in case it strikes with any human body part. In today’s

industries, collaborative robots have become a necessity to increase production and offer

safety. However, when it comes to establishing communication between human and the

robot classical approaches are followed. Low collaborative experience of the participants

would create some discrepancy in the evaluation results.

Figure 27

Only 20% of the participants suggest that their industrial robots do not require any kind

of human intervention. This data might not be so correct as almost all the machine

111

operators or engineers intervene with the robots at least once every day in order to check

for logs or acknowledge alarms.

Figure 28

This suggests that most of the participants still have no experience working with smart

machines in the industry. This determines that they might find our system a bit complex

to comprehend in the initial phase.

Figure 29

Generally, participants require 2 – 8 work hours in order to modify the robot program.

This suggests a minimum of 2 – 8 hours of production down time.

As part of the second phase of the evaluation, we proceed with the cognition-based task

execution. The observations are below.

112

1. Download the Robot Application into the Robot Controller.

Figure 30

Figure 31

The process of downloading the robot application into the robot controller is an

important step towards using our proposed system. It requires the installation of the

Staubli Robotics Suits (SRS) into the PC. Once SRS is installed, the user has to send the API

to the robot through FTP that is facilitated by the Transfer Manager tool integrated in

SRS. It was observed that one of the participants experienced an issue with the

installation of SRS due to which he did not find this process to be easy.

113

2. Create TCP IP Socket on the robot

Figure 32

Figure 33

It was observed that 50% of the participants could easily create the TCP-IP socket on the

robot whereas 60% of them found it difficult to insert the communication parameters.

114

3. Open, Run and Interact with the downloaded robot API from the HMI pendant

Figure 34

Figure 35

Figure 36

115

It was observed that 30% of the participants did not find it too easy to open and load the

robot API into the RAM from the HMI pendant as it involves multiple operations to access

the robot controller’s disk from the HMI menu and choose the respective API from the

application list. However, once the application is opened and loaded into the robot

controller’s RAM around 70% of the participants found is very easy to RUN it and interact

with the API interface. The main reason behind this is that Running an application from

the HMI pendant is a one button operation if the application is already loaded into the

robot controller’s RAM. The application’s interface is simple to interact with as the user

just needs to enter 1 as a numeric input in order to begin the communication process with

the PRUDENS server.

4. Run PRUDENS server on the PC

Figure 37

Figure 38

116

Figure 39

We observed that 30% of the participants found it difficult to give access rights from

Windows for their PC to enable data exchange over TCP IP. One of the participants failed

to do so due to some stringent access right policy in his company’s laptop. This participant

however successfully configured the permissions in his personal laptop. The remaining

60% participants were easily able to do so by following the respective cues on their

Windows operating system. When it comes to working with the command prompt it was

found that 50% of the participants had negligible or little understanding of this tool.

However, 80% of the participants found it easy to run PRUDENS server from the

command prompt by executing the “npm start” command. It was observer that 20% of

the participants found it difficult to run PRUDENS server as they could not navigate to the

source folder from the command prompt.

5. Workaround with the PRUDENS interface

Figure 40

117

Figure 41

Figure 42

Figure 43

It was observed that 80% of the participants found it easy to comprehend the PRUDENS

interface understand the syntax of Rules in the knowledge base. 20% of the participants

118

however found it difficult to grasp the basics of the PRUDENS concept. It was also found

that 90% of the participants were comfortable with the logical concept behind the rules

and could alter the knowledge base easily.

Figure 44

Figure 45

When it comes to understanding of the inferences generated by PRUDENS in the console,

we found that 70% of the participants could easily understand them. However, 30%

found it difficult initially to build an understanding of the inferences appearing on the

console. We also found that 80% of the participants could successfully and easily create

exceptions in the knowledge base. The remaining 20% of the participants found it

difficult to create exceptions, if necessary, based on the inferences generated out of which

one participant found it extremely difficult to work around with this.

119

Figure 46

Figure 47

All of the participants could easily download the inferences in the form of a text file by

using the Download button on the console and use the Auto Reply and Memory

functionalities.

120

6. Control and Coach the Robot through PRUDENS

Figure 48

Figure 49

We observed that all the participants were comfortable in testing the robot by manually

sending the outcomes generated by PRUDENS as part of the coaching scenario. 70% of

the participants found this operation to be very easy to perform. Similar results were

observed when the participants tried to control the robot’s motion through PRUDENS

121

Figure 50

When it comes to a complete coaching scenario of the robotic arm through PRUDENS, it

was found that 80% of the participants could easily perform this operation. Two of the

participants were however got confused at various stages of coaching and therefore

found the process to be difficult.

As the final evaluation criteria, the participants were asked to complete the questionnaire

that determines the System Usability Scale (SUS) as part of their individual feedback. The

questionnaire consists of 10 questions where the participants are required to record

their feedback on 1 – 5 scale.

From Table 7 below, we observe the outlook of the participants on the questionnaire we

created for SUS evaluation.

S.
No.

User Feedback Strongly
Agree

Agree Neither
Agree
Nor
Disagree

Disagree Strongly
Disagree

1 The proposed
system was easy

to use.

0 3 4 2 1

2 The proposed
system was

difficult to use.

0 2 6 1 1

3 I would prefer
to use this

system to coach

1 2 4 3 0

122

the robot
frequently.

4 I cannot use this
system

independently.

1 4 2 2 1

5 This proposed
system is not

complete.

0 1 8 2 0

6 I need training
to use this

system.

2 5 2 1 0

7 The proposed
system could
have a better

user interface.

0 3 5 2 0

8 I don’t prefer
working with

TCP IP.

0 3 2 4 1

9 The proposed
system cannot

be implemented
in complex

robotic
processes.

2 4 3 1 0

10 The proposed
system is awful.

0 0 1 3 6

Table 7. System Usability Scale Questionnaire

The first question was based on the ease of use of the system where out of ten participants

four did not find it to be easy nor difficult whereas three of the participants found the

system to be easy to use. Two participants found the system to be difficult probably due

to their low industrial know-how whereas one participant found the system to be very

difficult. The second question asked the participants about the system’s difficulty level

and it was found that two out of ten participants found the system to be difficult to use.

However, six participants were not sure about the same. The remaining participants were

comfortable with the system and found it not difficult at all. Based on their feedback on

the third question we found that three participants would like to use such a system

frequently to coach their robot out of which one participant looked very much promising

in doing so. We also observe that another three participants were skeptical about using a

similar system for robot coaching purposes. It might be possible that they belong to the

category of the users who feel comfortable in using the standard technology rather than

adopting an out of the box approach. The remaining four participants were not sure about

123

using or not using a similar system for robot coaching purposes in their jobs. Regarding

the fourth question about using a similar system independently, we observed that five

out of ten participants were able to do so out of which one participant was highly

confident regarding the same. Out of the remaining fifty percent participants two could

not decide that whether they could use a similar system independently or not. However,

three participants did not find it possible to use such a system independently with one

being completely reluctant. This gave us an idea that the system might not target the

users who are reluctant towards trying to get accustomed with new technology. This

would further require us to add several features to the system that would gain the

confidence of such users. Eight out of ten participants could not decide that whether the

proposed system was actually ready to be adopted industrially or not. Although two

participants were sure enough that the system needs to be developed further for a

complete industrial integration one participant found it to be ready. We also agree that a

complete industrial integration requires many factors to be considered. These factors

might be related to several features for alarm and scenario management, reporting, safety

etc. which could be adopted into our proposed system through a multi-dimensional

research and analysis. Seventy percent of the participants found that they would require

an initial training prior using such a system based on question six. Although the user

interface of the system was quite simple, we observed that three out of ten participants

desired for a better user interface which might be adaptable to the users of distinct

cognitive traits with a possibility of personalization. However, fifty percent of the

participants were not sure about the user interface. We also found that the remaining two

participants found the user interface to be acceptable. As TCP -IP communication was one

of the main features of the proposed system, we observed that according to the user

feedback on question eight, fifty percent of the participants were comfortable with

working with TCP-IP and thirty percent were against using this communication protocol.

It might be due to their narrow experience in using TCP-IP communication within the

industrial domain. However, the remaining twenty percent of the participants remained

unsure about this. According to the user feedback on question nine, we found that sixty

percent of the participants agreed that the proposed system cannot be implemented in

complex robotic processes which might go beyond picking and placing applications such

as laser cutting, welding, conveyor tracking etc. One participant however disagreed with

the outlook of the majority. We on the other hand also disagree with the majority’s

124

feedback as laser cutting and welding applications are trajectory specific application

where real time trajectory optimization is required. Trajectory optimization coaching

could be easily facilitated with some modifications in the system. Also, concepts like

product feed balancing, area distribution, conveyor strategy etc. that are widely used in

robotic conveyor tracking applications could also be managed through our proposed

system with some modifications and optimizations. From the user feedback related to the

tenth question, we found that the majority of the participants did not find our system to

be awful. This gives us motivation and strength to work on future developments related

to a more sophisticated industrial integration and application specific optimization.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score

P1 3 5 3 3 5 4 3 2 3 2 52.5

P2 2 2 2 4 2 3 2 4 4 1 45

P3 4 5 3 4 2 4 2 3 2 1 40

P4 1 3 2 3 3 3 4 5 3 2 42.5

P5 3 2 5 1 3 4 4 2 2 2 65

P6 4 3 3 5 2 1 3 4 2 3 45

P7 5 2 5 3 4 3 5 3 4 2 75

P8 4 4 4 3 3 4 4 3 3 1 57.5

P9 5 3 4 3 3 3 3 4 5 2 62.5

P10 4 4 5 5 3 5 3 5 3 2 42.5

Table 8. System Usability Scale Matrix

Based on the SUS questionnaire, we created a SUS matrix as seen in Table 8 above in order

to calculate the system usability score of the proposed system. Here the ten participants

are represented as Pn (n = 1, 2, 3…10) and the ten questions are represented as Qn(n =

1,2,3….10). We then asked the participants to grade the system based on the ten

questions on a scale of 1-5. Based on the SUS score calculation, we found the maximum

score to be 75, the minimum score to be 40 and the average score to be 52.75 out of 100.

125

Figure 51. SUS Acceptability Score (Adobe 2021)

As per (Adobe 2021), we found that on an average, our proposed system lies on the

marginal band which determines that there is a scope to research and develop the system

further in terms of effectiveness, efficiency, and user satisfaction.

126

Chapter 6
 Conclusion

6.1 Conclusion and Future Work
Indulging in an argument with a machine sounds fascinating, but it brings complexities

that need to be handled at a broader level. During our integration of the PRUDENS

argumentation framework with an industrial robotic arm, the main challenge was to

design a communication framework that is machine manufacturer independent.

Although we chose to integrate the system with a Staubli Robotic Arm, the framework

that we created could also be integrated with any available industrial robot on the market

that allows TCPIP socket communication. The communication framework adopted is the

cheapest in the market as it is not brand specific, as is the case today where industrial

automation brands want to stick with customized industrial communication protocols

(Pereira & Neumann 2009), whose scope remains limited within their brand specific

equipment.

Based on system trials with participants and analyzing the results, we were able to gain

a detailed understanding of implementing such a system in an industrial setting and build

a framework that would reduce programming complexities. Based on our findings and

the discussion with the participants, we believe that we managed to explore the domain

which requires such smart systems where the user could seek information from the

machine and guide it through exceptions, thereby enhancing its performance. We also

found that technological limitations and the bias that humans possess when it comes to

using new technology play a major role in the design and implementation of such

systems. Communication speeds are vital in a real-time system, therefore the protocol

that verifies the data transferred and received in a communication cycle at high frequency

is of utmost importance. TCP/IP assures an error-free data transfer between two parties

where the data size determines the communication speed. Although TCP IP serves best

for this purpose of information exchange, there are better technologies that could be

127

adapted for the development of such systems. For instance, the entire system could be

developed through the Robot Operation System (ROS), which would rule out the use of

information exchange between two separate parties. This would have provided better

performance and optimization capabilities. However, as the industrial robots are

available with their inbuilt programming language that is widely preferred to program

simple industrial applications without any extra programming cost, therefore, utilizing

ROS technology would be expensive for our proposed system due to the requirement of

several licenses and permissions from the robot manufacturer. But this technology would

have made it easier to set up several automatic programming routines that aren't possible

in the programming language that our robot uses by default.

Determining the naming style of the predicates that are used to create rules in the

knowledge base of the argumentation framework was also found to be of critical

importance. Therefore, we chose a style that is easy to interpret for the robot as well as

for the human. We proceeded with the introduction of Boolean characteristics such as

true and false in the predicate names, which makes it easy for the robotic application to

interpret. In the initial phase of the development, we decided to proceed with bitwise

operations such that the robot would send the contexts in the form of bits, which would

be decoded at the PRUDENS server prior to processing for inference generation and

subsequently convert the resultant into bits prior to transfer to the robot. Inference

generation from a set of 30–40 rules is also time-consuming at the server side. Therefore,

incorporating two additional parsers for bitwise operations would add to the processing

time that would be further increased with the processing and decoding delays at the

robot side, thereby increasing the overall delay in one send-receive cycle. It was also

observed that using Booleans in the predicates made the entire naming criteria weird,

which was also different from what PRUDENS suggests. We therefore moved to the

standard naming criteria as suggested by PRUDENS and switched from bitwise operation

to string operation at a later stage to keep the overall processing and comprehension

times low. We also found that performing too many string operations also slows down

the overall system performance. Therefore, we kept ourselves limited to minimal string

operations on both the PRUDENS and the robot side. On the robot side, we developed

contexts from its knowledge as strings that match the literals in the rules. This enabled a

fast transfer of data by the robot, which was comprehended as context by the PRUDENS

128

server without the need for any additional parser. We found that generating inferences

is time-consuming as the size of the rules increases. Therefore, we created a cache

memory function on the server side that mapped the incoming contexts to the generated

inferences and stored the outcome in the cache memory. This enabled us to transfer the

inferences as per the context from the cache memory without the need for reprocessing.

In order to process the inferences received and generate an action at the robotic arm’s

side, we developed an inference parser. It was found that a complex parser’s efficiency

depends on the CPU and RAM capacity as it incorporates string operations which are

time-consuming on slower CPUs. We experienced a delay in the parsing and execution

operations on the robot side due to the low-capacity CPU and small RAM. In an overall

scenario, we managed to work a complete cycle of context transfer and inference

comprehension for non-cached outcomes to be as slow as 200 ms and for cached

outcomes to be as slow as 138 ms. We also found that there was a requirement for a

dynamic time synchronization setting for a transfer cycle at the robot side, which enables

it to start in learning mode where the server does the respective mapping in the cache

memory. After several cycles, the robot could be switched to non-learning mode where it

now enables fast transfer cycles. From here we also found why Working Memory plays

an important role in the entire Human Argumentation Model, which involves the complex

cognitive operations of learning and reasoning, intelligence, etc.

This research might be extended into numerous areas, such as Human-Machine

Interaction, Robotics, Automation, Learning through Argumentative Reasoning, and so

on. There is a lot of room for research in areas like automated programming and program

induction (Ellis and Gulwani, 2017) to achieve procedural knowledge, autonomous

learning of arguments in a natural language environment, and improving machine-

learning approaches to argumentation, among others. As we stand today on the verge of

industry 5.0, we expect that the human workforce will be indulged more in machine

knowledge enhancement rather than being physically involved in the tedious jobs which

could be handled by machines or robots more efficiently. Focus would be on the human-

machine interaction paradigm where the conveyance of knowledge, commands, and

feedback would match that of human-human conversation. Great progress has already

been made in the natural language interpretation modules of the voice-controlled home

automation systems like Siri, Alexa, and Google Assistant, etc. Our idea of coaching an

129

industrial robotic arm through argumentation is the initial step of bringing forward the

use of argumentation theory as an interaction interface with industrial machines in an

industrial setting, where we also bring forward the concept of machine programming

through argumentation at a very superficial level. We believe that further developments

in our approach to machine coaching would make industries ready for the upcoming

industrial revolutions.

130

Appendix A
Code

Robot Coaching through PRUDENS
The code for our proposed system is available at the following GitHub repository.

https://github.com/khan4search/Robot-Coaching-through-PRUDENS.git

https://github.com/khan4search/Robot-Coaching-through-PRUDENS.git

131

References

Adadi, A., AND Berrada, M. (2018) Peeking Inside the Black-Box: A Survey on

Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160.

https://doi.org/10.1109/access.2018.2870052

Adobe. (2021). The System Usability Scale & How it's Used in UX | Adobe XD. Ideas.

https://xd.adobe.com/ideas/process/user-testing/sus-system-usability-scale-ux/

Akdogan, K.E. (2019) Introduction to Industrial Robot Programming.

https://mece104.cankaya.edu.tr/uploads/files/Introduction%20to%20Industrial%

20Robot%20Programming.pdf.

Amgoud, L., & Serrurier, M. (2007). Agents that argue and explain classifications.

Autonomous Agents and Multi-Agent Systems, 16(2), 187–209.

https://doi.org/10.1007/s10458-007-9025-6

Arrieta, A., B., et al. (2020), Explainable Artificial Intelligence (XAI): Concepts,

Taxonomies, Opportunities and Challenges toward responsible AI, Information

Fusion (58), 82-115.

Aroyo, A. M., Rea, F., Sandini, G., & Sciutti, A. (2018). Trust and Social Engineering in

Human Robot Interaction: Will a Robot Make You Disclose Sensitive Information,

Conform to Its Recommendations or Gamble? IEEE Robotics and Automation Letters,

3(4), 3701–3708. https://doi.org/10.1109/lra.2018.2856272

Azhar, M. Q., & Sklar, E. I. (2017). A study measuring the impact of shared decision

making in a human-robot team. The International Journal of Robotics Research, 36(5–

7), 461–482. https://doi.org/10.1177/0278364917710540

https://doi.org/10.1109/access.2018.2870052
https://xd.adobe.com/ideas/process/user-testing/sus-system-usability-scale-ux/
https://mece104.cankaya.edu.tr/uploads/files/Introduction%20to%20Industrial%20Robot%20Programming.pdf
https://mece104.cankaya.edu.tr/uploads/files/Introduction%20to%20Industrial%20Robot%20Programming.pdf
https://doi.org/10.1007/s10458-007-9025-6
https://doi.org/10.1109/lra.2018.2856272
https://doi.org/10.1177/0278364917710540

132

Bergamini, L., Sposato, M., Pellicciari, M., Peruzzini, M., Calderara, S., & Schmidt, J.

(2020). Deep learning-based method for vision-guided robotic grasping of unknown

objects. Advanced Engineering Informatics, 44, 101052.

https://doi.org/10.1016/j.aei.2020.101052

Bernardo, B., Alves-Oliveira, P., Santos, M. G., Melo, F. S., & Paiva, A. (2016). An

Interactive Tangram Game for Children with Autism. Intelligent Virtual Agents, 500–

504. https://doi.org/10.1007/978-3-319-47665-0_63

Black, E., & Sklar, E. I. (2016). Computational argumentation to support multi-party

human-robot interaction: Challenges and advantages. In Proceedings of the Groups in

Human-Robot Interaction Workshop: A workshop at the IEEE International Symposium

on Robot and Human Interactive Communication.

Bratko, I., Žabkar, J., Možina, M. (2009). Argument-Based Machine Learning. In: Simari,

G., Rahwan, I. (eds) Argumentation in Artificial Intelligence. Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-98197-0_23

Breiman, L. (2001). Random forests. Machine Learning 45(1), 5–32

Buizza Avanzini, G., Ceriani, N. M., Zanchettin, A. M., Rocco, P., & Bascetta, L. (2014).

Safety Control of Industrial Robots Based on a Distributed Distance Sensor. IEEE

Transactions on Control Systems Technology, 22(6), 2127–2140.

https://doi.org/10.1109/tcst.2014.2300696

Canal, G., Escalera, S., & Angulo, C. (2016). A real-time Human-Robot Interaction

system based on gestures for assistive scenarios. Computer Vision and Image

Understanding, 149, 65–77. https://doi.org/10.1016/j.cviu.2016.03.004

Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy ART: Fast stable learning

and categorization of analog patterns by an adaptive resonance system. Neural

Networks, 4(6), 759–771. https://doi.org/10.1016/0893-6080(91)90056-b

https://doi.org/10.1016/j.aei.2020.101052
https://doi.org/10.1007/978-3-319-47665-0_63
https://doi.org/10.1007/978-0-387-98197-0_23
https://doi.org/10.1109/tcst.2014.2300696
https://doi.org/10.1016/j.cviu.2016.03.004
https://doi.org/10.1016/0893-6080(91)90056-b

133

Carstens, L., Toni, F. (2015) Improving out-of-domain sentiment polarity

classification using argumentation. In: IEEE International Conference on Data Mining

Workshop, ICDMW. pp. 1294–1301.

Chen, F., Lv, H., Pang, Z., Zhang, J., Hou, Y., Gu, Y., Yang, H., & Yang, G. (2019). WristCam:

A Wearable Sensor for Hand Trajectory Gesture Recognition and Intelligent Human–

Robot Interaction. IEEE Sensors Journal, 19(19), 8441–8451.

https://doi.org/10.1109/jsen.2018.2877978

Chen, L., Su, W., Feng, Y., Wu, M., She, J., & Hirota, K. (2020). Two-layer fuzzy multiple

random forest for speech emotion recognition in human-robot interaction.

Information Sciences, 509, 150–163. https://doi.org/10.1016/j.ins.2019.09.005

Chen, X., Wang, N., Cheng, H., & Yang, C. (2020). Neural Learning Enhanced Variable

Admittance Control for Human–Robot Collaboration. IEEE Access, 8, 25727–25737.

https://doi.org/10.1109/access.2020.2969085

Cherubini, A., Passama, R., Fraisse, P., & Crosnier, A. (2015). A unified multimodal

control framework for human–robot interaction. Robotics and Autonomous Systems,

70, 106–115. https://doi.org/10.1016/j.robot.2015.03.002

Cid, F., Prado, J. A., Bustos, P., & Nunez, P. (2013). A real time and robust facial

expression recognition and imitation approach for affective human-robot interaction

using Gabor filtering. 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems. https://doi.org/10.1109/iros.2013.6696662

Clark, P., Niblett, T. (1989) The CN2 induction algorithm, Machine Learning Journal 4

(3) 261–283.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

273–297. https://doi.org/10.1007/bf00994018

https://doi.org/10.1109/jsen.2018.2877978
https://doi.org/10.1016/j.ins.2019.09.005
https://doi.org/10.1109/access.2020.2969085
https://doi.org/10.1016/j.robot.2015.03.002
https://doi.org/10.1109/iros.2013.6696662
https://doi.org/10.1007/bf00994018

134

Craven, R., & Toni, F. (2016). Argument graphs and assumption-based argumentation.

Artificial Intelligence, 233, 1–59. https://doi.org/10.1016/j.artint.2015.12.004

Ding, I. J., & Shi, J. Y. (2017). Kinect microphone array-based speech and speaker

recognition for the exhibition control of humanoid robots. Computers & Electrical

Engineering, 62, 719–729. https://doi.org/10.1016/j.compeleceng.2015.12.010

Doering, M., Glas, D. F., & Ishiguro, H. (2019). Modeling Interaction Structure for Robot

Imitation Learning of Human Social Behavior. IEEE Transactions on Human-Machine

Systems, 49(3), 219–231. https://doi.org/10.1109/thms.2019.2895753

Du, G., Chen, M., Liu, C., Zhang, B., & Zhang, P. (2018). Online Robot Teaching With

Natural Human–Robot Interaction. IEEE Transactions on Industrial Electronics,

65(12), 9571–9581. https://doi.org/10.1109/tie.2018.2823667

Dung, P., M. (1995), On the Acceptability of Arguments and its Fundamental Role in

Nonmonotonic Reasoning, Logic Programming and 𝑛𝑛-Person Games, Artificial

Intelligence 77, 321-357.

Ellis, K., & Gulwani, S. (2017) Learning to learn programs from examples: Going

beyond program structure. Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence. https://doi.org/10.24963/ijcai.2017/227

Erden, M. S., & Billard, A. (2014). End-point impedance measurements at human hand

during interactive manual welding with robot. 2014 IEEE International Conference

on Robotics and Automation (ICRA). https://doi.org/10.1109/icra.2014.6906599

Erden, M. S., & Billard, A. (2015a). End-Point Impedance Measurements Across

Dominant and Nondominant Hands and Robotic Assistance with Directional

Damping. IEEE Transactions on Cybernetics, 45(6), 1146–1157.

https://doi.org/10.1109/tcyb.2014.2346021

https://doi.org/10.1016/j.artint.2015.12.004
https://doi.org/10.1016/j.compeleceng.2015.12.010
https://doi.org/10.1109/thms.2019.2895753
https://doi.org/10.1109/tie.2018.2823667
https://doi.org/10.24963/ijcai.2017/227
https://doi.org/10.1109/icra.2014.6906599
https://doi.org/10.1109/tcyb.2014.2346021

135

Erden, M. S., & Billard, A. (2015b). Hand Impedance Measurements During Interactive

Manual Welding With a Robot. IEEE Transactions on Robotics, 31(1), 168–179.

https://doi.org/10.1109/tro.2014.2385212

Fang, B., Ma, X., Wang, J., & Sun, F. (2020). Vision-based posture-consistent

teleoperation of robotic arm using multi-stage deep neural network. Robotics and

Autonomous Systems, 131, 103592. https://doi.org/10.1016/j.robot.2020.103592

Ferretti, E., Errecalde, M., Garcıa, A. and Simari, G. (2006). Khedelp: A framework to

support defeasible logic programming for the khepera robots, ISRA06.

Ferretti, E., Errecalde, M., García, A.J. and Simari, G.R. (2007). An application of

defeasible logic programming to decision making in a robotic environment, Logic

Programming and Nonmonotonic Reasoning, Springer, pp.297–302.

Ficuciello, F., Villani, L., & Siciliano, B. (2015). Variable Impedance Control of

Redundant Manipulators for Intuitive Human–Robot Physical Interaction. IEEE

Transactions on Robotics, 31(4), 850–863.

https://doi.org/10.1109/tro.2015.2430053

Fujii, K., Gras, G., Salerno, A., & Yang, G. Z. (2018). Gaze gesture based human robot

interaction for laparoscopic surgery. Medical Image Analysis, 44, 196–214.

https://doi.org/10.1016/j.media.2017.11.011

Gaertner & Toni, F. (2007). Computing arguments and attacks in assumption-based

argumentation, IEEE Intelligent Systems 22(6) (2007), 24–33.

Gamboa-Montero, J. J., Alonso-Martín, F., Castillo, J. C., Malfaz, M., & Salichs, M. A.

(2020). Detecting, locating and recognising human touches in social robots with

contact microphones. Engineering Applications of Artificial Intelligence, 92, 103670.

https://doi.org/10.1016/j.engappai.2020.103670

https://doi.org/10.1109/tro.2014.2385212
https://doi.org/10.1016/j.robot.2020.103592
https://doi.org/10.1109/tro.2015.2430053
https://doi.org/10.1016/j.media.2017.11.011
https://doi.org/10.1016/j.engappai.2020.103670

136

Gao, Q., Liu, J., Ju, Z., & Zhang, X. (2019). Dual-Hand Detection for Human–Robot

Interaction by a Parallel Network Based on Hand Detection and Body Pose Estimation.

IEEE Transactions on Industrial Electronics, 66(12), 9663–9672.

https://doi.org/10.1109/tie.2019.2898624

Gao, Y., Toni, F. (2013). Argumentation accelerated reinforcement learning for

robocup keepaway-takeaway. In: Theory and Applications of Formal Argumentation

- Second International Workshop, TAFA. vol. 8306, pp. 79–94

Gao, Y., Toni, F. (2014). Argumentation accelerated reinforcement learning for

cooperative multi-agent systems. In: ECAI 2014 - 21st European Conference on

Artificial Intelligence. pp. 333–338

Gao, Y., Toni, F. (2015) Argumentation accelerated reinforcement learning. Ph.D.

thesis, Imperial College London

García, A. J. and Simari, G. R. (2004). Defeasible logic programming: An argumentative

approach. In Theory and practice of logic programming (Vol. 4, pp. 95–138).

Cambridge University Press.

Ge, S. S., Wang, C., & Hang, C. C. (2008). Facial expression imitation in human robot

interaction. RO-MAN 2008 - The 17th IEEE International Symposium on Robot and

Human Interactive Communication. https://doi.org/10.1109/roman.2008.4600668

Gómez, S.A., Chesnevar, C.I. (2004). A hybrid approach to pattern classification using

neural networks and defeasible argumentation. In: Proceedings of the Seventeenth

International Florida Artificial Intelligence Research Society Conference, Miami

Beach, Florida, USA. pp. 393–398

Governatori, G. (2004). Defeasible Description Logic. 10.1007/978-3-540-30504-0_8.

https://doi.org/10.1109/tie.2019.2898624
https://doi.org/10.1109/roman.2008.4600668

137

Governatori, G. and Terenziani, P. (2007). Temporal extensions to defeasible logic. In

Proceedings of the 20th Australian joint conference on Advances in artificial

intelligence (AI'07). Springer-Verlag, Berlin, Heidelberg, 476–485.

Grosse, K., González, M. P., Chesñevar, C. I., & Maguitman, A. G. (2015). Integrating

argumentation and sentiment analysis for mining opinions from Twitter. AI

Communications, 28(3), 387–401. https://doi.org/10.3233/aic-140627

Gunawan, A. A. S., Stevelino, A., Ngarianto, H., Budiharto, W., & Wongso, R. (2017).

Implementation of Blind Speech Separation for Intelligent Humanoid Robot using

DUET Method. Procedia Computer Science, 116, 87–98.

https://doi.org/10.1016/j.procs.2017.10.014

Hierons, R. (1999). Machine learning. Tom M. Mitchell. Published by McGraw-Hill,

Maidenhead, U.K., International Student Edition, 1997. ISBN: 0–07-115467-1, 414

pages. Price: U.K. £22.99, soft cover. Software Testing, Verification and Reliability,

9(3), 191–193.

Hong, J. H., Song, Y. S., & Cho, S. B. (2007). Mixed-Initiative Human–Robot Interaction

Using Hierarchical Bayesian Networks. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 37(6), 1158–1164.

https://doi.org/10.1109/tsmca.2007.906570

IFR International Federation of Robotics. (2020). IFR presents World Robotics Report

2020. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-

factories-around-the-globe

Jensen, B., Tomatis, N., Mayor, L., Drygajlo, A., & Siegwart, R. (2005). Robots Meet

Humans—Interaction in Public Spaces. IEEE Transactions on Industrial Electronics,

52(6), 1530–1546. https://doi.org/10.1109/tie.2005.858730

https://doi.org/10.3233/aic-140627
https://doi.org/10.1016/j.procs.2017.10.014
https://doi.org/10.1109/tsmca.2007.906570
https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe
https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe
https://doi.org/10.1109/tie.2005.858730

138

John, G.H., Langley, P. (1995). Estimating continuous distributions in bayesian

classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial

Intelligence. pp. 338–345. UAI’95

Kim, Y. M., Koo, S. Y., Lim, J., & Kwon, D. S. (2010). A robust online touch pattern

recognition for dynamic human-robot interaction. IEEE Transactions on Consumer

Electronics, 56(3), 1979–1987. https://doi.org/10.1109/tce.2010.5606355

Kronander, K., & Billard, A. (2014). Learning Compliant Manipulation through

Kinesthetic and Tactile Human-Robot Interaction. IEEE Transactions on Haptics, 7(3),

367–380. https://doi.org/10.1109/toh.2013.54

Kurose, J.F., & Ross, K.W. (2013). Chapter 2: Application Layer. In Computer

networking: A top-down approach 6th ed (pp. 156–168). essay, PEARSON.

Lam, H. P., & Governatori, G. (2012). Towards a model of UAVs navigation in urban

canyon through defeasible logic. Journal of Logic and Computation, 23(2), 373–395.

https://doi.org/10.1093/logcom/exr028

Landi, C. T., Cheng, Y., Ferraguti, F., Bonfe, M., Secchi, C., & Tomizuka, M. (2019).

Prediction of Human Arm Target for Robot Reaching Movements. 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).

https://doi.org/10.1109/iros40897.2019.8968559. Languages for the Semantic

Web, Springer, pp.98–112.

Li, X. (2020). Human–robot interaction based on gesture and movement recognition.

Signal Processing: Image Communication, 81, 115686.

https://doi.org/10.1016/j.image.2019.115686

Lippi, M., & Torroni, P. (2016). Argumentation Mining. ACM Transactions on Internet

Technology, 16(2), 1–25. https://doi.org/10.1145/2850417

https://doi.org/10.1109/tce.2010.5606355
https://doi.org/10.1109/toh.2013.54
https://doi.org/10.1093/logcom/exr028
https://doi.org/10.1109/iros40897.2019.8968559
https://doi.org/10.1016/j.image.2019.115686
https://doi.org/10.1145/2850417

139

Liu, H., & Wang, L. (2021). Collision-free human-robot collaboration based on context

awareness. Robotics and Computer-Integrated Manufacturing, 67, 101997.

https://doi.org/10.1016/j.rcim.2020.101997

Liu, Z. T., Xie, Q., Wu, M., Cao, W. H., Mei, Y., & Mao, J. W. (2018). Speech emotion

recognition based on an improved brain emotion learning model. Neurocomputing,

309, 145–156. https://doi.org/10.1016/j.neucom.2018.05.005 logic, AI 2007:

Advances in Artificial Intelligence, Springer, pp.476–485.

Markos, V. (nd). Prudens JS . GitHub. Retrieved February 12, 2022, from

https://vmarkos.github.io/prudens-js/docs.html#The-language-of-Prudens

McColl, D., Jiang, C., & Nejat, G. (2017). Classifying a Person’s Degree of Accessibility

From Natural Body Language During Social Human–Robot Interactions. IEEE

Transactions on Cybernetics, 47(2), 524–538.

https://doi.org/10.1109/tcyb.2016.2520367

Meattini, R., Benatti, S., Scarcia, U., de Gregorio, D., Benini, L., & Melchiorri, C. (2018).

An sEMG-Based Human–Robot Interface for Robotic Hands Using Machine Learning

and Synergies. IEEE Transactions on Components, Packaging and Manufacturing

Technology, 8(7), 1149–1158. https://doi.org/10.1109/tcpmt.2018.2799987

Melo, F. S., Sardinha, A., Belo, D., Couto, M., Faria, M., Farias, A., Gambôa, H., Jesus, C.,

Kinarullathil, M., Lima, P., Luz, L., Mateus, A., Melo, I., Moreno, P., Osório, D., Paiva, A.,

Pimentel, J., Rodrigues, J., Sequeira, P., Ventura, R. (2019). Project INSIDE: towards

autonomous semi-unstructured human–robot social interaction in autism therapy.

Artificial Intelligence in Medicine, 96, 198–216.

https://doi.org/10.1016/j.artmed.2018.12.003

Michael, L. (2019) “Machine Coaching”. IJCAI 2019 Workshop on Explainable Artificial

Intelligence (XAI @ IJCAI 2019).

Možina, M., ŽAbkar, J., & Bratko, I. (2007). Argument based machine learning. Artificial

Intelligence, 171(10–15), 922–937. https://doi.org/10.1016/j.artint.2007.04.007

https://doi.org/10.1016/j.rcim.2020.101997
https://doi.org/10.1016/j.neucom.2018.05.005
https://vmarkos.github.io/prudens-js/docs.html#The-language-of-Prudens
https://doi.org/10.1109/tcyb.2016.2520367
https://doi.org/10.1109/tcpmt.2018.2799987
https://doi.org/10.1016/j.artmed.2018.12.003
https://doi.org/10.1016/j.artint.2007.04.007

140

Nute, D. (1994). Defeasible logic. In Handbook of Logic in Artificial Intelligence and

Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning

(Vol. 3, pp. 353–395). Clarendon Press.

Oliveira, J., Ferreira, A., & Reis, J. C. (2020). Design and experiments on an inflatable

link robot with a built-in vision sensor. Mechatronics, 65, 102305.

https://doi.org/10.1016/j.mechatronics.2019.102305

Ontañón, S., & Plaza, E. (2014). Coordinated inductive learning using argumentation-

based communication. Autonomous Agents and Multi-Agent Systems, 29(2), 266–

304. https://doi.org/10.1007/s10458-014-9256-2

Ontañón, S., Dellunde, P., Godo, L., & Plaza, E. (2012). A defeasible reasoning model of

inductive concept learning from examples and communication. Artificial Intelligence,

193, 129–148. https://doi.org/10.1016/j.artint.2012.08.006

Pereira C.E., Neumann P. (2009) Industrial Communication Protocols. In: Nof S. (eds)

Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-78831-7_56

Perikos, I., Markos, V., and Michael, L. (2020). D3.1 Basic Social Relation Learning

Module (Ref. Ares(2020)2299834-29/04/2020). WeNet Consortium.

Peternel, L., Tsagarakis, N., & Ajoudani, A. (2017). A Human–Robot Co-Manipulation

Approach Based on Human Sensorimotor Information. IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 25(7), 811–822.

https://doi.org/10.1109/tnsre.2017.2694553

Prakken, H. (2010), An Abstract Framework for Argumentation with Structured

Arguments, Argument & Computation, 1:2, 93-124.

https://doi.org/10.1016/j.mechatronics.2019.102305
https://doi.org/10.1007/s10458-014-9256-2
https://doi.org/10.1016/j.artint.2012.08.006
https://doi.org/10.1007/978-3-540-78831-7_56
https://doi.org/10.1109/tnsre.2017.2694553

141

Qureshi, A. H., Nakamura, Y., Yoshikawa, Y., & Ishiguro, H. (2018). Intrinsically

motivated reinforcement learning for human–robot interaction in the real-world.

Neural Networks, 107, 23–33. https://doi.org/10.1016/j.neunet.2018.03.014

Raiola, G., Cardenas, C. A., Tadele, T. S., de Vries, T., & Stramigioli, S. (2018).

Development of a Safety- and Energy-Aware Impedance Controller for Collaborative

Robots. IEEE Robotics and Automation Letters, 3(2), 1237–1244.

https://doi.org/10.1109/lra.2018.2795639

Robla-Gomez, S., Becerra, V. M., Llata, J. R., Gonzalez-Sarabia, E., Torre-Ferrero, C., &

Perez-Oria, J. (2017). Working Together: A Review on Safe Human-Robot

Collaboration in Industrial Environments. IEEE Access, 5, 26754–26773.

https://doi.org/10.1109/access.2017.2773127

Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P., & Torras, C. (2016). Learning Physical

Collaborative Robot Behaviors From Human Demonstrations. IEEE Transactions on

Robotics, 32(3), 513–527. https://doi.org/10.1109/tro.2016.2540623

Rummery, G.A., Niranjan, M. (1994). On-line Q-learning using connectionist systems.

Tech. rep., Cambridge University Engineering Department

Shiomi, M., Shatani, K., Minato, T., & Ishiguro, H. (2018). How Should a Robot React

Before People’s Touch?: Modeling a Pre-Touch Reaction Distance for a Robot’s Face.

IEEE Robotics and Automation Letters, 3(4), 3773–3780.

https://doi.org/10.1109/lra.2018.2856303

Sklar, E. I., & Azhar, M. Q. (2015). Argumentation-Based Dialogue Games for Shared

Control in Human-Robot Systems. Journal of Human-Robot Interaction, 4(3), 120.

https://doi.org/10.5898/jhri.4.3.sklar

Sklar, E., Azhar, M. Q., Flyr, T., & Parsons, S. (2013). Enabling human-robot

collaboration via argumentation. In Proceedings of the 2013 international conference

on Autonomous agents and multi-agent systems (pp. 1251-1252).

https://doi.org/10.1016/j.neunet.2018.03.014
https://doi.org/10.1109/lra.2018.2795639
https://doi.org/10.1109/access.2017.2773127
https://doi.org/10.1109/tro.2016.2540623
https://doi.org/10.1109/lra.2018.2856303
https://doi.org/10.5898/jhri.4.3.sklar

142

Stenning, K., & Lambalgen, V. M. (2012). Human Reasoning and Cognitive Science (A

Bradford Book) (1st ed.). MIT Press.

Toulmin, S. E. (2003). The Uses of Argument (Updated ed.). Cambridge University

Press, 89.

Tseng, S. H., Chao, Y., Lin, C., & Fu, L. C. (2016). Service robots: System design for

tracking people through data fusion and initiating interaction with the human group

by inferring social situations. Robotics and Autonomous Systems, 83, 188–202.

https://doi.org/10.1016/j.robot.2016.05.004

Valiant, L., G. (1984), A Theory of the Learnable, Communications of the ACM 27 (11),

1134-1142.

Wallén, J. (2008). The history of the industrial robot (Report No. LiTH-ISY-R-2853).

Department of Electrical Engineering, Linköpings universitet, Sweden.

http://www.control.isy.liu.se/publications/?type=techreport&number=2853&go=S

earch&output=html

Xue, K., Wang, Z., Shen, J., Hu, S., Zhen, Y., Liu, J., Wu, D., & Yang, H. (2021). Robotic

seam tracking system based on vision sensing and human-machine interaction for

multi-pass MAG welding. Journal of Manufacturing Processes, 63, 48–59.

https://doi.org/10.1016/j.jmapro.2020.02.026

Yongda, D., Fang, L., & Huang, X. (2018). Research on multimodal human-robot

interaction based on speech and gesture. Computers & Electrical Engineering, 72,

443–454. https://doi.org/10.1016/j.compeleceng.2018.09.014

Zheng, X., Shiomi, M., Minato, T., & Ishiguro, H. (2020). What Kinds of Robot’s Touch

Will Match Expressed Emotions? IEEE Robotics and Automation Letters, 5(1), 127–

134. https://doi.org/10.1109/lra.2019.2947010

https://doi.org/10.1016/j.robot.2016.05.004
http://www.control.isy.liu.se/publications/?type=techreport&number=2853&go=Search&output=html
http://www.control.isy.liu.se/publications/?type=techreport&number=2853&go=Search&output=html
https://doi.org/10.1016/j.jmapro.2020.02.026
https://doi.org/10.1016/j.compeleceng.2018.09.014
https://doi.org/10.1109/lra.2019.2947010

143

Zhou, H., Yang, G., Lv, H., Huang, X., Yang, H., & Pang, Z. (2020). IoT-Enabled Dual-Arm

Motion Capture and Mapping for Telerobotics in Home Care. IEEE Journal of

Biomedical and Health Informatics, 24(6), 1541–1549.

https://doi.org/10.1109/jbhi.2019.2953885

https://doi.org/10.1109/jbhi.2019.2953885

	Chapter 1
	Introduction
	1.1 What is Human-Machine Interaction?
	1.2 What is Industrial robotic Arm and Argumentation based Machine Coaching?
	1.3 The Link between Industrial robotic arm and Argumentation.

	Chapter 2
	Explanation
	2.1 Objectives & Necessity of Research Study
	2.2 Machine Coaching
	2.2.1 Robot control and guidance through Machine Coaching

	2.3 Argumentation & Learning in Machine Coaching
	2.3.1 Description of Arguments under Machine Coaching Language
	2.3.2 Establishing the Boundaries of an Argumentation Framework
	2.3.3 Grounded Semantics of an Argumentation Framework
	2.3.4 Learning under Machine Coaching

	Chapter 3
	Literature Review
	3.1 Human-Robot Interaction (HRI)
	3.1.1 Interaction based on Communication
	3.1.2 Interaction based on Behavior
	3.1.3 Interaction based on Robot Type
	3.1.4 Safety in HRI
	3.1.5 Use of Machine Learning & Artificial Intelligence in HRI

	3.2 Defeasible Logic
	3.2.1 Defeasible Logic Programming
	3.2.2 Defeasible Logic Programming Applications

	3.3 Argumentation based Communication Theory
	3.3.1 Use of Argumentation theory in HRI
	3.3.2 Argumentation in Machine Learning

	Chapter 4
	Methodology
	4.1 Implementation
	4.1.1 Architecture
	4.1.1.1 Argumentation Framework
	4.1.1.2 Environment
	4.2 The Language of Staubli Robotic Arm – VAL3
	4.2.1 VAL3 Application
	4.3 Communication over Socket TCP IP
	4.3.1 Client & Server in TCP IP
	4.4 The PRUDENS Tool
	4.4.1 The Language of PRUDENS Tool

	4.5 Linking PRUDENS and the Robotic Arm
	4.5.1 Code Description - PRUDENS
	4.5.2 Code Description – ROBOTIC ARM

	Chapter 5
	Evaluation
	5.1 Intrinsic System Performance
	5.2 Extrinsic System Performance

	Chapter 6
	Conclusion
	6.1 Conclusion and Future Work

	Appendix A
	Code
	References

