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Summary 

 

The RLGame is a strategy game of two players  that is continuously developed since 2001. It 

was created in order to conduct research at the field of Reinforcement Learning. In this 

dissertation we suggest a number of scenarios, where the agents (avatars) that are competing 

in the RLGame could be studied under the presence of resource constraints.  

The goal of these scenarios is to investigate whether there are indications of behavioral 

adaptation when the rules of the game essentially change and therefore could lead to explicit 

or implicit opponent selection. A number of scenarios are theoretically described and some 

of them are implemented using Eclipse, a Java integrated development environment.  

These implementations provided some indications that the existence of some resource 

constraints might affect the behavior of the synthetic agents and at the same time set the base 

for future research on the RLGame in order for a more dynamic approach to be implemented 

and the behavioral adaptation of the agents to be investigated in depth. 
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Περίληψη 

 

Το RLGame είναι ένα παιχνίδι στρατηγικής μεταξύ δύο παιχτώ, όπου αναπτύσσεται 

συνεχόμενα από το 2001. Σκοπός της δημιουργίας του ήταν η έρευνα στον τομέα της 

Ενισχυτικής Μάθησης. Στην παρούσα μεταπτυχιαή διατριβή, προτείνουμε έναν αριθμό 

σεναρίων, μέσα από τα οποία οι πράκτορες (avatars)  όπου διαγωνίζονται στο RLGame 

μπορούν να μελετηθούν υπό την παρουσία περιορισμών πόρων.  

Στόχος αυτών των σεναρίων είναι να ερευνηθεί το αν υπάρχει ένδειξη συμπεριφορικής 

προσαρμογής, όταν η κανόνες του παιχνιδιού ουσιαστικά αλλάζουν και κατά συνέπεια αν 

μπορεί να οδηγήσει σε άμεση ή έμμεση επιλογή αντιπάλου. Ένας αριθμός σεναρίων 

περιγράφονται θεωρητικά και μερικά από αυτά υλοποιούνται στο με χρήση του Eclipse, 

ολοκληρωμένου περιβάλλοντος ανάπτυξης για τη γλώσσα Java.  

Αυτές οι υλοποιήσεις ανέδειξαν κάποια αποτελέσματα που δείχνουν ότι ίσως η 

συμπεριφορα των πρακτόρων επηρεάζεται από την ύπαρξη κάποιων περιορισμών πόρων, 

ενώ παράλληλα έθεσαν τη βάση για μια πιο δυναμική υλοποίηση πάνω στο RLGame όπου 

θα επιτρέπει μια πιο εις βάθος έρευνα πάνω στην προσαρμοστική συμπεριφορά των 

πρακτόρων.  
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Πολύπρακτορικά Συστήματα, Ενισχυτική Μάθηση, Συνθετικοί Πράκτορες, Περιορισμός 

Πόρων. 
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Chapter 1 

Introduction 
 

 

 

The field of Multi-Agent Systems (MAS) is considered a subfield of Distributed Artificial 

Intelligence (DAI), which aims to develop distributed solutions for problems. The MAS 

applications have experienced a rapid growth during the last decades. The main reason is 

their promise of making decisions in real-world (complex) problems. The general idea 

behind the MAS applications is that a number of intelligent autonomous agents are deciding 

for their actions within a complex environment having as goal to maximize the individual or 

the team score depending on the environment (competitive or cooperative), while at the 

same time the complex problem is being divided in smaller tasks which are assigned to the 

agents. Obviously, the target can be different depending on the approach. Even though there 

are many approaches and techniques to complex problem solving [Chen et al., 2008: 1-2] we 

are particularly interested in experimenting within a multi-agent environment, because we 

believe that first, such environments are the closest simulation to the real-world in terms of 

complexity and manipulation of a dynamic environment from the agent [Helleboogh et al., 

2007: 29] and second, that they bring us closer to the cognitive systems paradigm [Langley, 

2012: 4], which briefly describes the ultimate target of AI projects, to achieve cognition that 

is close, if not similar to the human one, therefore closer to the human behavior that we want 

these complex systems to reproduce.  

 

For example, during a complex task such as driving a car, a human, who can be also an 

unexperienced driver, must receive information from the environment (car, road, traffic-

lights etc.) and at the same time from the other drivers, while the driver is adapting her 
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behavior to the continuously changing environment. Therefore, in a MAS simulation, where 

each car is an agent and we cannot foresee all the possible scenarios that could take place, an 

intelligent agent must learn on its own and adapt to every change, thus the autonomy (ability 

to choose the actions without an intervention outside the environment) that is given to it. 

Knowledge could be acquired from its actions, the environment and from the agent’s 

interactions with the other agents. 

 

The definition of what an agent or what intelligence is, has troubled the researchers since a 

long time ago [Franklin & Graesser, 1996: 7] and during all these years we have seen many 

definitions that slightly differ from each other, making their appearance in the literature. For 

example, in [Dori et al., 2018: 2] the authors hinted at this problem of the literature and tried 

to provide a general and simpler definition. In order to avoid all the confusion regarding the 

definition, during this thesis we have decided to use the definition of an agent as it is 

introduced in [Russel & Norvig, 2010: 34], which in our opinion is very accurate and describes 

an agent as “…anything that can be viewed as perceiving its environment through sensors 

and acting upon that environment…” and for a synthetic agent, the definition that is used in 

[Kiourt, 2017: 2], which targets agents that act in a gaming environment, and describes a 

synthetic agent as “… artificial with different characteristics (different playing profiles), 

which interact with other agents…”.  

 

Further we are going to explain our main scenarios in which we suggest the conduction of 

some of the suggested experiments within a multi-agent system and more specially in a 

gaming environment, where synthetic agents will interact under resource constraints and 

how these constraints might affect or not the implicit or explicit opponent selection. 

Throughout this thesis the word avatar has been used to describe these synthetic agents that 

interact within the RLGame platform, and their definition is given in detail later in Chapter 2.  
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1.1 MAS environment – Characteristic Features 
 

Above, we have briefly described the general idea behind the function of a multi-agent 

system. A number of agents, interacting with each other and with the environment (in terms 

of basing their decision on the information that is provided from each agent and the 

environment that the agents are located), having as goal to solve a complex task. We are going 

to provide a slightly more detailed description of a MAS and its agents and also briefly present 

the applications and the challenges that we could meet in a MAS and more specifically during 

a high-level implementation of our suggested scenarios.  

We should mention that the environment and the agents that are acting in it,  are different 

things, meaning that the agents are deciding according to their environment and not vice 

versa. That also depend on the problem’s nature, that is strongly connected to the 

environment’s dimensions. For example, the environment could be a network and its agents 

different software programs or in our case the environment is a gaming board, and its agents 

are avatars that play the game and gain experience after every game. The environment is an 

especially important factor in a MAS, for the reason that it can affect the decisions of the 

agents from the information that it provides. As we have mentioned earlier the dimensions 

of the environment determine to a large extent how the agent is designed, and which 

techniques is it going to apply when acting within the environment. As it is described in 

[Russel & Norvig, 2010: 42] the environment can be fully observable or partially observable. 

When the agent obtains constantly through its sensors, information about the environment’s 

state, then we are talking about full observability of the environment. The partial 

observability could be due to noise in the agent’s sensors or missing data. It is obvious that 

in general we would like a fully observable environment because this means that the agent 

does not have to keep track of the world. Another dimension is single-agent or multi-agent 

environment. For instance, an agent that solves mathematical equations is acting in single-

agent environment, whereas a game against two or more agents is obviously a multi-agent 

environment. At the beginning, it was mentioned that a multi-agent problem is closer to a 

real-world problem, therefore it is more complex. An environment can be also characterized 

deterministic or stochastic. Almost everyone is familiar with these two philosophical terms, 
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but when it comes to computer science, an environment can be deterministic if the next state 

of the environment depends on the current state and of course the agent’s action. Any other 

description is connected to a stochastic environment. Another dimension is when we have to 

determine whether the agent needs to think ahead or not, meaning that if the decision taken 

at a state s, affects the state s’. If the short-term actions have long-term consequences then 

we are talking about a sequential environment, otherwise we have to do with an episodic 

environment. Static or dynamic, discrete, or continuous and know or unknown are also some 

dimensions that can describe an environment and determine the agents design and actions. 

In Table 1 we can see some examples of task environments and their characteristics.  

 

But it is not only the environment that can differ but also the agents that act within it. The 

features of an agent can affect the decision-making process and in order to generate complex 

solutions as we see in [Garcia et al. 2010 as cited in Dori et al., 2018: 3] and in [Rabuzin et al., 2006: 

158] these specific features are that the agent is capable of work without human intervention 

and make decision on its own, i.e., autonomy, proactivity, meaning that the agent explores 

new possibilities and is able to take the initiative and adaptability, so that the agent is able to 

adapt to changes that take place in the environment.  

 

Regardless of all the aforementioned characteristics that could define an agent, some key 

components remain the same. An agent that is operating within an environment is affected 

from it (perception) and the agent’s actions affect the environment too (action). As we can 

see in Figure 1, the main components of an agent that acts autonomously in a single agent or 

multi-agent environment are perception, action, and reasoning. Through interaction with the 

environment, the agent receives information, selects actions and observes the effects that 

these actions have on the environment. Over time, after many repeated interactions and 

observations from the side of the agent the learning process improves reasoning.  

 

This brief description of MASs and agents will help us in the next sections to determine and 

describe the reinforcement learning technique in the gaming environment, the agents that 

are taking action in it and what does it mean to act under resource constraints in a more 

detailed way.  
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Task 

Environment 
Observable Agents Deterministic Episodic Static Discrete 

Crossword puzzle 

Chess with a clock 

Fully 

Fully  

Single 

Multi 

Deterministic 

Deterministic 

Sequential 

Sequential 

Static 

Semi 

Discrete 

Discrete 

Poker 

Backgammon 

Partially 

Fully 

Multi 

Multi 

Stochastic 

Stochastic 

Sequential 

Sequential 

Static 

Static 

Discrete 

Discrete 

Taxi driving 

Medical diagnosis 

Partially 

Partially 

Multi 

Single 

Stochastic 

Stochastic 

Sequential 

Sequential 

Dynamic 

Dynamic 

Continuous 

Continuous 

Image analysis 

Part-picking robot 

Fully 

Partially 

Single 

Single 

Deterministic 

Stochastic 

Episodic  

Episodic 

Semi 

Dynamic 

Continuous 

Continuous 

Refinery controller 

Interactive English 

tutor 

Partially 

Partially 

Single 

Multi 

Stochastic 

Stochastic 

Sequential 

Sequential 

Dynamic 

Dynamic 

Continuous 

Discrete 

Table 1:Task Environments and their characteristics [Russel & Norvig, 2010: 45] 

 

 

Figure 1: Framework of an autonomous agent 
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1.2 Reinforcement Learning in Multi-Agent Systems 
 

Reinforcement Learning is an approach of machine learning inspired by behavioral 

psychology and the general idea behind it is that it is mimicking the way animals and humans 

learn to take decisions, therefore the agents that act within an environment use the notion of 

reward (positive or negative feedback received from the environment) in order to learn and 

maximize their success. This means that the agents observe the effects of theirs actions and 

learn from their observations, as a result in the future, if they have to make a decision on a 

specific state, they know whether a move is in their favor (maximizes the reward) or not. 

Many multi-agent systems use reinforcement learning techniques in order to train their 

agents. As it has been mentioned above, most of the times a multi-agent system is considered 

to be effective, because it can divide its main task into smaller subtasks and share it across 

multiple agents. As we can imagine, such systems need particularly good collaboration 

(assuming that the action takes place in a cooperative environment) and coordination 

between the agents. In order to reach a satisfying level, meaning that the agents have reached 

a level where their next moves are rational, the system needs lots of hours of training and 

learning. For instance, everyone is nowadays familiar with the story of DeepMind’s AlphaGo 

and its famous game against the human world champion Lee Sedol. AlphaGo’s system uses 

reinforcement learning approaches in order to train. It started from day zero and a random 

behavior and reached a satisfying level more or less after 40 days of training and 29 million 

games of self-play (no human intervention). [Silver et al., 2017] 

 

Most of the times, in order to model the interactions in reinforcement learning between the 

agents and the environment, especially in the stochastic ones, we use the Markov Decision 

Process (MDP) technique. Essentially MDPs are probabilistic models of sequential decision 

problem. Reinforcement learning was originally developed for MDPs. A brief description of a 

state at a particular point in time t would be that the agent finds itself in a state s and at this 

state has to make a decision that leads to an action a. Since, we have reinforcement learning 

we expect from the environment a reward r. Learning is achieved by the continuous agent-
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environment interaction and by the agent’s observation of the effect of its actions. The trial-

and-error characteristic is one of the most important features of reinforcement learning. At 

the end, what we are expecting from the agent is to find out a policy π that contains actions 

that maximize the summary of rewards. The best actions that an agent can make form the 

optimal policy π*. As policy is defined the probability that an agent has at state s to choose an 

action a. Generally, in reinforcement learning there are two basic function that are used in 

order to identify how ‘valuable’ is a state and the value of an action a at a specific state s. 

These functions are the value function and the action-value function respectively.  

Now, let us say that we have the following variables for a single agent acting within an 

environment:  

• S is the set of states. S = {s1, s2,…., sn}.  

• A is the set of actions. A = {a1, a2, …, an} 

• P is a transition function.  In simple words, it describes the to which state s’  the 

action a takes us if we are in state s, i.e., P (s,a,s’). It essentially describes the 

probability of transitioning to another state from a current state by doing an 

action.  

• R is the reward function. R (s, a, s’) is the rewarded that an agent is expected to 

get when it does the actions a in order to transition from state s to state s’.  

All the above are represented in a tuple (S, A, P, R). The alternation between action and 

perceptions helps the agent to interact with the MDP.  

 

Now another possible representation of a multi-agent environment, as it is presented in [Guo 

& Buerger, 2019] is like the following. Consider that we have a team of N agents, we would use 

an excessive form of MDP as a tuple to describe the current condition of each agent n, where 

S is again the set of states in the environment, A is again the set of actions that each agent can 

execute, C is the set of pairs of the states and the actions of the other agents, R the reward 

function and T the transition function.  

  

Mn = (Sn, An, C-n, Rn, Tn) 
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As the system is learning and evolving it ends up to the ultimate ‘path’, that is the best reward, 

and it would be in the form of a sequence of action-state pairs. For example, an agent at the 

state S4 can choose the a1 action and end has 0.6 probability to end up at the state S5 with 

reward zero and 0.4 probability to end up at the state S6 with reward zero as well. (Fig.2). 

Of course, depending on the features and the complexity of the environment the MDP tuple 

changes, e.g., in a single-agent environment the variable C would not exist, since it describes 

other agents and not the one that we are observing.  

 

 

Figure 2: An MDP example of six states.  

There are several reasons why the problem of learning MDPs is coped with reinforcement 

learning. In many cases, learning MPDs can be practically difficult, because the MPD should 

be known from the beginning, in large state-spaces the computational time exceeds the 

desired amount and in continuous state-actions spaces direct use cannot be applied. 

Fortunately, reinforcement learning can deal with all the aforementioned problems, with the 

only thing that is actually required is the agent-environment interaction. The input of the 

current state s, which usually can be seen as a vector that contains all the information that is 

available from the environment at a particular state and the reward r for the particular state 

s represent the interaction. Essentially the reward r is the input that is coming from the 

environment and is directly associated with the training of the agent. The agent is consisted 

of three important parameters. The model where the states and the actions are mapped, the 

learning update, where based on the rewards the model is being updated and the policy, 

where action selection takes place.  
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In general, the goal of reinforcement learning is for the agent to learn the optimal policy π, 

that maximizes the reward received with a particular transaction. As we can see in the 

following formula, the optimal policy is a policy that provides the best value function for 

every state.  

 

π (s) = arg maxα ∑ P(s, a, s’)(R(s,a,s’)+ γV(s’)) 

 

 

Figure 3: A simple depiction of reinforcement learning architecture 

 

1.3 Exploitation/Exploration trade-off  
 

During the introduction section, we have mentioned that we are mostly interested in 

conducting our experiments within a gaming environment of synthetic agents, defining them 

as agents with different characteristics. In reinforcement learning, there is always a 

discussion on the right balance between the knowledge that the agent has already acquired 

and the use of it (exploitation) versus the unexplored territories of the search space 

(exploration) and how much the agent should depend on it. There are several parameters 

that can affect the exploitation/exploration trade-off. The first is λ∈[0, 1], which determines 

the degree that the updates are going to be influenced from events that occur later in time. A 

good value for λ depends on other parameters, but usually a value between 0.6 and 0.9 is 

considered an acceptable one. Another parameter is the discount rate γ∈[0, 1]. This factor 

determines the current value of future rewards. For instance, a reward that is received after 

k steps worth γk-1 times what it would worth if it would have been received now. Within the 

aforementioned domain, the agent’s behavior is determined between a risky or a conservative 
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frame. For γ = 0 the agent considers only present rewards and does not care about the future 

when on the other hand for γ = 1 the agent is acting under a more farsighted strategy. 

Certainly, we do not want our agents to be neither short- nor farsighted. A rather famous 

approach to balance the problem, is the ε – Greedy, approach, which is a mechanism that 

specializes in action selection. The factor ε∈[0, 1] denotes the probability for the best move 

to be selected when the agent is based only on the knowledge that it currently possesses. The 

probability 1 – ε denotes a random move. As we are going to see in a later section, these three 

parameters (ε-γ-λ), so called characteristic values are the ones that determine the agent’s 

playing profile.  

 

In the last couple of years, the significant progress has been achieved in the field of artificial 

intelligence regarding the balance between exploration and exploitation. For instance, we 

have seen in [Badia et al. 2020 as cited in Leonardos et al. 2021: 1] policies that are parameterized 

from trained neural networks in order to select a between an exploratory and exploitative 

policy. Other examples of progress regarding the aforementioned dilemma, is the ranking of 

agents that participate in tournaments, according to their performance, introducing a 

principled evolutionary dynamics methodology, [Omidshafiei et al. 2019: 22] that even can 

involve noisy outcomes [Rowland et al. 2019: 9]. 

 

Despite the progress that has been mentioned it is worthy to clear that still there is not a 

reliable method in order to confirm that the agent has fully understood the environment that 

it is acting within. In simpler words, we cannot fully confirm that an agent has visited all the 

possible states and has performed all the available actions, therefore it should terminate its 

exploration. There is always a chance that there is a specific action, at a specific state, that 

will provide the agent with a much more beneficial reward. Usually, for the exploitation-

exploration trade off to be determined it is used the ε-greedy policy, a policy that we also 

used in our experiments. The probability 1-ε that we define earlier, in this policy describes 

the probability to act in order to get the highest reward, while the probability ε on its own 

denotes the random selection of an available action at the current state. For ε = 0 the agent 

acts only accordingly to the optimized policy, without exploring the environment. On the 

other hand, for ε = 1 the agent acts under a fully explorational approach.  
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All the previous information was mentioned, in order for the reader to get an idea what is an 

agent, an environment and how they can interact and affect each other. Also, the 

aforementioned characteristics of the agent and their parameters, could be used, as we will 

see further to create avatars in the RLGame platform that differ from each other in terms of 

these characteristics and therefore investigate potential behavioral characteristics when 

these types of avatars are competing in resource constraints scenarios.  

 

Figure 4: Characteristic values (blue) and possible playing profiles (red) 
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Chapter 2  

RL Game 
 

 

 

In this chapter we are explaining the concept and the rules of the RL Game, its development 

through time from the previous research on it and briefly explain what the term resource 

constraint could mean in the RLGame and in multi-agent systems in general.  

 

2.1 Environment and Rules  
 

The RL Game as we have mentioned in the previous section is basically a combination of 

reinforcement learning and neural networks and it was first introduced in [Kalles & 

Kanellopoulos, 2001] as an application of reinforcement learning in order to deal with 

playability and learning issues. Since then, the RL Game has been frequently used and further 

developed during many theses. Our inspiration had been the direction for future 

investigation that was suggested in [Kiourt, 2017: 145], regarding the opponent selection in 

the RL Game under resource constraints. Further we are going to describe the environment 

of the game and analyze what these constrains could be, but first, we will briefly introduce 

the game and its rules.  

The RL Game rules are simple. Two players compete against each other, in a board game of 

N x N squares. Each player has a “base” where her pieces (if it is agreed between the players 

can be more than one for every player) start (Fig.2). The piece at its first step, can be moved 

only at the squares just outside the base (Fig.2 red squares) and not inside the base. Outside 

the base each piece can move one square around its current position (Fig.2 green squares 
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assuming that a piece is located at the blue square). In order to win the game, a player must 

move to the opponent’s base or eliminate all the opponent pieces.  

Earlier we have given the definition of a synthetic agent. In RLGame, every human player that 

is created, can own a number of avatars. Avatars are agents that belong to a human player, 

but they play and learn the game on their own. All the scenarios that we describe in further 

sections are based on competitions between avatars. In Chapter 3 we can see in detail how 

an avatar is connected to a human player and the interaction between two avatars in the 

RLGame platform.  

As we have mentioned earlier, the RL Game has been used frequently as a base for research 

in several academic theses. For the purposes of these theses a platform has been developed, 

in JAVA and JAVA script, in which players can play the specific game and at the same time 

investigate the agent who plays the game. Our experiments and the scenarios’ 

implementations were conducted on this platform.  

 

 

Figure 5: RL Game - Initial state and possible moves. Hellenic Open University (site) 

 

Now, the RL Game environment’s description, can be based on the features that we have 

described in the previous section. We can say that it is an accessible environment, since the 

agents, that act within the environment, can get complete information about the 

environment’s state, meaning that the position of every piece inside the gaming board is 
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known to the agents. Also, the environment is discrete and static, since there is a set of moves 

that could be done since the final result of the game and the environment itself is only 

modified by the actions of the agents. And of course, is not deterministic, because the 

decisions of the agent on their next moves do not have a guaranteed, although there is a rule 

that says, when a piece reaches a position from which it cannot move, all the possible moves 

are blocked from opponent or allied pieces as a result the blocked piece is out of the game. 

This particular phenomenon causes a form of deterministic discontinuity in terms of how the 

game continues over time.  

 

2.2 Resource Constraints in MAS and RLGame 
 

In a MAS environment, information needs to be exchanged between the agents in order for 

the maximal gain to be achieved. For instance, consider a team of robot agents in the real 

world, that are deployed to complete a task of transporting a big number of heavy boxes from 

point A to point B. The agents need to constantly communicate with each other, sharing 

information regarding the amount of boxes left, the amount of robots at the pickup station 

and since our example takes place in the real world, we can imagine that they share 

information on their energy left e.g., battery level. The latter is an indication that the agents 

are acting in a complex environment under resource constraints. Their energy level indicates 

that they need constantly to update each other about their efficiency at the current time, 

always taking the best decisions in order to maximize the target, which at this specific 

example is to transfer if not all the largest amount of the boxes, that their energy level allows. 

We can imagine the same idea in an example of software agents. Many problems that take 

place in a MAS are well-known to be NP hard, due to their exponential increase of the state-

action space [Cappart et al. 2020: 2]. There are several solutions that have been developed in 

order to tackle such problems. Optimization tools and deep reinforcement learning has 

shown great potential in handling this type of complexity, especially the latter, even though 

it is still hard to apply deep reinforcement learning techniques in many problems [Foerster et 

al., 2017: 6].  
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Another example problem that can describe the complexity of decisions in a resource-

constrained MAS, is the bandwidth consumption. It is important that the agents communicate 

and share information with each other, but when this happens at an indiscriminate level it 

can be problematic because important amount of bandwidth is consumed in information 

exchange that it is not critical to reach the maximal reward [Dutta et al. 2007: 3].  

 

In RL Game we do not have the problem of the energy limits like in our first example, but we 

can assume that if the game design reaches overly complex levels the system will fail due to 

the computational power needed. As we understand the “resource constraints” take another 

meaning in the platform. For instance, resource constraint from the scope of the agent could 

be considered the number of games that an agent plays against another. If we would try to 

create performance rankings of all the agents with only a few games played and allow to all 

of them to access this ranking information, it would be interesting to watch if the agents 

decide to compete against a specific opponent in order to maximize their rewards or maybe 

skip another one to avoid a big loss. Another resource constraint of course could be 

computational power that our personal computers can provide (measured in FLOPS or 

benchmarks), even though the first constraint probably sheds more light on the agent’s 

behavior since it is a closer example of the human behavior in cases that we have to create a 

strategy and choose opponents. There is always though the possibility to investigate the 

behavior of the agent under computational constraints and watch how they would share their 

power in order to reach the maximum reward at a specific position.  

 

Our main idea based on the aforementioned constraints, is to first execute a different number 

(which would be a limited one, hence the constraint) of games between the avatars in order 

first to identify a value for the number of moves that can be executed in one game (number 

of moves constraint) and observe at which point (number of games) this starts to affect the 

decisions of the agents knowing of course the performance ranking of all the agents in the 

environment, when this is combined with a constraint on the total number of moves. We 

would like to see if the avatars will reach more or less the same performance ranking and if 

this is the case what will drive them to select a specific opponent under these circumstances. 

At the next sections we are going to describe the previous research that has been conducted 
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on the RL Game platform and also our approach on the game, which briefly is that we would 

like to try several numbers of games between the agents in order to develop avatars with 

different experience (score) and at the same time try to explain our observations and 

conclusions regarding the different ranking of the agents and sharing our ideas on the 

possibility of a more dynamic expansion. 

 

2.3 Previous Development and Research 
 

As we have earlier mentioned, the RL Game had been used many times for research purposes. 

Its simplicity makes it an exceptional game to try out different algorithms and approaches on 

reinforcement learning and not only. But in order for us to be able to try our approach on the 

RL Game platform, which we will explain in more detail in the next section, lots of 

researchers, during several experimentations and approaches have brought the platform to 

its current form. Since the development in [Papageorgiou, 2008] the researcher is able to 

conduct experiment, while modifying the reinforcement learning and neural network 

parameters. The usage of the platform through a simple internet web browser and the access 

to the agent’s information was first presented in [Vlasi, 2008]. Two remarkably interesting 

and helpful developments were the results in [Georgas, 2012] and in [Nikolaidis, 2014] where 

the researchers examined the development of the neural networks regarding the different 

gameplay and also achieved human vs human, human vs avatar and avatar vs avatars games, 

respectively. Now it is also possible to train an agent exclusively with human intervention, 

spectate games [Sarantinos, 2015] and choose the board size of the games and the number of 

pawns as well [Nikolakakis, 2016]. The latest developments on the platform were made in 

[Giantzoglou, 2017] and [Vasilopoulos, 2019], where the researcher is able to compare possible 

moves with or without reinforcement learning in the two teams and set a new parameter in 

the new game settings, which is the parameter of repeated games between two avatars. The 

latter is something that we are going to use extensively during our experiments, due to the 

different levels of agents that we would like to create in order to study their behavior against 

agents with significantly different scores. 
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Chapter 3  

User-System Interaction 
 

 

 

This chapter provided to the reader an idea on how to interact with the system of the 

RLGame, through several platforms and environments, such as Eclipse, PhPmyAdmin, and 

Windows Power Shell in order to set up the parameters of the avatars and the game and start 

playing.  

 

3.1 Platform Set Up and Agent Training 
 

As discussed in previous sections, we would like to first to create several avatars that have 

different levels of experience (score) and then try to create several gaming scenarios and 

observe their behavior when it comes to opponent selection. The level of experience would 

depend on the games that they have played during the training phase. For instance, if an 

avatar has been trained in 20 games and another in 2000, certainly the level of experience 

highly differs. The number of the agents and their levels is something that we have to 

investigate as well in the first phase of our experiments, which means that we need to conduct 

experiments under different score levels and also within the tournament the number of the 

agents must differ.  

 

Within the tournament, the agents as we have mentioned, will operate under resource 

constraints. This means that an agent does not have the luxury to play a relatively big number 
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of games in order to create the policy that maximizes the reward. For instance, in a 

tournament of twenty agents, that each of them has a unique score level, an agent knows the 

score of the rest and also know the number of the available games, that means that an agent 

that is in a low level needs to create a strategy that maximizes the reward within the specified 

from us constraints range. We are running the RL Game server, using the XAMPP application 

(Fig 7), which offers the necessary installations of Apache and MySQL in its packages. These 

are used, so we can have a clear image of what is going on in our database, what is the name 

of the avatars, what’s their score (experience) etc. In the next section we present the whole 

set up of the repeated games function using Eclipse. 

 

 

Figure 6: The RLGame server in phpMyAdmin showing the list of players and their avatars. 

 

Figure 7: The XAMPP Control Panel operating Apache and MySQL. 

 

In Fig.6 we can also see a table of players with their avatars, that use different algorithms 

(parentheses at the ‘Name’ column). The table shows the avatar owners (human users) and 

the avatars’ scores (wins). We can see that the avatar0101 (avatar 1 of the player 1 trained 

with RL algorithm) has won 8449 games and the avatar0301 (avatar 1 of the player 3 trained 



19 
 

with MinMax algorithm) has won 433 games. As we have mentioned earlier, the previous 

developments on the RL Game platform offer to the user plenty of possibilities. During our 

experiments all the games between the avatars were set in a 6x2x5 game design (board size 

x base size x number of pawns) but the user can set different parameters (Fig.8). We choose 

always “create game as avatar”, because as we have mentioned, we want to train the avatars 

and observe their behavior, without human intervention. Then we are just spectating the 

game (Fig. 9) as the avatars play against each other. Our target during the first phase is to run 

a significant number of games in order to create avatars with different levels of experience 

(more games played or trained with different algorithms) and observe the possible 

behavioral patterns in the scenarios that we will describe in the next sections. To achieve that 

we will use the ‘repeated games’ function of an updated version or RLGame which allows us 

to set a number of repeating games and allow the avatars to compete against each other until 

the number of selected games is completed. 

 

 

Figure 8: Setting one game parameters in RL Game online platform. 

 

Figure 9: Spectatorship of an RL Game between two avatars 
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3.1.2 Repeated Games in RLGame 
 

The setup of the repeating games and the scenarios is taking place in the Eclipse integrated 

development environment. The reason is that eclipse is offering a great flexibility in terms of 

changing the code of the program and testing it. As we can see in Fig.10 by setting up the 

project workspace in the eclipse platform it very easy for the user to instantly see all the files 

that complete the java project folders and make instant changes. In our example, we see how 

we can easily select the avatar and its algorithm (player type option). Eclipse offers an easy 

way as well to deeply search the code and make the changes regarding the player’s profile. 

For example, in Fig.11 we see the different parts of code, for the players’ training algorithms. 

This allows us to fast locate the place where the changes are needed to be implemented in 

order to change some parameters.  

 

Now, in Eclipse in order to start our server, again the XAMPP application needs to run at the 

same time in administrator mode. Again, we run the Apache and MySQL services from there, 

and then in Eclipse we select the RLGame Server file and run it. Then we select the Client file 

and run it as well (Fig.12). The Client file allows the player with the corresponding avatar to 

be connected to our server. From the Settings file (Fig.10) we select the avatar that we want 

to start with (the player that starts has the white pawns). We run the second avatar outside 

eclipse, simply by using the Windows Power Shell and run the java command to star the Client 

file (Fig.13). Then our players are ready to begin a process of repeated games where their 

avatars are competing against each other. We login with the two players and automatically, 

since the client files are running, their avatars are connected too. Then we select the game 

parameters (board size, base size and number of pawns), the opponent and the number of 

repeated games and the training of the avatars starts. 
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Figure 10: Selecting Avatar in Eclipse IDE 

 

Figure 11: Easy access to the Java code using Eclipse IDE 

 

Figure 12: Server and Client (Avatar) running in Eclipse IDE. 
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Figure 13: Running the second avatar with Windows Power Shell 

 

Figure 14: Setting up a process of 1000 repeating games between two avatars 
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Chapter 4 

Introducing Resource Constraint 

Scenarios in RL Game 
 

 

 

In this chapter, we propose different scenarios, in which the behavior of an agent could be 

investigating when it is acting under resource constraints. In each scenario, it is suggested a 

different type of constraint within a multi-agent environment. The scenarios were developed 

having as an example the RLGame platform, but they can be implemented on every similar 

multi-agent gaming platform. 

 

Before we start describing the different suggested scenarios and the underlying behavioral 

patterns that we might discover, we need to clarify that the scenarios, are not explicitly 

connected to the spectrum of ‘opponent selection’ but are closer to the ‘behavioral adaptation’ 

of an agent while the circumstances of the game are changing, leading to an explicit or implicit 

opponent selection depending on the scenario that is being implemented. For instance, if an 

agent due to the applied resource constraint, chooses to stop a game in order to save some 

resources, because the opponent is stronger and does not want to waste its resources, it is an 

implicit opponent selection, although the agent is adapting its strategy mostly because of its 

resources.  

 

The following scenarios could be characterized as scenarios of increasingly difficult 

implementation complexity, since the already existing code of the game, needs to be modified 

with the aim of creating different circumstances for the agents in order for them to adapt 
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their behavior correspondingly. We have previously described, that the RLGame is a complex 

system, that requires the usage of many tools at the same time in order to function properly. 

Therefore, from a minor change can occur many problems to the system since most of its 

parts are connected. This did not allow us to be as flexible as we wanted with the changes in 

the complex code and the implementation of different ideas and scenarios Nevertheless, as 

we will see in the next chapter, we have succeeded to set the fundamentals for a deeper 

analysis and implementation of our ideas.  

 

4. 1 Scenario 1 (number of moves constraint) 
 

During scenario 1 the agents can be studied under the number of moves (n) resource 

constraint. Each agent can execute only n moves in each game. If no agent wins until the nth 

move then the game is considered a ‘drop’ from both sides (both players are participating in 

a ‘drop’ even though one decides it, therefore the result is a loss for both). The idea behind 

this scenario, is to investigate how many actual resources (moves) do we need in order to 

achieve a result (win) and which number of moves (n) can be considered a constraint. 

Obviously, setting n=1 or n=100 would be meaningless; therefore, we have to investigate the 

range of the number of games that we could design our experiment. Despite naming this 

process a ‘scenario’ it is not one per se but it can lead to the design of more dynamic scenarios 

as we will see later.  

 

Now, a first simple approach in order to identify the number of moves is to run a significant 

number of games (1000), between agents that have different characteristics, therefore 

different game strategy and record the number of moves that lead to a win.  

For instance, if the average number would be 17, the number of moves would be a number 

smaller than 17. Then again we would gather a sample of 1000 winning games which would 

be held under the ‘at most 17 moves’ constraint and see if it affects the behavior the results, 

therefore the agents’ behavior. When the agents are competing under a constraint, obviously 

there are fewer options for interaction between the agents. Since,they would be under a 
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constraint and the option to drop the game, this means that we would have to run more than 

1000 games to get a sample of 1000 winning ones.  

 

Now, a more sophisticated approach in order to investigate the number of moves and get the 

whole picture of the agent’s behavior, would be again to run the 1000 games and record the 

number of moves that lead to a win. The number of moves would be the data points that 

would help us design a distribution curve and examine what we can learn from its behavior. 

If we would see that the distribution curve has a sharp form we would expect that a change 

in the number of moves would have a significant impact on the agents’ behavior at a certain 

point. 

On the other hand, if the distribution would end up being in a flat form, a change in the 

number of moves, probably won’t have the impact that we expect. Essentially, the 

distribution would show us if the probability to drop a game is increasing when we are 

setting the number of moves constraint.  

The real question here is if we would end up having significantly different distributions when 

the players are of different characteristics and when the players are of similar ones. If we 

notice a noteworthy difference, this will mean that the number of moves constraint affects 

differently the agents that have different characteristics, therefore it might lead to an 

approach that ends up using different number of moves constraint for different kinds of 

agents.  

 

However, if we will see that the distributions overlap, is considered an important result as 

well, because it is basically showing to us that the agents with different characteristics could 

be constrained under the same number of moves. 

 

Between the two approaches, the latter is considered statistically better because it gives a 

better picture of the winning patterns. The ‘average of winning moves’ approach, could work 

but the only problem that someone should consider is that the decision regarding the n is 

slightly random, since there is no rule regarding where the constraint should be placed. For 

instance, if the average of winning moves is 18, we are not sure, which number <18 would be 

effective in order to affect the behavior of the agents, but the second options gives us a range. 
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4.2 Scenario 2 (budget constraint) 
 

This scenario is based on the budget constraint, of every agent. The budget is the number of 

total moves that an agent can perform on all the games together, within a tournament. For 

instance, in a round robin tournament of 30 agents, each agent starts with a budget of 1000 

moves. This means that there correspond about 30 moves per agent for each game. In this 

scenario, the number of average moves per game can be exceeded since there is no limitation 

for maximum number of moves. It is important to mention that every agent has the choice to 

drop the game at a certain point if it would think that it’s not beneficial for its learning 

process. During scenario 1 explanation, it has been mentioned that if a player decides to drop 

the game, both of the players are participating into that decision. This is mentioned only to 

clarify that the result of a draw could not occur. 

Let’s imagine the following situation: Agent A plays against agent B. It is the 27th game of the 

tournament, therefore both of them have spent some moves on their games. Agent A has a 

remaining budget of 180 moves and the agent B has only 30 moves left, meaning that on 

average, up to now, agent A was concluding its games faster than agent B, not necessarily by 

winning them, of course. Obviously circumstances look better for the first agent rather than 

the second. The interesting fact here is that the agents are not aware of the opponent’s 

situation but only of theirs. Agent B does not know that the opponent has a budget of 180 

moves. The decision (play or drop) is based only on the budget and on the number of games 

left.  

 

This scenario aims to investigate how agents exploit their number of total moves and trying 

to provide an answer to the question of whether an agent is capable of maintaining its budget 

until the last game but at the same time spend enough in order to compete and gain 

experience?  
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4.2.1 Scenario 2.1  

 

In this more complicated version of scenario 2, independently of a constraint’s presence, at 

the end of each tournament a table would be shared, showing the results of every agent. For 

instance, agent 10 has 20 wins and 80 loses and agent 24 has 50 wins and 50 loses. When the 

new tournament starts, the agents that are about to compete against each other (in our 

example agent 10 and agent 24) would first take a look at the table and then decide how many 

moves they might attempt to commit to that game. Essentially this is a more complex version 

of the second scenario, with the difference an agent is able to examine the results and make 

a decision on how many moves they would spend, regardless the constraints. Here it is 

needed to be clear that the two agents that are participating in a game of a round robin 

tournament, are affected only from their remaining budget, the remaining budget of their 

current opponent and from the number of remaining games. The number of remaining games 

is always known from the agents. For instance, if two agents currently play against an 

opponent for the 26th game of the tournament, it is clear that the two agents are aware that 

for both is the 26th game. Clearly, the complication of this scenario is mostly connected to its 

programming nature since the agents would have to examine an external table in order to 

reach a decision. 

 

4.3 Scenario 3 (Board/Base size constraint) 
 

In this scenario we are focusing on the board size constraint. Imagine, a simple game between 

two players at an RL Game platform, it is used to be held in an 8x8 board and a 2x2 base for 

each player. Let’s assume again that we are conducting a round robin tournament 

experiment. Several agents of different characteristics are about to compete against each 

other. Obviously the agents, are trained in a certain pattern of board size (most probably at 

8x8). As it is shown in Fig.1, the number of possible moving area is notably decreased when 

we increase the base size of each player from 2x2 to 3x3 within an 8x8 board size. Now, as 

we can see in Fig.2, if the base stays as it is, and we decide to decrease the board size to 7x7 

the area of possible moves is decreased even more (from 56 to 41 free squares). 
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If now, instead of letting them compete within an environment that they already are familiar 

with, we would either increase the base size or decrease the board size. Both approaches 

would lead to an environment that would allow a significant number of less moves for each 

player. It is important to clarify that the information that each of the players receives before 

every game, is the board size number, the base size number, and the experience of the 

opponent.  

 

It is probable that an underlying behavior would be revealed during this scenario, that is, the 

experienced player would adapt to the changing environment knowing that the game is 

against a less experienced opponent, and the less experienced might decide to drop the game 

knowing that the opponent is more experienced, and the environment is unknown.  

 

 

 

Figure 15: Increasing the base size, decreases the area in which the pawns can move (blue) 
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Figure 16: 8x8 and 7x7 board size respectively. 

 

4.4 Scenario 4 (Block move constraint) 
 

In this scenario the players are facing the block move constraint. For example, in a match 

between two agents, before they begin to play, they are informed that some of their moves 

are going to be blocked, which means that the opponent has an advantage of playing two 

times in a row, which obviously offers a great strategy advantage to the agent. In case that 

the two agents are of similar experience, they are going to be blocked the same number of 

times.  

 

On the other hand, when the players are of different experience, the strongest player is going 

to be blocked more times than the less experienced agent. For instance, in a game between a 

strong and a weak agent, the strong agent would be blocked two times and the weak agent 

none.  

 

During this scenario we can investigate several things. The first is the investigation of the 

experienced agents when they are facing the block constraint. Will they continue playing, 

because they are sure that the opponent is going to lose anyway, or the constraint of the 

blocked moves is going to make them drop the game.  
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The second question is whether between two agents, that are of similar experience but with 

different strategy characteristics (ε-γ-λ) we would find different behavioral patterns.  

 

The third question, simpler than the aforementioned ones, is whether eventually the less 

experienced agent will continue to play, while knowing that its opponent has a number of 

blocked moves. Basically, we investigate the first question but t from the side of the weaker 

agent.  
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Chapter 5  

Implementing the Scenarios 
 

 

 

In this chapter we present in detail all the steps of the analysis that was conducted in order 

to identify the number of moves that has been described in Chapter 4 and the set up of the 

budget constraint additionally with its implementation in different situations, such as a small 

round robin tournament or many round of repeated games between two avatars, focusing on 

different directions each time. 

 

5.1 Number of Moves: Analysis and Identification 
 

As we’ve described in Scenario 1, our goal was to run multiple times a significant number of 

games in order to identify the number of moves constraint. This process was executed 

multiple times, each time creating new avatars and starting the round of 1200 games again. 

We chose the number 1200 for the number of games, because the code in eclipse, was 

returning sometimes ‘0’ for the number of total moves in a game. This is due to a small bug 

in the code which still needs to be identified and fixed. Nevertheless, after some trials we 

realized that the number of zeros in our results was never exceeding the number of 100, 

hence the 1200 games between the avatars. This would give us more than 1000 clean data 

points in order to plot and observe the behavior of the data. We’ve decided to create a code 

that exports the zeros in our data though, so a future researcher can confirm our numbers. 

  

The games took place on the eclipse IDE, where in the next section we will present the 

changes that we had to implement at the java scripts. The data analysis was conducted using 

different software programs. The cleaning of the data was done with Microsoft excel, where 

the exported data were analyzed and visualized in RStudio using scripts of R language. 
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5.1.1 Changes in the Java code 
 

We’ve set a simple counter inside the public class MoveCommand() that keeps track of every 

move (from both avatars) that’s being executed in each game. The user can keep track of the 

process of the game on the Server’s screen where it shows the number of the current move. 

Then, at the end of each game the counter is simply nullified in the class ConfirmGameStart() 

when the next game is about to start. At the end of every round of 1200 games, a txt file is 

being exported from the WriteResults() class indicating firstly the description of the round 

setup (board size, number of pawns, date, time etc.) and then on every row the number of 

game, the winner and the total number of moves (summary of the moves of both players in 

the game). 

 

 

Figure 17:MoveCommand() counter 

 

 

Figure 18: Server number of moves indication 
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Figure 19: New game comfirmation sets the counter to zero 

 

 

Figure 20: Sample of the exported txt file at the end of every round, where we can also observe the 
‘zeros’ that were mentioned at the beginning of the current chapter. 

 

5.1.2 Cleaning the data in Excel 
 
From the exported txt file, we could easily copy paste the data into an excel file and from 

there by the use of a division and a round up function we were ending up on the number of 

moves that the winner made on each game. For instance, in Fig.21 we can see that for a 

number of 63 total moves in Game 2, this number is divided by 2 (Winner Moves column) and 

then it is rounded up in the Moves column. At the end of every process, we save the data into 

a CSV file and continue are analysis in RStudio.  
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Figure 21: Excel Dataset sample 

 

5.1.3 Visualization in RStudio  
 

In RStudio, we’ve created a simple script that reads the csv file from the directory where it is 

placed, then cleans the data, imports the necessary libraries, and plots the data in a 

histogram. In Fig.22 we can see the script for Round 1 of the 1200 games and the plot of the 

data. As we can see at the visualization of the 10 rounds of 1200 games, every time, we ended 

up having an almost normal distribution, with the indication being that each time most of the 

games were won within the range of [15,25] moves. This is an indication that a constraint 

could be set for n>15 in order to set a constraint and probably expect a difference at the 

agent’s behavior.  

 

 

 

 

Figure 22: Script and visualization in RStudio 
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Figure 23: Histograms of all the rounds 
 

5.1.4 Usefulness of the n identification  
 

Now that we have a better idea on the range of the number of moves n constraint, it is 

important to clarify its usefulness. The main questions here are the following; first, how the 

number n can be used in one game and what could we actually reap from it,  and second how 

the number n can be used in a tournament between avatars and what again are we expecting 

to obtain from its use.  

 

Regarding the first question, the number n when set as a constant constraint within a game, 

could possibly lead the avatar to adopt another behavior when it comes to its playing style. 

For instance, when a game between two avatars starts with a maximum number of moves set 

to 15 for each player and after following the same approach that we followed in order to 

identify a range for n we could see in the plots a totally different behavior in comparison to 

the rounds that no constraint was present. As we have mention in Chapter 3, if no avatar has 

won until the nth move the game would  be considered a drop and a loss would be charged to 
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both avatars. In case that the number of total wins is a significantly low one, we can reach the 

conclusion that the avatars have a really hard time to identify a strategy in order to win when 

the constraint is set, and maybe we might reach the conclusion that setting a constraint for 

the number of moves is crucially affecting the ability of the avatars to adapt and win the game. 

The aforementioned question could be also approached statistically, with the same way that 

we’ve identified the number of moves n. The idea behind this approach is to run again a large 

number of games and plot the results. The difference now is that the number of moves 

constraint would be present and the avatars would be charged both with a loss in case no 

win has been achieved until the nth move. When we have a large number of wins achieved, 

again we could create the histogram and examine the behavior of the moves this time. It 

would be interesting to investigate, whether the avatars are adapting on this constraint and 

teach themselves to win with less moves a or their behavior does not change significantly.  

 

The answer to the second question is a little bit more complicated. If we could apply the n 

constraint within a tournament between avatars, the conclusion that we might reach would 

probably be the same as in the previous paragraph. However, when the number n constraint 

is combined with the budget of total moves constraint that we’ve mentioned in Chapter 4, we 

might observe a different behavior in comparison to the first question, when it comes to the 

management of the moves. For example, in a tournament between a number of  avatars, let’s 

assume that the total budget is b moves for each avatar and the maximum number of moves 

within each game is the number of moves constraint n. During each game an avatar would 

have the option to drop the game when is in the game or even when before the game starts. 

In these cases, we could observe whether the behavior is changing for avatars of different 

experience (score) in the RLGame. Of course, there is the possibility that we could see no 

difference at the behavior of different avatars, which would actually reveal that the degree of 

randomness in RLGame is bigger than we thought.  
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5.2  Implementing the Budget Constraint  
 

During the explanation of the 2nd scenario in Chapter 4 we’ve briefly described the concept 

behind the budget constraint. The two avatars, have at their disposal a certain number of total 

moves that they can execute in a series of repeated games, therefore a tournament. As we will 

see in the next section, this number is expressed as a total number of moves that are allowed 

from both of the avatars. For instance, a budget constraint = 1000 means that both of them 

together can execute 1000 moves. This means that when the first game starts, the white 

player makes the first move and then the black player makes another move too, the budget 

would be 998. Further we are going to explain the changes in the code in order to achieve the 

implementation of this constraint, and later we are going to present the comparison between 

two tournaments of four avatars, where the one was constraint free and the other one was 

conducted under the presence of the budget constraint.  

 

5.2.1 Changes in Java Code 
 

Firstly, in order to implement the budget constraint, we had to interact with the existing 

system and make a few changes in the code. Again, working in Eclipse IDE, and in 

MoveCommand() class, we have simply created a variable with a specific value (the number 

of  the budget, described as b in Fig.24), which reduces with step -1 when an avatar makes a 

move. For now, the user can only set the value of the b variable in the class, save the changes, 

and then execute the code as we’ve described earlier. Another change that we’ve added in the 

code, is that now after the execution of every move, the user can see on the Server’s screen, 

the remaining total budget. In Fig.24 we see an example of game between two avatars, that 

started the series of repeated games with a budget of 500 total moves together.  

 

After the end of every series of repeated games, our results are exported in a .txt file as we’ve 

seen previously, during the number of moves constraint analysis. Now, the .txt file contains, 

not only the moves that needed to be executed in order to reach a win but also the remaining 

budget after every game (Fig.25).  
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To ensure the continuation of the repeated games process, we have set the budget variable 

to be positive as a prerequisite for a pawn to move. When the budget reaches zero, the server 

terminates, and the process of the repeated games stops. These changes took place in the 

GameProcess.java file. Something that is worth to mention for a future researcher, is that the 

zero number of moves problem that we’ve described in the previous section, can be studied 

now in comparison to the remaining budget number at the end of every game. In Fig.25 we 

can see that the remaining budget continues to reduce at the end of every game, while 

sometimes the total number of moves number is zero.  

  

 

Figure 24: The code for the budget constraint implementation 

 

 

Figure 25: Exported .txt file for the budget constraint 
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Figure 26: The series of games is terminated when there are no moves left on the budget. 

 

 5.2.2 Tournament under the budget constraint  
 

After setting up the code in order to implement games under the budget constraint, we first 

decided to create two small round robin tournaments between four similar avatars of zero 

experience, one in normal mode (no constraints) and one under the existence of the budget 

constraint. All the avatars that participated in the tournaments were using the RL algorithm, 

that is available from the settings of the RLGame in the Client set up. Each avatar had to 

compete in 10 games against the opponent with a total budget on every round at 300 moves. 

This number was based on our previous analysis that was made to identify the number of 

moves per game. We’ve showed that a number of 15 moves per avatar would be considered 

a value that could probably constrain the avatars and their game, therefore 15(moves) x 

10(games) x 2(avatars) provides us with the value of 300 total moves for the budget variable. 

In the following tables we can see the schedule of the games and their average moves per 

game for the tournament without and with the budget constraint respectively.  

  



40 
 

Round Opponents Average moves/game in 10 games Average moves/game until nth game 

1 A1 vs A2 45.5 53.5 

2 A1 vs A3 43.25 45.8 

3 A1 vs A4 48.2 49.6 

4 A2 vs A3 40.5 39.5 

5 A2 vs A4 49.7 53.6 

6 A3 vs A4 51.9 50 

Table 2: Data from the tournament without any constraints 

 

Round Opponents Games completed Average moves/game until budget runs out in n 

games 

1 A1 vs A2 5 43.75 

2 A1 vs A3 6 39.4 

3 A1 vs A4 6 50 

4 A2 vs A3 6 59.75 

5 A2 vs A4 5 43.6 

6 A3 vs A4 4 48.25 

Table 3: Data from the tournament under the presence of the budget constraint 

 

The number of average moves per game was selected as a comparison point in order to 

investigate whether there is an indication of a more careful approach when the avatars are 

playing under the budget constraint. In Table 2 we can the column average moves/ game until 

nth game. This category was inserted so the avatars that competed under normal 

circumstances can equally compared to the avatars that competed under the budget 

constraint, because statistically is wrong to compare a round of 10 completed games with a 

round of <10 completed games. Now, if we compare the last columns of the two tables, we 

can see that indeed the number of the average moves is most of the times higher when the 

avatars are competing in normal mode. Now, even though we see this small indication, we 

cannot conclude that indeed the avatars are approaching the game more carefully, since our 

data sample is small and for someone to conclude such thing would require a very large 
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number of games, which would have been extremely time consuming with our manually 

repeated approach. Despite our last results, we’ve decided to investigate the behavior of the 

avatars under the budget constraint with another approach.  

 

5.2.3 Rounds of Repeated Games with Budget Constraint Between Two Avatars 
 

First we created two new avatars, similar to the other ones, meaning that they have zero 

experience and are using the RL algorithm, and then we let them compete in 60 rounds of 10 

repeated games under the budget constraint. The difference now is that the two avatars  play 

significantly more games, therefore they are carrying more experience (despite the result). 

After each round of 10 games, we were saving the number of completed games. We thought 

that if the number of the completed games is slowly increasing, then this might be an 

indication that the avatars are adapting their strategy, so they complete more and more 

games with a given budget. As we can see at the next diagram (Diag.1), as the rounds are 

increasing, indeed the number of completed games seems to increase. Notice that we observe 

more 7s at the beginning of the diagram and then the 7s become less and the 8s and 9s more.  

 

 

Diagram 1: Games completed under the budget constraint in 60 Rounds of 10 games 
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As we have mentioned earlier, the repeating process of the rounds was done manually, 

meaning that every time that a round of 10 games was fully completed or stopped because 

the avatars run out of budget we had to start again the server of the game in eclipse, activate 

the avatars, login and start again the process. It is indeed a very time-consuming process, that 

in future research on RLGame could be automated an allow the user to run more rounds, 

therefore collect more data for the analysis. Even though our data collection is relatively 

small, we can observe a minor indication of improvement in terms of spending the budget 

and completing more games.  

As we have seen earlier, we started first by focusing on four avatars competing against each 

other in a small tournament, we continued by focusing only on two avatars competing only 

against each other and at the end we have decided to look a little bit closer to the avatars’ 

behavior and observe only one avatar and more specifically its winning percentage. We run 

again 60 rounds of 10 repeated games between two avatars, but this time in normal mode. 

The data we have collected were compared with the data of the previous process of the 60 

rounds under the budget constraint, focusing on the winning percentage of the white avatar. 

The presentation of the results is divided into two parts. One part is where the results of the 

winning percentage of the white avatar under the budget constraint is compared with the 

winning percentage in a completed normal mode (60 rounds, with 10 completed games 

each). The second part is where we compare again the results of the winning percentage of 

the white avatar under the budget constraint but this time we look its winning percentage in 

the normal mode until the nth game. For example, as we can see in Diagram 1, the first round 

under the budget constraint had 7 completed games. According to our data the white avatar 

won 5/7 games. This means 71.5% (rounded up) winning percentage. In the first round in 

normal mode, obviously since there is no constraint, 10 games were completed. The white 

player won 3/10 games, which means 30% winning percentage. Now we wanted to see what 

the white player’s percentage of wins until the nth  game was, which is the game 7 of the 

corresponding round under the budget constraint. In the next section we present the results 

of both of the comparisons.  
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5.2.4 Budget VS Completed Normal Mode 
 

In Diagram 2 we can see that the blue bar charts, are representing the winning percentage of 

the white avatar at the completed games. From the example that was given earlier, we can 

see that the winning % of the white avatar for the first round under budget reached the 71.5% 

and in normal mode the 30%, which is represented by the orange line on the bar chart. We 

can easily observe that the winning rate of the white avatar is evidently better when the 

budget constraint is present. Theoretically this could be an indication of a behavioral 

adaptation skill since the avatar seems to adapt to the constraint and spend its moves more 

strategically. But as we have mentioned earlier, the data are not enough in order to support 

efficiently this indication, therefore this is also something that could be studied in the future. 

In Diagram 3, we can more clearly observe that the winning rate of the white avatar was 53% 

better than in normal mode, 42% better in normal mode and 5% of the time the 

corresponding rounds ended up with the same winning rate.  

 

 

Diagram 2: Winning rate comparison. Budget mode VS completed normal mode 
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Diagram 3: Budget vs Completed Normal Mode Pie Chart 

 

5.2.5 Budget VS Normal Mode until nth Game  
 

As we have earlier explained now these results are a comparison of the white avatar’s 

winning rate under the existence of the budget constraint and the winning rate in normal 

mode until the nth game, with n being the number of completed games at the corresponding 

round under the budget constraint. We observe that the winning rate in normal mode is until 

the nth game is now lower, and the ‘same’ category that represents equal winning rates at the 

corresponding rounds, is higher. Also, the difference of rates seems to have an equal 

displacement from ‘better under budget’ to ‘same’ and ‘better in normal mode’/ ‘better in 

normal mode until the nth game, a fact that will be explained at the conclusion section. An 

interesting fact when comparing the two bar charts, is that in several rounds, e.g., round 35 

and round 38, the white avatar’s under budget constraint winning rate under budget 

constraint seems to be significantly better (Diag.4) but when the normal mode is fully 

completed they ended up having the same winning rate (Diag.2).  



45 
 

 

Diagram 4:White avatar’s winning rate comparison. Budget mode VS Normal Mode until the nth 
Game 

 

Diagram 5:Budget vs Normal Mode until the nth Game Pie Chart 
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Chapter 6  

Conclusions 
 

 

 

The description of a number of scenarios in the RLGame and the implementation of a part of 

them, gave us a different scope under which the game and the synthetic agents that are 

participating in it (avatars) could be examined. We have seen that the implementation of 

resource constraint scenarios, provide a good framework to the researcher in order to 

investigate whether there are behavioral adaptation signs from the side of the avatars. First 

with the number of moves constraint we have found a range where a future researcher could 

try and experiment with several values. Our choice to select the number 15 for our number 

of moves constraint, provided as with some interesting indication when it was combined with 

the value of the total budget in a round of games. We saw, that in our experiments, there are 

small indications of behavioral adaptation, when it comes to spending the budget of total 

moves. Also, we have seen that as the rounds are increasing and two avatars are playing 

together, the number of completed moves is slightly increasing when playing under the 

budget constraint. A future approach could be the application of different values for the 

number of moves, therefore for the total budget constraint, and examine whether the 

distributions that we have seen in chapter 5 differ when the characteristics of the players are 

different. In order to do that, as we have said earlier, the researcher should repeat a very 

large number of repeated rounds and extract a significant number of data points that could 

support the confirmation or the rejection of our indications. Also, two different variables 

could be use in the code in order to represent the white avatar’s budget and the black avatar’s 

budget separately. This might lead to even more detailed results that will allow to a more 

thorough analysis on the behavior of the avatars.  

There are a couple of things that we would like to point out when it comes to our experiments 

with the budget constraint. First, as we have said in the last chapter, that there is an equal 
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displacement of rates between the three categories, noticing that there is a 53-47 percent 

displacement between the categories. This can be characterized as normal since the 

parameters of the game have not change much when the budget constraint is implemented. 

The avatars are competing in the same environment like in normal mode with the only 

difference that the now the server stops when the budget runs out. In the future the choice 

of ‘drop’ that has been described in chapter 4, could implemented, meaning that the avatars 

could choose whether or not they will continue when they take under consideration their 

budget and the strength of the opponent. At the end of the repeated games, the system could 

export information, about who chose to drop, against whom, what was the remaining budget 

and how many games left until the end. These data could allow the researcher to go through 

a deeper and more thorough analysis about the avatar’s behavior. We would like also to point 

out, that this displacement of the rates, is also a result of the randomness that exists within 

the RLGame, and it was something that we were already expecting. In the future it could be 

investigated whether the changes that we have described, provide a more unbalanced 

displacement.  

In the beginning of this dissertation, we have talked about avatars of different experience and 

characteristics. The ε-γ-λ parameters that are responsible for an avatar’s playing style (Fig.4) 

where not changed in our experiments, keeping a balanced share between these three 

parameters. These parameters can be easily found in the RLGame code and be changed from 

the user. Even though we have explained the different possible gaming profiles of the players, 

the goal of this dissertation was not to implement these profiles, since an investigation of all 

the different styles, can be a dissertation on its own, but to suggest ideas and future areas of 

interest. 

At last, another suggestion for future investigation is the combination of our suggested board 

size scenario and the factor of deterministic discontinuity that has been mentioned in section 

2.1 and in [Vasilopoulos, 2019: 38].  
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