

Open University of Cyprus
Faculty of Pure and Applied Sciences

Master Thesis

Systems and Network Security

Automating external networks creation in Cyber Ranges using

scripting

Georgios Benetatos

Supervisor

Peratikou Adamantini

05/2021

Open University of Cyprus
Faculty of Pure and Applied Sciences

Automating external networks creation in Cyber Ranges using

scripting

Benetatos Georgios

Supervisor

Peratikou Adamantini

This Master Thesis was submitted,

for the competence of the requirements to acquire

Master’s degree in
System and Network Security

From Faculty of Pure and Applied Sciences
Open University of Cyprus

05/2021

Summary

Two virtual machines hosted in a given Virtualization environment are used to host an OpenStack
deployment with all the basic components, like Neutron and Nova. Python scripts are written and deployed
to create a virtual network and all the necessary components, like router and network interfaces. The
communication with the stack is achieved utilizing the API endpoints created in OpenStack. Network
performance tests, for latency and throughput, are maid, measuring the connection between the already
existed network 192.168.30.0/24 and a Virtual machine hosted inside Openstack in the newly created
network 172.16.0.0/24 and the connection between two Virtual machines, both members of 172.16.0.0/24
network. Finally, the results from the tests are compared with the results from the communication of 2
Virtual machines hosted in the given Cyber Range, giving slightly better performance statistics.

Master Thesis ... i
Systems and Network Security .. i
Chapter 1.. 1
Introduction ... 1

1.1 Scope .. 1

1.2 Main Target ... 1

1.3 Layout .. 2
Chapter 2.. 3
Literature Review ... 3

2.1 Key concepts and definitions ... 3

2.1.1 Cyber Security .. 3

2.1.2 Cyber security training ... 4

2.1.3 Cloud computing ... 4

2.1.4 Cyber Ranges ... 5

2.1.5 Automations in Cyber Ranges ... 7

2.1.6 Openstack ... 8

2.1.7 OpenStack architecture and components ... 9

2.2 OpenStack Networking ... 10

2.3 Open Virtual Switch .. 13

2.4 Previous RESEARCH .. 14

2.4.1 Openstack – Virtualization ... 15

2.4.2 Automation and Python ... 16

2.4.3 Means of Compare and research ... 16

2.5 Conclusion .. 16
Chapter 3.. 17
Methodology ... 17

3.1 Type of Research .. 17

3.2 Development lifecycle ... 17

3.2.1 Proposed Lifecycle 1 - Waterfall Model ... 18

3.2.2 Proposed Lifecycle 2 - Spiral Model ... 20

3.2.3 Chosen model... 21

3.3 Research main questions ... 22
Chapter 4.. 22
Deployment ... 22

4.1 Virtualization Deployment ... 22

4.2 Controller Node ... 24

4.3 Compute Node ... 27

4.4 Scripts and Code .. 28

4.4.1 Connection – Getting the authentication token ... 28

4.4.2 Network Creation .. 29

4.4.3 List networks .. 30

4.4.4 Subnet List .. 30

4.4.5 Subnet Create ... 31

4.4.6 Router list .. 32

4.4.7 Router Create ... 32

4.4.8 Port List ... 33

4.4.9 Port Create .. 33

4.4.10 Script structure .. 33
Chapter 5.. 34
Testing .. 34

5.1 Getting the Authentication Token. .. 34

5.2 Creating Network .. 36

5.3 Create Subnet .. 37

5.4 Create new Router – External network ... 37

5.5 Creating Instance in OpenStack (from Horizon) ... 38

5.6 Network diagram from OpenStack Horizon ... 40

5.7 Checking network with Iperf ... 41

5.7.1 Latency .. 43

5.7.2 Throughput .. 45
Chapter 6.. 48
Conclusion – Discussion .. 48

6.1 Discussion ... 48

6.1.1 Python for automations .. 48

6.1.2 Openstack API interaction ... 49

6.1.3 Comparison of Networks created in OpenStack with the preexisting in the
virtualization. ... 49

6.2 Reflections ... 50

6.2.1 Limitations .. 51

6.3 Future Works .. 51

Bibliography .. 51

1

CHAPTER 1
INTRODUCTION

Cloud Computing is starting to gain more and more attention in the IT market. Large companies

invest huge amount of time and money to migrate from the on-premise deployment they use to

have to a more flexible, cost-efficient and full modifiable solution, provided by cloud computing.

Either it is Public or private cloud, this kind of migration needs perfect planning and very meticulous

implementation. One of the most important parts in that process is the development of

automations, well-designed and optimized to feet the needs.

1.1 SCOPE

In this research will be deployed an Openstack environment, utilizing all the basic OpenStack

components as Neutron, keystone, Horizon, Nova. After the creation, python scripts will be

deployed in order to automate the creation, management and change of external networks and

virtual routers.

1.2 MAIN TARGET

The main goals for this research is to deploy a Multi Node Full OpenStack environment using all the

common Openstack components (Neutron, keystone, Horizon, Nova). After the creation of the

environment, python scripts will be deployed in order to investigate how automations can be

implemented, using the API endpoints of the deployment. With the scripts the creation and

management of external networks will be facilitated without the need to use either the Stack

2

controller neither the GUI environment provided from OpenStack (Horizon). The networks created

will be tested as external networks in a virtualization environment.

1.3 LAYOUT

At the beginning a short description of basic definitions will be presented, followed by related

works and research currently in progress or recently published. That will give a big picture of the

subject as well as it will justify better the need of this research.

At the next section, a full detailed description of the OpenStack deployment will take place. This is a

crucial subject as the settings applied in network as well as in compute layer will have great impact

in the deployment of the Python automation scripts.

The scripts, with a detailed explanation will also be presented. Python code, with comments will be

deployed in functional parts for better understanding the process. At the end a full program will be

proposed, using python and linux bash scripts. The results of the scripts will also be a subject in this

research.

At the end the created and managed networks and network components will be tested in a

production virtualization environment .

3

CHAPTER 2
LITERATURE REVIEW
Internet security is one of the most important issues today, with a large number of researches trying

to approach the issue from different angles. The needs of training, simulation and expansion of

techniques (defensive and offensive) in the field of cyber security lead to the increasing use of Cyber

Range, utilizing every opportunity (Networking, Software, Hardware, Cloud). The investigation of

different types of networks, created within the Cyber Range, and the way they behave, as well as

the effort to introduce automation mechanisms, is a field that this research will deal with. The

results will be added to the overall effort made to optimize Cyber Range and make the most of it.

2.1 KEY CONCEPTS AND DEFINITIONS

Below we will present the basic concept and definitions for this research, trying to achieve a smooth

and specific introduction to the topic

2.1.1 CYBER SECURITY

Cyber security, or else information technology security is the summarization of practices and

mechanisms to defend electronic systems and networks from malicious attacks. Depending the

target and the processes followed, cyber security can be divided into several categories such as

Network Security, Application level Security, Information Security, Operational security, Disaster

Recovery and so much more. (Kaspersky LAB, 2019)

Cyber security has a crucial impact in today’s economy in all over the world. The most recent

researches show that only in USA the financial damage from proved cyber crimes is more than 3,5

billion dollars every year, a number that seems to increase. More and more companies and

organizations try to adopt sustainable methods to protect their companies intel and wealth from

cyber criminals, that opens the horizons for a whole new market in information technology.

4

2.1.2 CYBER SECURITY TRAINING

Security awareness and training is becoming one of the most important parts in today’s life. Even if

someone has nothing to do with information technology, needs to be aware and of course trained

in some way, to identify and avoid such attacks. All modern well practice standards that the

enterprises adopt, suggest continuing training to all the employees about security awareness and

dangers.

The need for advanced security training methods is not something that concerns only the end-users

. New methods, more practical and less theoretical need, to be implemented in Cyber security

training for the professionals, so they can meet the high standards. Old training methods that

includes large theoretical parts seems now to be inadequate. More and more research are getting

published, concerning new methods for security risk simulation, that provides to the cyber security

professionals all the “on the job” skills needed. Safe and legal environments for cyber training, such

us Cyber Ranges gaining more and more place in this highly demanding word.

2.1.3 CLOUD COMPUTING

Cloud computing is the innovation of the last five years, bringing together all the disciples

technologies and models that are used till now in the IT business. What makes cloud computing so

important and succeed in the market so far is the “As a Service” options that gives to the user. IT

resources (networks, hardware, applications, coding) can now be delivered serverless, dynamically

and with full scalability using the internet.

Cloud providers supply the users with a virtual unlimited number of resources on demand that can

be any time adjust to meet every need. For business continuity, cloud providers, such us Amazon,

Google, Microsoft, also provide strong Service level Agreements (SLA) as a warranty for the

availability of the resources. Billing options are also scalable and depends on the consumed

resources.

The basic areas so far that cloud computing offers are the following:

5

• Infrastructure as a Service (IaaS): The whole equipment, like virtual machines, storage

units and networks, is provided by the cloud provider, while the end user needs to maintain

the application, runtimes, databases and server software.

• Platform as a Service (PaaS): The and user develop its own applications using the services

provided. Cloud providers maintain the runtime Cloud, SOA integration, databases, server

software, storage units and virtualization server hardware

• Software as a Service (SaaS): The entire application is available in the cloud and the users

just connect to the application via Internet connection.

2.1.4 CYBER RANGES

To mitigate the dangers of Cybercrimes researchers are developing cyber defense tools and

procedures that need to be tested before going live, so they can evaluate their effectiveness as well

as to calculate any possible risk in productive environments. Some years before, testing in small

networks or even in a single computer was enough. Now, is insufficient as it does not give the

required level of realism. Real life defensive or offensive scenarios need to be recreated so the

researchers can obtain valuable intel by analyzing them.

As a crudest definition , Cyber Ranges are typical hardware with the ability to connect to each other

forming complex network topologies, emulating a great variety of traffic models. What makes

Cyber Range a great environment for cyber security training is that they are in most cases

completely separated from the Internet so any tests cannot impact productive networks.

Maintaining a cyber range can be a very expensive and time-consuming effort, with a large number

of information technology staff needed to operate them. That is the reason why the largest Cyber

Ranges are owned by large organizations and governments.

To be more specific depending on their purpose of use, we can classify cyber ranges in some

categories.

6

• Military and Defense use

They are large scale cyber ranges used by Military organizations and government agencies all over

the world to properly train Cyber Warriors against Cyber Terrorism. The most well-known Cyber

Ranges of this type is the National Cyber Range (NCR) of Defense Advanced Research Project

Agency (DARPA) working for the Department of Defense of the United States of America. European

Union, is also up to develop its own Cyber Range for research and training reasons.

• Education

The idea of using a Cyber Range in education is not earlier than 2015 and it is first introduced in

USA as a program to retrain veterans. Soon the idea spread all over the world. Cyber range in

education are not only meant to be digital playgrounds for students. Educators and students can

benefit from cyber ranges developing different scenarios that can best simulate real life conditions

and gain valuable skills.

• Enterprise and Commercial

They are cyber ranges developed by large commercial organizations to conduct games and

simulations in order to strengthen security awareness and capabilities of their employees. They are

expensive but research so far shows that they have incredible and fast results. The first and

enterprise Cyber Range was developed by IBM with the name of IBM X Force Command Center.

• Open Source

Like the Arizona Cyber Warfare Range, this kind of cyber ranges provide a safe environment for

novice as well as advanced security professionals to test their hacking knowledge and freely and

legally test their security skills.

7

• Law enforcement

As mentioned before, many agencies understand the need to train their personnel about the

importance of cyber security. Taking as an example the Michigan Cyber Range, law enforcement

agencies can benefit from cyber ranges by hardening their security policies and by upgrading their

forensics and tech knowledge.

2.1.5 AUTOMATIONS IN CYBER RANGES

A Cyber Range, as we previously mentioned, serves many difference purposes. Each scenario that

is built has his own variables and settings. While the hardware part of a cyber range almost every

time remains stable, network topologies change to fulfill its goal. Cyber Range administrators have

to make these changes and monitor their implementation. This process could be extremely

complex and time consuming without the use of automation tools such as OpenStack controller

which allows fast and efficient network design and reconfiguration using APIs. (MIT Lincoln

Laboratory Lexington United States, 2016) In more details cloud controllers like OpenStack are

used as network management configuration tools that can create and manage physical nodes and

network experiments with multiple virtual machines and network services. Each network topology

can well be managed among nodes. (Zhihong, et al., 2018)

It is very common in Cyber Ranges deployment, especially when a cloud based solution is chosen,

to use again and again the same scenario in order to achieve all the wanted results. Building from

scratch may be usable in small testing environments but while the complexity of the project is

raising, this would be difficult and extremely time consuming. For that reason, the establishment of

a basic framework in such deployments is under constant investigation by community.

Many researchers propose the use of Virtual Scenario Description Language (VDSD). The syntax of

the language is extremely rich . It contains the full description of the core elements of a deployment,

including nodes, network topologies, rules and settings, configurations, all written and defined

through a group of statements. (Costa, Russo, & Armando, 2015)

8

Even it is still in project and research stage, this could be the future of automations in OpenStack

and in all Cyber Range deployments in general.

PICTURE 1 EXAMPLE OF VSDL SCRIPTING LANGUAGE

2.1.6 OPENSTACK

OpenStack is a well-established Infrastructure as a Service (IaaS) with numerus software solutions

that meets all the needs for today’s cloud computing, both public and private cloud. It is Open

Source, highly configurable and flexible and that is the reason why it is one of the most used cloud

stack all over the world.

Many researchers try to compose an accurate definition of OpenStack. All agrees that Open Stack

complex architecture as well as the great number of solutions that have developed and still are

being developed is the key to success of this cloud stack that enterprises as well as large Cloud

Providers can use to set up and maintenance their cloud infrastructure. In general, we can tell that

OpenStack is a cloud platform that facilitates the creation and management of different sets of

computing resources, storages and networks, using web interface. (Lima, Rocha, & Licinio, 2019)

9

The first release of Open Stack that incudes only OpenStack Switch and Openstack NOVA, was in

2010 by Rackspace and NASA, named as Austin. The goal of these two colossal enterprises was to

create an open-source cloud platform that could provide managed services both in public and

private cloud. One of the greatest success from this project is that in less than 5 years, a multi

member community was created, including more than 180 companies and 6000 individuals. This

community actively contributes to the development and the improvement of the project. Official

documentation (OpenStack Docs) as well as Blogs and other communication channels use to

expand OpenStack possibilities and capabilities.

2.1.7 OPENSTACK ARCHITECTURE AND COMPONENTS

The architecture is not something fixed. Every day new components are added, providing more

services in the IaaS layer. Three key goals must be met by all OpenStack releases and architectures.

It must be an opensource Cloud environment, very modular and flexible, using API for service

unification and automation as well as supporting a great number of virtualization standards, and it

must be full scalable.

Open stack architecture is designed to be horizontally scalable as it needs to provide intelligent

storage solutions to meet growing business needs. (Lima, Rocha, & Licinio, 2019)

As it is almost impossible to include all OpenStack projects in details, some basic components and

services for OpenStack can be summarized in the bellow categorizes.

• Compute (Nova): This is the cloud computing infrastructure manager. It does not support

any of virtualization capabilities by itself, though using the appropriate APIs can control and

manage the instances as well as all the resources and the networks

• Image Service (Glance): This service is for making and retrieving virtual machines

storages.

• Object Storage (Swift): OpenStack object store project, providing cloud storage software

and automations using APIs. Switch is also responsible for clustering the data and

distributing copies of each object stored by regions.

10

• Dashboard (Horizon): Is the graphical Web interface of Openstack, integrating all

provided services.

• Networking (Neuton): Provides virtual networking to the VMs, attaching their vNIC to the

virtual switch interface. The use of APIs can automate and facilitate raw networking in

cloud.

• Orchestration (Heat): Project whose target is to manage the automatic way, a large

amount of instances. The automation usually uses OpenStack RESTful API (HTTP) to make

it happened

2.2 OPENSTACK NETWORKING

As mentioned, flexibility is a key concept in cloud computing. One of the most important and in

parallel most challenging area of study is the implementation of networking in the cloud

environments. OpenStack Networking allows to easily create and manage network objects, giving

leveraged Layer 2 and of course Layer 3 connectivity, using subnets and ports as well taking

advantage od numerous of different networking equipment, using the appropriate plug ins.

Neutron, that is the name of OpenStack’s Networking service, provides an API that let you to define

network connectivity and addressing in the cloud, making operators able to implement different

networking technologies. There is also an API that allows the administrators to manage a great

variety of services, from NAT, load balancing and redundancy mechanism to firewalls and VPNs.

Summarizing, Networking services includes in general, an API server that supports Layer 2

networking and IP address management, many plug-ins and agent as well as a Messaging queue

that accepts and routes RPC requests between agents to complete API operations.

To configure rich network topologies, you can create and configure networks and subnets and

instruct other OpenStack services like Compute to attach virtual devices to ports on these networks.

OpenStack Compute is a prominent consumer of OpenStack Networking to provide connectivity

for its instances. In particular, OpenStack Networking supports each project having multiple private

networks and enables projects to choose their own IP addressing scheme, even if those IP

addresses overlap with those that other projects use.

11

There are two types of network, project and provider networks. It is possible to share any of these

types of networks among projects as part of the network creation process. (OpenStack Docs, 2019)

• Provider Networks / External Networks

Provider networks offer layer-2 connectivity to instances with optional support for DHCP and

metadata services. These networks connect, or map, to existing layer-2 networks in the data center,

typically using VLAN (802.1q) tagging to identify and separate them. Provider networks generally

offer simplicity, performance, and reliability at the cost of flexibility. By default only administrators

can create or update provider networks because they require configuration of physical network

infrastructure.

Also, provider networks only handle layer-2 connectivity for instances, thus lacking support for

features such as routers and floating IP addresses.

In many cases, operators who are already familiar with virtual networking architectures that rely

on physical network infrastructure for layer-2, layer-3, or other services can seamlessly deploy the

OpenStack Networking service. In particular, provider networks appeal to operators looking to

migrate from the Compute networking service (nova-network) to the OpenStack Networking

service. Over time, operators can build on this minimal architecture to enable more cloud

networking features.

In general, the OpenStack Networking software components that handle layer-3 operations impact

performance and reliability the most. To improve performance and reliability, provider networks

move layer-3 operations to the physical network infrastructure.

In one particular use case, the OpenStack deployment resides in a mixed environment with

conventional virtualization and bare-metal hosts that use a sizable physical network infrastructure.

Applications that run inside the OpenStack deployment might require direct layer-2 access,

typically using VLANs, to applications outside of the deployment. (OpenStack Docs, 2019)

As a subcategory of provider networks, there are the Routed provider networks, that offers basic

layer 3 connectivity to cloud instances. As provided networks maps on an existing physical layer 2

12

network infrastructure, routed provider networks communicate directly with layer 3 networks

that exists in a datacenter. To be more specific this kind of networks use multiple Layer 2 segments,

that we can describe as prover networks, adding a router gateway that giving the possibility to

communicate with external networks .

• Self-service networks / Tenant Networks

Self-service networks primarily enable general (non-privileged) projects to manage networks

without involving administrators. These networks are entirely virtual and require virtual routers

to interact with provider and external networks such as the Internet. Self-service networks also

usually provide DHCP and metadata services to instances.

In most cases, self-service networks use overlay protocols such as VXLAN or GRE because they can

support many more networks than layer-2 segmentation using VLAN tagging (802.1q).

Furthermore, VLANs typically require additional configuration of physical network infrastructure.

IPv4 self-service networks typically use private IP address ranges (RFC1918) and interact with

provider networks via source NAT on virtual routers. Floating IP addresses enable access to

instances from provider networks via destination NAT on virtual routers. IPv6 self-service

networks always use public IP address ranges and interact with provider networks via virtual

routers with static routes.

The Networking service implements routers using a layer-3 agent that typically resides at least one

network node. Contrary to provider networks that connect instances to the physical network

infrastructure at layer-2, self-service networks must traverse a layer-3 agent. (OpenStack Docs,

2019)

13

PICTURE 2 VISUALIZATION OF NETWORKING IMPLEMENTATION WITH

OPENSTACK. (OPENSTACK NETWORKING

DOCUMENTATION HTTPS://DOCS.OPENSTACK.ORG/)

2.3 OPEN VIRTUAL SWITCH

Open vSwitch is a multilayer software switch licensed under the open source Apache 2
license. The main goal is to implement a production quality switch platform that supports
standard management interfaces and opens the forwarding functions to programmatic
extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments. In addition
to exposing standard control and visibility interfaces to the virtual networking layer, it
was designed to support distribution across multiple physical servers. Open vSwitch
supports multiple Linux-based virtualization technologies including Xen/XenServer,
KVM, and VirtualBox (OVS Docs, 2020)

The bulk of the code is written in platform-independent C and is easily ported to other
environments. The current release of Open vSwitch supports the following features:

 Standard 802.1Q VLAN model with trunk and access ports
 NIC bonding with or without LACP on upstream switch
 NetFlow, sFlow(R), and mirroring for increased visibility
 QoS (Quality of Service) configuration, plus policing
 Geneve, GRE, VXLAN, STT, and LISP tunneling
 802.1ag connectivity fault management
 OpenFlow 1.0 plus numerous extensions
 Transactional configuration database with C and Python bindings
 High-performance forwarding using a Linux kernel module

https://docs.openstack.org/

14

The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate entirely in userspace without assistance from a kernel
module. This user space implementation should be easier to port than the kernel-based
switch. OVS in user space can access Linux or DPDK devices. (OVS Docs, 2020)

2.4 PREVIOUS RESEARCH

The issue of Cyber Range has been actively and vividly addressed over the last decade, with a wealth

of research trying to approach and expand it. According to the European Internet Safety Agency

(ECS), in an attempt to approach the issue, two possible definitions are mentioned. From what is

defined as an environment of systems, which create apart from the Internet, a simulation

environment where legally and safely can be tested and trained professionals on security. This

observation is clearly seen in the article of the European Internet Safety Agency (ECS - p. 10). NIST

seems to agree with this definition in the relevant article and material published at the end of 2019,

substantiating the Cyber Range. (NIST - pp. 4-5). At the same time, studying the literature, we

PICTURE 3 TYPICAL OVS DEPLOYMENT - TE-YEN LIU INDUSTRIAL

TECHNOLOGY RESEARCH INSTITUTE

15

observe that many researchers accept the above and incorporate them in their work. (Gabriele

Costa, 2019 - p. 7).

In contrast, some researchers prefer to approach the concept of Cyber Range more broadly, saying

that it is a platform that can easily adapt to different conditions to meet different needs each time.

Key elements in this definition are the features of the Cloud and the "As a Service" feature it

provides. Both in this research and in others, networks are created based on the needs at a time,

which are flexible and easy to install, and accessible to a large number of people. In (Peter Mell,

2013, NIST - p. 2), we can see this relationship very purposefully and concisely. The fact that it has

been approved and published by NIST gives great validity to the source

2.4.1 OPENSTACK – VIRTUALIZATION

As the use of Cyber Range increases, so does the need to develop complex architectures that

combine not only the need for an isolated, protected environment but also the need for a broad user

interface to run more responsive simulations with the greatest accuracy possible. The research of

(Rosenstein & Corvese, 2018 pp. 2,4,5,6) carried out in the framework of a program of John

Hopkins University, Laboratory of Applied Physics, presents a detailed architectural model of a

Cyber Range, applied to the National Cyber Range (NCR). From this source, which is guaranteed

from the numerous reports it has, since its publication, we draw important information about the

main advantages and the need to continue research in this area (as shown by the conclusions p.

8-9)

 A key, and common element of all the researches that have been carried out is the effort of

automation in the creation and management of networks (whether they are implemented on a

physical level or through virtualization). Openstack for the development of their experiment, the

management of resources for this issue is one of the key elements that researchers use and apply.

 The OpenStack kernel will be used as a Controller for this research. Based on previous studies, it is

probably the most ideal choice as it has shown the best performance, although in its installation it

is very demanding. In their publication (Jaison Paul Mulerikkal, 2020 p. 1), where a comparative

presentation of two Open Source systems is made, it seems that with Openstack more efficient and

accurate resource management is done.

16

2.4.2 AUTOMATION AND PYTHON

From (Wang & Zhang, 2017 - p. 3), we read that the services offered by Openstack enable the use

of APIs for the management of network resources, participating in the 5-level architecture

proposed (and supported) by the organization, by a plethora of guides and publications.

(OpenStack, 2018)

The Python APIs offered by Openstack will be used for the implementation of automation and are

suggested by many as a better solution compared to the classic way of REST APIs or command-line

tools. (Hochstein 2013), (SEFRAOUI, AISSAOUI and ELEULDJ 2012 - p. 39), in many parts of

their presentations confirm this fact.

2.4.3 MEANS OF COMPARE AND RESEARCH

The final purpose of this research is to evaluate the characteristics of the networks that will be

implemented as well as their quantitative comparison with the existing networks in the given Cyber

Range. As mentioned in (Tantardini, et al. 2015), there are a variety of methods for determining

and comparing the quantitative characteristics of networks, which can provide reliable and

important data for their operation. The use of mathematical and statistical models in this

publication, as well as the detailed presentation (graphically and verbally) of the results certainly

demonstrates validity in the source and makes it perhaps one of the main tools for processing the

data that will be collected in the study.

2.5 CONCLUSION

We notice that in the literature there is a huge volume of publications, especially recent ones, that

document the development of networks and their automation using Openstack. From the

conclusions of the research it seems that only in recent years there has been a systematic attempt

to use Python APIs, a fact that leaves room for further study. An important element that makes this

research scientifically interesting is the attempt to apply the methods in Cyber Range

environments. It seems at this point that there is ample room for improvement in scientific

knowledge and many opportunities for research.

17

CHAPTER 3
METHODOLOGY

3.1 TYPE OF RESEARCH

This will be a quantity research. After the initial deployment of OpenStack environment in the Cyber

Range, we will try to measure how easier it is to use automation scripts written in Python to

manage, create and control networks and network components through the OpenStack

environment.

The networks created, will be then tested in a given Cyber Range in comparison with other

networks preexisting in the deployment.

3.2 DEVELOPMENT LIFECYCLE

• As first step, the initial installation of OpenStack will take place. As Controller is picked a

Virtual Machine deployed in the Cyber Range. The OS is Ubuntu Server LTS 18.04 fully

patched with the latest updates.

• For Compute Node, a second Ubuntu Server VM will be used, running the same OS Version

and patches. The Compute Node will act as an Availability Zone (AZ) for the deployment.

• After the installation is finished, the API endpoints created, will be tested . The scripts are

written in Python, importing the library “requests” for the API HTTP calls and the library

“json” so we can send and receive through the code json containers.

18

• After the network and network components are created , they will be imported in the

virtualization environment as external provider network, trying to test their functionality

and their efficiency.

The scripts have the following capabilities:

• Authenticating through OpenStack Keystone component. The fernet token received is

saved in a variable to use in all the other scripts.

• Listing Networks: The network name, ID and description will be included in the result

• Creating network

• Listing Subnets

• Creating New Subnets and attaching them in an already created network.

• List virtual Routers

• Create Vistual Routers

• List ports

• Create New Ports

3.2.1 PROPOSED LIFECYCLE 1 - WATERFALL MODEL

As proposed from waterfall model every development step will be completed separately with its

own mini-plan and each phase “waterfalls” into the next.

Step 1: Identify the current Problem.

Openstack environment can be extremely complex and time consuming, especially when dynamic

performance analysis is the target. There is a need to add automations, written in universal code,

able to run in the majority of systems, utilizing the API end points of the deployment.

19

Step 2: Plan

Analyzing the components that the scripts must create and manage. For the needs of our testing

environment the code must have the ability to authenticate to the deployment using the Keystone

identity of Openstack acquiring the needed keys. When the authentication is achieved the scripts

must have the ability to list, create and manage network components (router, ports, networks,

subnets), using the network API endpoint of the OpenStack deployment.

Step 3: Design

Following the plan and validating the requirements, Python is chosen as main scripting language as

it is universal, easy to deploy and debug with numerous ready – to – use libraries powered by the

community. For the authentication process a Linux bash script is used to get the authentication

token and inject it to the main code. A menu helping the end user / tester to navigate through the

different functions of the script must also be implemented.

Step 4: Build

First, we build the bash script that can be run either on Controller Node or in the Compute Node

and will ask for the Access Key of the Deployment. This key will be injected in the main script code

and used during the authentication API call to get the fernet token. The last part of the bash script

will be the execution of the Python code. The main code is separated in many different functions,

based on the job each one do. For example one function for listing networks, different one for

creating . The user will have the ability to use and manage this capability using a “menu” listed in

numbers. All the code will be within a loop.

Step 5: Code Test

The testing of the code will take place at the end of the building process. Each one of the functions

will be tested and the results will be evaluated. If a defect or deficiency is found, then we fix the

issues until the product meets the original specification.

20

Step 6: Software Deployment

The source code will be deployed immediately after finish testing in the “Production” environment

by copying both bash script and Python source code to the VM.

3.2.2 PROPOSED LIFECYCLE 2 - SPIRAL MODEL

This more complex model give emphasis on the repetition and continues improvements.
The spiral model goes through the planning, design, build and test phases over and over,
with gradual improvements at each pass.

For this model, while the identification of the problem remains the same, will be separated
in smaller parts each one with its own plan, design, code building and testing.

• At the beginning we need the authentication (problem phase). An access code
needs to be acquired in order to have successful API calls (Plan). This will be
implemented using Linux Bash script in the Controller or Compute Node (Design).
Create a bash script with the appropriate command asking from the stack the
access code of the project. This code will be injected in the main Python script
(Build). The access code will be shown as a return in the screen to verify the code.
(Test).

Identify Current
Problem

•Need of
automations
managing
OpenStack
components

Plan

•Need of
Authentication
and list,
creation and
management
of network
components

Design

•Use Bash
script and
Python,
utilizing the
API endpoints
of the
OpenStack
Deployment.

Build

•Wirte bash
script for the
access key and
inect it to
Python Script.
Excecute the
main Script

Code Test /
Deployment

•Test and
correct the
python code.
Copy both
Python source
code and the
bash script to
the VM

FIGURE 1 WATERFALL MODEL DEVELOPMENT LIFECYCLE

21

• As the spiral continues, a fernet token is needed (problem phase 2). We will get
this token making a call to the Keystone end point of our deployment (Plan phase
2). Python code with the suitable JSON libraries will be used to make the API call
and decode the result, saving the fernet token in a variable (Design / Build). For
testing purposes, the resulted token will be displayed on screen as the return of
our code. (Test phase 2)

• The cycles of the deployment will continue for each of the needed components
separately (build network, build subnet, build router, build port). Each one will be
tested and be debugged before moving to the next one.

• Once all components are ready the finally source file will be copied in the VM, having the
deployment completed.

3.2.3 CHOSEN MODEL

The model that we will follow in this environment is the Waterfall model. It is the oldest
and most straightforward. The biggest drawback of this model is that it does not give the
opportunity of continues improvement and that even if small details are left incomplete
in each phase can hold up the entire process.

Identify problem. Plan

 Test / Deploy. Build

FIGURE 2 SPIRAL MODEL LIFECYCLE (BIG PICTURE)

22

Although, evaluating the risk, and taking under consideration the simplicity of the project,
this method gives the best possible results, in the fastest possible way. Other way, we will
spend too much time in preparation without any actual need.

3.3 RESEARCH MAIN QUESTIONS

• How we can better and more efficient utilize Python automations in a OpenStack

environment, deployed in a Cyber Range

• Is Python a good choice to script for OpenStack automations?

• Should we consider networks created with OpenStack better or worst in compare with the

networks already installed in the Virtualization environment?

• Is the restful API calls a good choice to interact with OpenStack environments?

CHAPTER 4
DEPLOYMENT

4.1 VIRTUALIZATION DEPLOYMENT

The servers that are hosting Openstack deployment are hosted in Virtual Machines of an already

existent Cyber Range, also based on Openstack.

In more details, the virtualization environment is hosted in five (5) nodes running CentOS. From

Network perspective there are two Switches, one for the internal network and the other for the

external connectivity.

For storage management, there is deployed a storage domain that is hosting the “Virtualization

Manager” using iSCI. All five hosts have iSCI as shared storage in the domain and there is where all

23

Virtual machines are stored. The virtualization environment also contains an ISO NFS for the

images and an export storage NFS

PICTURE 4 SCREENSHOT FROM THE VIRTUALIZATION ENVIRONMENT DASHBOARD

PICTURE 5 NETWORKS CREATED AND STORED IN O VIRT

24

PICTURE 6 VIRTUAL GATEWAY IN OVIRT

PICTURE 7 OVIRT LOGIN PAGE

4.2 CONTROLLER NODE

For the controller Node installation, microstack snap for Ubuntu is used. This snap gives an easy to

install and full manageable OpenStack environment provided by Canonical for development testing

in systems running Ubuntu. Currently is only suitable to Ubuntu version 18.04 LTS.

After downloading the snap, an initial configuration is needed. This will install all the basic

OpenStack components including Nova for computing, Neutron for virtual networking, keystone

for authentication, cinder for imaging and horizon for the web GUI of the OpenStack. For

networking and authentication, we set up an configuration file (local.conf).

25

The Virtual Machine currently working as Controller has 3 interfaces. Two of them are in the

management network of the virtualization (network name: ovirtmgmt) and the third one is a

different network also provided from virtualization (network name : studentlan). The whole

deployment and the API endpoints that are created are based on interface enp1s0 with IP address

192.168.30.152 /24 .

After the initialization of the OpenStack completed, a virtual bridge is created so the control Node

can communicate with the whole stack. For the bridge Open Virtual Switch is used. In the bridge

interface enp9s0 – part of the ovirtmgmt vlan and the tap interface created from the stack were

added. For the bridge to be accessible as interface, we set up an IP at the default external network

created in the OpenStack Deployment process (10.20.20.1 /24)

PICTURE 8 IFCONFIG DOCUMENTATION FROM CONTROLLER NODE

26

PICTURE 9 OVS BRIDGE CONFIGURATION IN CONTROLLER NODE

At this point the OpenStack Horizon , is accessible through web browser. Any changes
made using the GUI will have immediate impact in the controller node, as tap interfaces
will be automatically created.

PICTURE 10 HORIZON DASHBOARD

To access networks and interfaces created with OpenStack from the controller Node,
static routes are added, setting as egress interface the br-ex and as next hop IP address
the 10.20.20.20, that is the external’s network interface in the virtual router in OpenStack.

As shown in the scripts bellow, packets from controller node can reach every virtual
interface created with OpenStack GUI:

27

PICTURE 11 TEST INTERFACES IN VIRTUAL ROUTER CREATED IN OPENSTACK

PICTURE 12 SUCCESSFUL PING FROM CONTROLLER TO CREATED SUBNET

192.168.13.0/24

4.3 COMPUTE NODE

One of the most significant advantage of cloud computing is the possibility to
deploy in multiple availability zones in order to achieve greater availability and
fault tolerance in the production environments. For this research, a second node
is deployed acting as compute node in the stack. This enables a second Availability
Zone (AZ)

A second Ubuntu 18.04 LTS server is deployed, fully patched at the latest updates.
As in the controller node, snap image of microstack is used for this deployment
too. The Compute VM has two network interfaces in the ovirtmngm vlan. The
Compute Node is clustered, configuring the local.conf file to match the needs of
this research.

28

PICTURE 13 HYPERVISORS LIST FROM CONTROLLER

4.4 SCRIPTS AND CODE

For the scripts, Python 3 is used, having imported JSON library and Requests library for
the API calls.

4.4.1 CONNECTION – GETTING THE AUTHENTICATION TOKEN

PICTURE 14 AUTHENTICATION

In this part, we set in the container payload some basic parameters for authentication
such as user name, password, the Openstack project name along with OpenStack account

29

name and ID. The input is structed in JSON format. It is important to have already
imported JSON library for that.

In the variable “ip1” we set the IP of the API endpoint giving the opportunity to the end
user to enter the actual IP address of the controller node, in case the server is migrated.
The rest of the URL indicates the path to keystone authentication system. This gives to the
script an elasticity and fault tolerance.

In the variable “res” we have the actual REST request. Both Requests and JSON librarie are
used . The result of this request will be JSON formatted, that is the reason why we filter
the output, saving only “X-Subject-Token” in the “token” variable. With the token acquired
from this step we will work in all scripts.

4.4.2 NETWORK CREATION

PICTURE 15 NETWORK CREATION

This is the function created for new network creation. In the “netcreate” variable, we set
the basic information about the request, regarding the new network name, a domain –
name, a verbal description of the network along with the MTU size , loaded in JSON format.

In the “res” variable the result of the request is saved. Using POST we insert the request
to OpenStack. For the authentication the fernet token acquired during authentication
process is used.

30

To have visual verification of the success, the reply, again in JSON format is printed on
screen.

4.4.3 LIST NETWORKS

PICTURE 16 LIST NETWORKS

Function to generate a list with all the available networks. In the URL of the request, filters
are used so to minimize results only network IDs and network names. For the
authentication again the fernet token is used

4.4.4 SUBNET LIST

PICTURE 17 LIST SUBNETS

31

Lists all available subnets filtering only to display the name and the ID. It is important that
the ID is displayed as this is the information that will be used to attach this subnet to a
router. Authentication is achieved with the fernet token.

4.4.5 SUBNET CREATE

PICTURE 18 CREATE SUBNET

In the POST request to create a new subnet the minimum information required are: Name,
Network ID, IP version, the network address followed by subnet mask to identify the CIDR
and if DHCP is enabled a starting and ending address. The data structure used again is a
container in JSON format. The authentication is made utilizing again the fernet token from
keystone.

32

4.4.6 ROUTER LIST

PICTURE 19 LIST ROUTERS

With this GET request, all available routers are displayed. With the filter applied in the
URL, only IDs and router names will be displayed.

4.4.7 ROUTER CREATE

PICTURE 20 ROUTER CREATE

33

Creation of an external gateway requires the following parts: Network ID, state condition
(Up/Down), NAT state, Name. The authentication to API end point is made with fernet
token.

4.4.8 PORT LIST

PICTURE 21 LISTS PORTS

4.4.9 PORT CREATE

PICTURE 22 PORT CREATE

4.4.10 SCRIPT STRUCTURE

To facilitate the usage of scripts, instead of separate execution, a simple decision making
function is used so the user can call the script and perform all the available actions:

34

PICTURE 23 IF STRUCTURE

CHAPTER 5
TESTING

In this testing will demonstrate the creation of a network, a router and then a subnet using Python
scripts in Openstack. After the creation of the network components, will test connectivity creating a
virtual machine inside OpenStack. The scripts will run from Compute Node.

5.1 GETTING THE AUTHENTICATION TOKEN.

To get the authentication Token, we will initiate the process running a simple bash script.
This will take the randomly generated OpenStack password and insert it to main Python
script that will be executed afterword.

The script:

“
As first part of the script we need to access the "identity" API and get the aut_token.

#In order to do that we will use a CLI script integrating the password to Python script

35

#!/bin/bash

#Getting the password - Currently working only in Controller

pass=$(sudo snap get microstack config.credentials.keystone-password)

echo "Your password is: "$pass

#Inserting the password as variable a in the python script

sed -i "4i a='"$pass"'" script.py

#Running Python script to get the Auth Token

python3 script.py

 “

PICTURE 24 SCRIPT RUN

After the password is copied to main script, a username will be asked. In our case this is
“admin”. After entering the username there is a prompt to enter controller’s IP address. If
credentials are correct the Auth Key is displayed along with the “main menu” screen,
asking to choose the next actions. (Picture 24)

In pictures bellow, there are the list of all the available networks, subnets, and ports in the
deployment.

PICTURE 25 LIST OF AVAILABLE NETWORKS

36

PICTURE 29 NETWORKS AS SHOWN FROM OPENSTACK HORIZON

5.2 CREATING NETWORK

Name: DEMO

Description: DEMO for the presentation

Domain: my-org.com

PICTURE 26 LIST OF AVAILABLE ROUTERS

PICTURE 27 LIST OF AVAILABLE SUBNETS

PICTURE 28 LIST OF AVAILABLE PORTS

PICTURE 30 DEMO NETWORK CREATED SUCCESSFULLY.

37

At this time this newly created network has no subnets associated to. At the next step, a
new subnet will be created and attached to this network.

5.3 CREATE SUBNET

Name: DEMO_sub

CIDR: 172.16.0.0/24

Starting: 172.16.0.2 // Ending: 172.16.0.254

PICTURE 32 THE CREATED NETWORK FROM OPENSTACK HORIZON

5.4 CREATE NEW ROUTER – EXTERNAL NETWORK

PICTURE 31 CREATE SUBNET AND ASSOSIATE TO NETWORK

38

Router is created on the external network (192.168.30.0/24). The giver name is :”DEMO
Router”.

PICTURE 34 ROUTERS FROM HORIZON

5.5 CREATING INSTANCE IN OPENSTACK (FROM HORIZON)

To check the internal communication of the new built network components, we set up a
Virtual Machine using OpenStack NOVA compute and the default “cirros” Unix image. In
the VM we will give one vNIC attached in the DEMO network. The IP will be allocated
automatically through DHCP.

PICTURE 33 SUCCESSFUL ROUTER CREATION

39

PICTURE 35 CREATING INSTANCE FROM HORIZON

PICTURE 36 INSTANCE (VM) CREATED SUCCESSFULLY)

From controller Node, we add a static route for network 172.16.0.0/24 pointing as next
hop IP address the 10.20.20.19 (router DEMO interface) and as exit interface the external
bridge we have created (br-ex : 10.20.20.1). As per bellow screen shot traffic flows from
Controller Node to the newly installed VM.

PICTURE 37 FROM CONTROL NODE TO VM IN OPENSTACK WITHIN THE

172.16.0.0/24 NETWORK

40

5.6 NETWORK DIAGRAM FROM OPENSTACK HORIZON

PICTURE 38 NETWORK DIAGRAM OF THE NEW BUILT COMPONENTS

From the diagram above, we can see DEMO_ROUTER that was created using the scripts,
having two different interfaces. One in the external network subnet, so the traffic can be
routed outside the tenant network too, and one with the network 172.16.0.0/24 (DEMO)
that we have also created using the scripts.

The Virtual Machine DEMO has an interface in the DEMO network and subnet, also
created using the Python Scripts.

41

PICTURE 39 NETWORK TOPOLOGY, VISUALIZED THROUGH OPENSTACK HORIZON

5.7 CHECKING NETWORK WITH IPERF

To check the newly created network, two more new VMs are created in the OpenStack, adding a
vNIC to each one pointing the 172.16.0.0/24 network. Iperf3 is used in all testes.

To install iperf3 in the new instances, ubuntu 18.4 OS is installed in both. For the installation
Canonical, ready-to-deploy images are used.

PICTURE 40 NEW NETWORK TOPOLOGY (2 VM ADDED)

42

All results are displayed in graphs, containing statistics fot throughput as well as Latency in 3 main
points.

• Communication between Virtual Machine and Control Node of Openstack
• Communication between 2 VM hosted in the stack.
• Communication between 2 VMs in Network already existed in Virtualization

For all measurements, statistics will be taken for 128, 256, 512, 1024 KB packets. The basic
structure of the commands that will be used in iperf3 is:

Server Side:

#iperf3 -p 5203 -s -A 0

-p: Determines the port that iperf will be listening to

-s: Indicates that this box runs as Iperf3 server

-A: Set the CPU affinity

Client Side:

iperf3 -f m -c [iperf3 server address] -p 5203 -t 31 -i 31 -O 1 -M [value] -l [value] -P 8 -T 0
-A 0

-f: Shows the measurement rate (m stands for Mbit)

-c: Indicates that this is a iperf3 client

-p: Communication port used

-t: Time in seconds for transmit

-i: Interval between reports (eg show results every 1 second)

-O: Omit seconds to avoid TCP slow start

-M: Sets the TCP Maximum segments size

-l: Change buffer size for read and write

-P: Number of simultaneous connection to the server

-T: Time to Live

-A: Set the CPU affinity

-u: Utilize UDP instead of TCP

43

5.7.1 LATENCY

FIGURE 3 LATENCY GRAPH MEASURING CONNECTION LATENCY BETWEEN CONTROL

NODE (10.20.20.1) AND UBUNTU1 INSTANCE (172.16.0.220). THE PROTOCOL USED

FOR THIS IS UDP. AS IT SEEMS, THERE IS NOW SIGNIFICANT AND VISUAL

DIFFERENCE BETWEEN MEASUREMENTS OF DIFFERENT SIZES.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Latency - Ubuntu2 to Control Node

Latency (ms) -128 Latency (ms) -256

Latency (ms) -512 Latency (ms) -1024

44

FIGURE 4 LATENCY GRAPH BETWEEN UBUNTU 1 AND UBUNTU 2 VPM. UDP IS ALSO

USED. AT 1024 KB THERE IS A SLIGHT DIFFERENCE THAT IS VISIBLE THROUGH THE

CHART TOO

In Figure 3, is displayed the latency between instance “Ubuntu 2” with IP address 172.16.0.220
and the bridge interface that lays on the controller (10.20.20.1). The choice of Ubuntu 2 instance
is not relevant, as all created instances in the stack, return the same network results and statistics.

Using UDP, the results displayed in the chart are divided in four different sizes starting with 128
KB, 256 KB, 512 KB and finally 1024 KB. The testing period is 31 sec, with the polling interval to
be 1 second.

Comparing results, there is no significant difference between the sizes. The average latency
remains around 0.05 ms. The peaks that are displayed are random and it seems that there is no
connection to the size of the data transmitted.

In Figure 4, is displayed the latency between two instances created in the stack, both having
network interfaces that lay in 172.16.0.0/24 network. More specific instance Ubuntu1
(172.16.0.183) communicates with instance Ubuntu2 (172.16.0.220). In this communication none
of controller’s interface are used.

Again, data of different sizes (128 KB, 256 KB, 512 KB, 1024 KB) are used. Testing period is 31
seconds and polling interval remains at 1 second. Comparing the results, there is no significant
variation between the latency, with average value to be around 0.150ms . We can see some
random peaks, but it seems there is no visible connection with packet sizes.

Comparing Figure 3 and Figure 4 together we can figure that there is a significant difference. In
the communication between the two virtual machines inside the stack there is bigger latency. This
is probably caused due to miss – optimization of the flat networks inside the created vlan.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

m
s

Seconds (s)

Latency Ubuntu 1 to Ubuntu 2

Latency (ms) -128 Latency (ms) -256

Latency (ms) -512 Latency (ms) -1024

45

FIGURE 5 LATENCY IN MS IN CONNECTION BETWEEN CONTROLLER AND COMPUTE

NODE, THROUGH EXTERNAL NETWORK 192.168.30.0/24 THAT WAS ALREADY

HOSTED IN THE VIRTUALIZATION

Comparing the results of latency in ms, for the connection between Control Node and Compute
Node, utilizing network interfaces attached to network 192.168.30.0/24, that was already hosted
in virtualization environment, we can see that there is no significant difference between the
results we already collected measuring connections inside the OpenStack environment. The
values seem to be stable. We can see a peak around 25 and 27 sec but this could be considered as
random.

5.7.2 THROUGHPUT

Throughput will be measured in the connection between the Control Node with IP 192.168.30.47
(in the External network) and 172.16.0.220 vNIC, attached to VM ubuntu2. Also throughput is
measured in the connection between the two Virtual Machines hosted in OpenStack (Ubuntu1 and
Ubuntu2). The measurements will contain packets of 128, 256, 512, 1024 KB.

For testing purposes, a figure measuring Throughput between 2 virtual machines in an existing
network inside virtualization will also be displayed.

The mathematical formula used is:

 (sender(upload)+receiver(download))/2

 Result * Conversion Multiplier

0.000

0.500

1.000

1.500

2.000

2.500

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

m
s

Time (sec)

Latency Controler - Compute (External)

Latency -128 Latency-256 Latency-512 Latency-1024

46

PICTURE 41 CONVERSIONAL MULTIPLIER

FIGURE 6 THROUGHPUT FROM CONTROLLER TO UBUNTU2 VM CREATED AND

HOSTED IN THE STACK. MEASUREMENTS FOR 128, 256, 512, 1024 KB

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
bi

t/
se

c

Time (seconds)

Throughput Controler - Ubuntu2

Throughput 128 Throughput 256

47

FIGURE 7 THROUGHPUT FROM UBUNTU1 TO UBUNTU2 VM CREATED

AND HOSTED IN THE STACK. MEASUREMENTS FOR 128, 256, 512, 1024

KB

In figure 5, throughput of the connection Controller-Ubuntu2 is displayed. We measure the
throughput in Mbps for 31 seconds time period. Different colored line indicates different packet
size starting from 128 KB until 1024. For 256 KB and 512 KB the values are stable and almost
equal during the testing period. On the other hand, we can see that, when the packet size is 1024
KB there is a great increase in throughput. Finally for 128 KB we have the lowest values in
throughput, indicated with the blue line. For all the measurements the values do not show any
significant peak.

In figure 6, throughput of the connection Ubuntu1-Ubuntu2 is displayed. We measure the
throughput in Mbps for 31 seconds time period. Different colored line indicates different packet
size starting from 128 KB until 1024. For 128KB and 256KB packets, we see less throughput than
the Controller-Ubuntu1 connection displayed in figure 5. For 512 KB packet size, there is a
significant increase as well as in 1024 that we have the maximum values, slightly increased in
contrast with the Controller – Ubuntu1 connection. During the testing period, measurements for
all packet sizes are stable without peaks.

0.00

50.00

100.00

150.00

200.00

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

M
bi

t/
se

c

Time(seconds)

Throughput Ubuntu1 - Ubuntu2

Throughput 128 Throughput 256

Throughput 512 Throughput 1024

48

FIGURE 8 THROUGHPUT IN CONNECTION BETWEEN CONTROLLER AND COMPUTE

NODE, THROUGH EXTERNAL NETWORK 192.168.30.0/24 THAT WAS ALREADY

HOSTED IN THE VIRTUALIZATION

Comparing the throughput results between 2 nodes hosted in an already existed network inside
virtualization, we can see great difference in bandwidth values with our measurements in
networks hosted in OpenStack. This could be a result of poor optimization of network properties
inside the stack and is a great opportunity for further studies.

CHAPTER 6
CONCLUSION – DISCUSSION

6.1 DISCUSSION

6.1.1 PYTHON FOR AUTOMATIONS

Trying to answer the main questions that concern this research, scripting and implementing
automations based on those scripts are a good practice in Cloud, both Private and Public. Large

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233

M
bi

ts
/s

ec

Time (sec)

Controler - Compute (external)

Throughput - 128 Throughput - 256

Throughput-512 Throughput-1024

49

Cloud Providers like Amazon or Microsoft suggest the use of scripts and Command line
environments to better, faster, and more efficient manage the cloud resources.

This conclusion also applies in Private Cloud implementations like OpenStack. From the results of
this research, we can see that Python, as a universal programming and scripting language is maybe
the best choice at that time, as it has an easy syntax, that helps others to better understand, adjust
and re implement the scripts regardless of the initial environment.

The popularity that Python has gained, combined with the large and active community behind the
project gives almost endless possibilities, including ready to go libraries event scripts and
community support in every step of the implementation. Python ability to interact with JSON
format files also make it a good choice.

As (MIHĂILĂ, BĂLAN, CURPEN, & SANDU, 2017) wrote in “Network Automation and
Abstraction using Python Programming Methods”, Python is the best choice for new and
experienced programmers to implement Network Automations and Abstractions, as it reduce
time for equipment configuration and offer easier and more efficient maintenance. In the same
article there is a great reference in the potential security benefits that automation implementation
through scripting can offer.

In an older article from (Kumar, Rakesh, Charu, Jain, & Kumar Jangir, 2014) , we can find the same
conclusions about Python Scripts, specialized in OpenStack management, giving a great example
on how easier and more efficient is to deploy complex Openstack architecture, using automations
and scripts.

6.1.2 OPENSTACK API INTERACTION

Openstack has many ways to interact with, including a web GUI, CLI and of course gives RESTFUL
API compatibility for programmatic access and management. In this research we utilize API calls
to run Python Scripts and manage the deployed environment. This is an efficient and fast way to
massively deploy, manage and do maintenance work, from any host inside the virtualization.
OpenStack mainly interacts with JSON configuration files. Python, using JSON libraries is a good
choice to achieve API calls and communication with the stack. As API calls is the most common
way in interacting with OpenStack so far, there is community support and technical knowledge
sharing that facilitate the process.

6.1.3 COMPARISON OF NETWORKS CREATED IN OPENSTACK WITH THE
PREEXISTING IN THE VIRTUALIZATION.

Comparing the measurements for network performance inside and outside the OpenStack
deployment we can see that the preexisting networks inside the Virtualization environment,
which was the base of our project, seem to have better throughput, returning results with statical
significant different from the networks that were created inside the OpenStack.

Even if Latency in both tests was at the same level and there was zero packet loss, we can ignore
the different values in Bandwidth and in throughput, as displayed in the given Figures. Many

50

variables may have led to that results, including potential lack in optimization in the deployed
networks and network devices suck us routers, virtual switches, and virtual machines. Despite the
difference in values, the deployed networks inside the OpenStack environment continues to be
considered as functional and stable and that is what gives the opportunity for further research
regarding the configuration and the optimization of these networks.

As mentioned by (Saghir, 2019), latency and bandwidth issues inside OpenStack, are well known
issues, both in Layer 2 and Layer 3 perspective, especially if classic Neutron Networking
component and routing methods are used. In contrary, researcher purpose the use of Neutron
DVR and OpenDayLight as a better alternative in OpenStack deployments.

6.2 REFLECTIONS

In this research we manage to demonstrate with success that using automations in a new or a pre-
existing virtualized environment, built with open stack is an easy and pretty efficient way to
interact, manage and support your deployments. While the architecture of the deployment grows
and becomes more and more complex, having everything under control can be very difficult and
time consuming if there are no automations set up.

Python with the proper libraries installed proved to be one of the best solutions that can help
automate your environment. As OpenStack uses JSON config files as core configuration option,
Python 3 that is used in this research, gives the wanted results in a fast, managed and at the same
time very understandable way. Even if Python, is not widely used with openstack, developers and
architectures prefers the interaction using the OpenStack CLI, it gives endless possibilities
because gives the possibility to interconnect the stack with other applications and event to
develop full management applications based on the need of each customer individually.

This research also demonstrates and proves that the use of RESTFUL APIs end points of OpenStack
remains the most suitable way to communicate with the stack. Confirming our initial hypothesis,
the web interface (Horizon) is easier but has some disadvantages especially if we are deploying
complex compute and network architecture. API calls gives developers and architectures the
ability to remotely access and support stack operations without the need to access the web
interface. This is really important as gives the power to other devices, networks or individuals to
communicate with the stack.

As for the networks created in Openstack, it is proved that they depend on the underlying
hardware as well as the configurations inside the stack. Neutron Network component of
Openstack, demands years of practical experience and good and thorough planning in order to
create and manage your networks efficiently. In this research we follow a basic configuration,
keeping a lot of settings and parameters in their default values, this is probably the reason that we
were not able to fully and completely achieve to demonstrate all the abilities of OpenStack
Networking. A great example for that is that we were not able to fully test the created network (in
this case 172.16.0.0/24) as an external network inside the virtualization.

51

6.2.1 LIMITATIONS

• The resources of the virtualization. To better test Openstack, we may need resources
(compute power, network, memory) that was difficult to get from the preexisting cyber
range environment

• Known version mismatches between the OpenStack image that is used and the
Virtualization environment that we host our stack, definitely hardened our work

• Limitations in the configurations of the image used to deploy OpenStack may lead to
limited results, especially when deploying networks and network components.

6.3 FUTURE WORKS

Starting from the topics discussed and deployed in this research, there are many possibilities for
further research.

• Development of a full management application written in Python or Java that utilizes the
API endpoints of OpenStack, giving a full experience in the user. This maybe be tested in
comparisons with the classical web GUI management purposed by OpenStack.

• Research and better optimization of created networks to achieve better performance
• Deployment of the OpenStack in Public Cloud Infrastructure, trying to interconnect with

virtual networking components like an AWS VPC or a VNET in Azure
• Test scripts in a massive, Production – like deployment to check how efficient the scripts

are in larger and more complex needs.

BIBLIOGRAPHY

Costa, G., Russo, E., & Armando, A. (2015). Automating the Generation of Cyber Range Virtual.
DIBRIS.

ENISA. (2017). Priorities for EU research - Analysis of the ECSO Strategic Research. Brussels: ENISA.

European Cyber Security Organization (ECS). (2020, Μάρτιος). Understanding Cyber Ranges: From
Hype to Reality. σ. 31.

52

Gabriele Costa, E. R. (2019). Automating the Generation of Cyber Range Virtual. Universit`a degli Studi di
Genova.

Hochstein, L. (2013). IBM. Ανάκτηση από Python APIs: The best-kept secret of OpenStack:
https://developer.ibm.com/depmodels/cloud/articles/cl-openstack-pythonapis/

Jaison Paul Mulerikkal, P. Y. (2020). A Comparative Study of OpenStack and CloudStack.

Karjalainen, M., & Siponen, M. (2011, August). Toward a New Meta-Theory for Designing Information
Systems (IS) Security Training Approaches. Journal for Associations for Information Systems.

Kaspersky LAB. (2019). Kaspersky. Ανάκτηση από What is Cyber Security?:
https://www.kaspersky.com/resource-center/definitions/what-is-cyber-security

Kumar, R., Rakesh, N., Charu, S., Jain, K., & Kumar Jangir, S. (2014). Open Source Solution for Cloud.
International Journal of Computer Science and Mobile Computing.

Lima, S., Rocha, A., & Licinio, R. (2019, May). An overview of OpenStack architecture: a message
queuing services node. Cluster Computing : The Journal of Networks, Software Tools and
Applications.

Litvinski, O., & Abdelouahed, G. (2013). Openstack scheduler evaluation using design of experiment
approach. 16th IEEE International Symposium on Object/component/service-oriented Real-time
distributed Computing (ISORC 2013). IEEE.

McAfee. (2013). THE ECONOMIC IMPACT OF CYBERCRIME AND CYBER ESPIONAGE. McAfee -
Center for Strategic and Studies.

MIHĂILĂ, P., BĂLAN, T., CURPEN, R., & SANDU, F. (2017). Network Automation and Abstraction
using Python.

MIT Lincoln Laboratory Lexington United States. (2016). Advanced Tools for Cyber Ranges.
DEFENSE TECHNICAL INFORMATION CENTER.

NIST - Cyber Range Project Team. (2020). The Cyber Range: A Guide. σ. 17.

OpenStack. (2018). OpenStack. Ανάκτηση από OpenStack API Documentation:
https://docs.openstack.org/api-quick-start/index.html

OpenStack Docs. (2019). OpenStack: OpenStack Networking. Ανάκτηση από docs.openstack.org:
https://docs.openstack.org/ocata/networking-guide/intro-os-networking.html

Peter Mell, T. G. (2013). The NIST Definition of Cloud.

Rosenstein, M., & Corvese, F. (2018). Secure Architecture for the Range-Level Command and Control
System.

Saghir, A. (2019). Performance Evaluation of OpenStack Networking Technologies.

SEFRAOUI, O., AISSAOUI, M., & ELEULDJ, M. (2012). OpenStack: Toward an Open-Source Solution
for Cloud Computing. International Journal of Computer Applications.

Tantardini, M., Leva, F., Tajoli, L., & Piccardi, C. (2015). Comparing methods for comparing Networks.
Scientific Reports.

Van, V., Le Minh Chi, Nguyen Quoc Long, & Dac-Nhuong L. (2015). A Performance Analysis of
OpenStack Open-source.

53

Wang, L., & Zhang, D. (2017). Research on OpenStack of open source cloud computing in colleges and
universities' computer room. 3rd International Conference on Advances in Energy, Environment
and Chemical Engineering. IOP Publishing.

Zhihong, T., Yu, C., Shen, S., Xiaoxia, Y., Lihua, Y., & Xiang, C. (2018). A Real-Time Correlation of Host-
Level Events in Cyber Range Service for Smart Campus. IEEE.

	Master Thesis
	Systems and Network Security
	Chapter 1
	Introduction
	1.1 Scope
	1.2 Main Target
	1.3 Layout

	Chapter 2
	Literature Review
	2.1 Key concepts and definitions
	2.1.1 Cyber Security
	2.1.2 Cyber security training
	2.1.3 Cloud computing
	2.1.4 Cyber Ranges
	2.1.5 Automations in Cyber Ranges
	2.1.6 Openstack
	2.1.7 OpenStack architecture and components

	2.2 OpenStack Networking
	2.3 Open Virtual Switch
	2.4 Previous RESEARCH
	2.4.1 Openstack – Virtualization
	2.4.2 Automation and Python
	2.4.3 Means of Compare and research

	2.5 Conclusion

	Chapter 3
	Methodology
	3.1 Type of Research
	3.2 Development lifecycle
	3.2.1 Proposed Lifecycle 1 - Waterfall Model
	3.2.2 Proposed Lifecycle 2 - Spiral Model
	3.2.3 Chosen model

	3.3 Research main questions

	Chapter 4
	Deployment
	4.1 Virtualization Deployment
	4.2 Controller Node
	4.3 Compute Node
	4.4 Scripts and Code
	4.4.1 Connection – Getting the authentication token
	4.4.2 Network Creation
	4.4.3 List networks
	4.4.4 Subnet List
	4.4.5 Subnet Create
	4.4.6 Router list
	4.4.7 Router Create
	4.4.8 Port List
	4.4.9 Port Create
	4.4.10 Script structure

	Chapter 5
	Testing
	5.1 Getting the Authentication Token.
	5.2 Creating Network
	5.3 Create Subnet
	5.4 Create new Router – External network
	5.5 Creating Instance in OpenStack (from Horizon)
	5.6 Network diagram from OpenStack Horizon
	5.7 Checking network with Iperf
	5.7.1 Latency
	5.7.2 Throughput

	Chapter 6
	Conclusion – Discussion
	6.1 Discussion
	6.1.1 Python for automations
	6.1.2 Openstack API interaction
	6.1.3 Comparison of Networks created in OpenStack with the preexisting in the virtualization.
	6.2 Reflections
	6.2.1 Limitations
	6.3 Future Works

	Bibliography

