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Abstract 

In the past two decades computer chess has overcome human capabilities and efficiency 

in all aspects of the game. This impressive achievement has been possible, especially 

during the last decade, due to state-of-the-art Deep Learning methodologies that have 

been developed. However, since such methods perform like black-boxes, prohibiting any 

notion of interpretability by human users in the first place, it would be meaningful to 

explore the possibility of designing an explainable and cognitively efficient chess bot. In 

this thesis we present an efficient explainable interaction protocol accompanied by a 

corresponding user interface for computer chess. Moreover, we also present useful 

feedback from chess experts – professional players as well as chess coaches. 
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Chapter 1 

Introduction 

In this chapter, we will present the problem discussed in this thesis, the methodology we 

adopted as well as the motivation behind our choices. The structure of this chapter is as 

follows: (i) in section 1.1 we make a short introduction to the field of automated chess 

and briefly describe the problem this thesis addresses; (ii) in section 1.2 we delve into 

more details about the problem itself as well as the motivation behind the selected 

methodology and; (iii) in section 1.3 we provide a brief outline of the rest of this thesis. 

1.1 Setting the problem 

During the past decades, Artificial Intelligence (AI) agents have been utilised in several 

domains, from automated music suggestion – e.g. in several video/music streaming 

platforms such as youtube, spotify and so on – to self-driving vehicles and smart devices 

which provide everyday micromanagement suggestions. Regardless of the extent of 

success of such agents in each domain of application, the level of penetration into most 

people’s everyday routines is astounding, given the short time interval in which AI has 

become more popular. 

Even if AI applications are so widespread in everyday tasks, there were not so many 

cases in AI’s relatively short history that have captured the public’s attention to such an 

extent as G. Kasparov’s game series against IBM’s Deep and Deep(er) Blue in 1996 and 

1997 respectively. Chess had long been considered “the touchstone of intellect”, as per 

the words of Goethe, which led many to believe that designing a machine capable of 

winning chess against humans would have many philosophical implications for human 

thought as well as the game itself (Hsu, et al., 1990: 44). Given this highly intellectual – 

and, hence, attributed only to humans – nature of the game, even Deep Blue’s 2-4 defeat 

by G. Kasparov in 1996 was an alarming result for human primacy in chess: Deep Blue 

had managed to take a win (in game 1) and two draws (in games 3 and 4) against a 

running world champion and by many considered one of the best chess players in 
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history. Given its performance, the first win of a chess playing engine against a human 

seemed closer than ever before. Indeed, in 1997 Deep(er) Blue managed to score a 3½ – 

2½ victory against G. Kasparov by winning games 1 and 6 and drawing games 3, 4 and 5, 

completing a remarkable milestone in AI’s history1 (Campbell, et al., 2002: 57-59). 

Given the highly symbolic value of chess, as described by Goethe, Kasparov’s 1997 

defeat against IBM’s Deep(er) Blue is also important for reasons beyond the game itself. 

Attempts to design Chess machines and engines have been recorded since the middle of 

the 18th century (Standage, 2002: 18-23) and they reflected, more or less each period’s 

state of the art technologies. As a result, Deep(er) Blue’s victory signaled the beginning 

of a new era for artificial intelligence; one in which AI applications would be capable of 

supporting and, in many cases, substituting humans, carrying out typically human tasks, 

oftentimes in a more efficient way. 

Indicative of this new era and the re-established relationship between humanity and its 

own technological devices are contemporary machine learning approaches and their 

applications in various domains, a technological trend also reflected in chess playing 

engines. Nowadays, most of the state of the art approaches in computer chess rely on 

deep neural network methodologies – e.g. AlphaZero (Silver, et al., 2017: 1-3) – and/or 

alpha-beta pruning or similar methodologies, possibly accompanied by some dedicated 

hardware – e.g. the Stockfish chess engine (Romstad, Costalba, Kiiski, 2008). As recent 

experience has indicated, such methodologies are overwhelmingly efficient in terms of 

outperforming human players. For instance, AlphaZero was capable of scoring a 64-

36  victory (28 wins, 72 draws and 0 loses) against Stockfish 7 in 2017 (Silver, et al., 

2017: 4-5), while Stockfish – being denied access to its opening books and end-game 

tables – had recently defeated H. Nakamura2 by a 3-1 score in 2014 (2 wins, 2 draws, 0 

loses) even if Nakamura was supported by Rybka (another chess engine) in the first two 

                                                        
1 The remarkability of this accomplishment is highlighted by the fact that even today, 23 years 

after his defeat, G. Kasparov claims that there was cheating from Deep(er) Blue’s side in the 

second and sixth games of the re-matching series of 1997 – namely, that there was some human 

intervention in certain parts of both games. Whether this claim is true or not, is of little 

significance since in the years that followed Kasparov’s defeat chess machines have displayed 

remarkably superhuman playing level. 

2 The match was played in 2014 when Nakamura had an Elo ranking o 2798, being #5 in FIDE 

world ranking. 
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games and was given a pawn advantage instead of Rybka’s support in the rest two 

(Klein, 2014). 

In spite of the aforementioned approaches’ efficiency, AI applications that rely on Deep 

Learning methodologies also have some drawbacks. Of these, probably the most 

alarming – and the ones of which we are mostly concerned – are non-interpretability 

and vastness of cognitive load (for both human as well as machine players). Before we 

proceed to discussing the above, we shall mention that for the rest of this thesis, we will 

use the definitions of explainability and interpretability presented in (Arrieta, et al., 

2020: 85-89). Namely, we will say that a model is: 

 explainable when it is capable of yielding reasons and/or details that clarify its 

functionality to human users (Arrieta et al., 2020: 85); 

 interpretable when by its design it allows for a human to understand its 

functionality (Arrieta, et al., 2020: 85). 

Note that interpretability is, by its very definition, a static property of a model, totally 

defined by its design – in the words of Arrieta et al., it is a model’s “passive 

characteristic” (Arrieta, et al., 2020: 84). On the contrary, explainability allows for 

models that are not necessarily interpretable in terms of their design to be considered 

explainable in the sense that explanations about their higher level functionality may be 

produced and presented utilizing post-hoc explanation methodologies. 

Also, we will say that a model is post-hoc explainable/interpretable or 

understandable when it is capable of allowing for a human to understand its 

functionality without revealing the way in which data and information are internally 

processed (Montanov, Samek, Müller, 2018: 2) – i.e. the model is understandable in 

terms of higher level functionality and not necessarily at a lower level. Lastly, we define, 

as in (Arrieta et al., 2020: 85), model transparency as the capability of a model to be 

understandable by itself, that is, without utilizing any external tools while we also adopt 

the following three levels of transparency (Lipton, 2018: 42-45, Arrieta, et al., 2020: 88-

92): 

 simulatability, which refers to the capability of a model’s function to be 

efficiently simulated by a human – i.e. in case a human is provided with access to 
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all input data as well as to all the model’s parameters, then they should be able to 

arrive to the same conclusion as the model in reasonable time (Lipton, 2018: 42); 

 decomposability, which refers to the capability of separately explaining and 

understanding each part of a model – namely, input data, model parameters as 

well as the model’s calculation itself (Lipton, 2018: 44). 

 algorithmic transparency, which refers to the attribute of the learning 

algorithm itself being explainable, in the sense that a human can prove that a 

unique solution will be produced even if unforeseen data are provided to it 

(Lipton, 2018: 44-45). 

In the above setting, it is clear that levels of transparency are presented in a descending 

order with respect to how transparent the corresponding models are. That is, a 

simulatable model is also decomposable and algorithmically transparent – since a 

human user can fully simulate its function efficiently – and a decomposable model is 

algorithmically transparent as well – since each of its components, including its learning 

algorithm, is comprehensible by a human. Also note that the reverse inclusions, in 

general do not hold – i.e. there exist models which fall into one of the above categories 

but not to any above them3. 

Bearing in mind the above, Deep Learning paradigms, being by their very definition 

black-box Machine Learning methods, fail to be characterised as interpretable in a 

similar manner that they fail to be characterised as transparent – given that they are not 

even algorithmically transparent, since a Deep Neural Networks’ learning algorithm is 

not ensured to be equivalently functional on different settings (Lipton, 2018: 45). 

Nevertheless, there are several techniques such as ones deploying feature relevance 

or the construction of local explanations (Arrieta, et al. 2020:87-88) that do provide 

explanations on the decisions of a Deep Neural Network in a post-hoc manner – for a 

more complete review and taxonomy of post-hoc explainability techniques utilised in 

Deep Learning see (Arrieta, et al., 2020: 95-99) and, especially, Figure 11, p. 99 therein. 

The above lack of transparency that characterises Deep Learning approaches also allows 

for another drawback to emerge: not only is high cognitive load required by humans 

trying to interpret a deep neural network’s behaviour but also the machine itself  needs 

                                                        
3 For more details, consult (Arrieta, et al., 2020: 88-92). 
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to put effort in terms of computation time and information that needs to be processed. 

Indeed, as far as the human side is concerned, yielding initially unexplainable output, 

Deep Neural Networks often demand from users a significant amount of effort in order 

for the latter (i.e. humans) to comprehend their output. This high demand in cognitive 

resources undermines the extent to which users trust their results as well as makes 

maintenance and systematic study of such systems more complicated. 

The above weak points of current Deep Learning approaches in general and in particular 

in computer chess have led us to the following interesting questions: 

Q1. Is it possible to design chess engines whose behaviour – i.e. the moves they 

suggest and/or play – is interpretable by humans in a non-post-hoc manner? 

That is, is it possible to design and implement a chess engine which will be 

comprehensible by a human user without using any other external tool and/or 

methodology? 

Q2. As an extension of the previous question, how could we transfer experts’ domain 

knowledge to machines so as to make them, on the one hand, at least acceptably 

efficient chess players as well as, on the other hand, make the learning process 

more efficient? In a sense, this is equivalent to asking how one could transfer 

human intuition and heuristics about chess playing to a machine directly and not 

by letting it passively observe other games – be it games that have been played by 

other entities or by the machine against itself. 

Q3. In case the above are theoretically tractable, which are the domain specific 

characteristics of chess that should be taken into account as far as the 

construction of such a system is concerned? In other words, which attributes of 

chess will be of significant importance in such an approach and how will they 

affect the system’s design and implementation? Furthermore, which are the 

views of domain experts about the plausibility and feasibility of such an 

approach? 

Our aim is to seek and provide answers to all three questions by finding appropriate 

learning semantics that would allow for transparent interaction between humans and 

machines as well as design a chess related user interface that can accommodate such 

functionality. Moreover, we also aim to present the above to the chess community – i.e. 

professional chess players as well as chess coaches – in order to assess our work and 

rationale behind it. 
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1.2 Motivation behind our work 

As we have already demonstrated, Deep Neural Networks as well as other non-

transparent approaches are characterised by two major disadvantages: (i) they are not 

interpretable by humans and; (ii) they demand a vast amount of cognitive resources 

from humans to comprehend them while they also are computationally expensive to 

build both in terms of time as well as in terms of required training data. 

In the context of chess, the above weaknesses result to the game being, at some extent, 

“re-invented” by machines with their playing style often alienating even professional 

chess players and coaches4. One may account for two major factors about the 

aforementioned alienation when it comes to computer chess. At first, machines do not 

perform, as explained above, in a way transparent to and interpretable by human 

players, which naturally demands by humans increased cognitive effort when it comes 

to understanding and studying moves played or suggested by several state of the art 

chess engines.  

Secondly, chess machines do not explicitly utilise human knowledge available when it 

comes to chess playing. On the contrary, they draw all their “knowledge” about the game 

and its tactics by studying games either played by other (human) chess players or by 

themselves. Even in tree search based approaches, human knowledge is hard-coded in 

the machine’s software and/or hardware, being, thus, inaccessible by the end-user. As a 

result, a chess machine plays chess not according to some high level strategic rules 

accompanied by a tactical understanding of the game but solely based on a tactical 

comprehension of each position, relying on its massive superiority against human 

players to overcome any strategic incapability of its own. 

1.2.1 Some examples where traditional approaches fail 

We will further elaborate on the above ideas – which constitute our basic motivation to 

study chess and address questions Q1, Q2 and Q3 – by providing some examples. 

Consider the position shown5 in Figure 1. In terms of pieces, the situation seems slightly 

in favour of the white – three pawns and a bishop for a rook. However, the crucial point 

                                                        
4 These were indeed the words of some of the coaches we have come in contact with during the 

research for this thesis when discussing AlphaZero’s playing style. 

5 We would like to thank an anonymous reviewer who suggested this position as one in which 

most chess engines fail. 



 

7 
 

here is not material but whose turn it is to move. In case white moves first, then this 

position is a draw, since none of the two sides can substantially damage the other - both 

kings can protect their pawns from the opponent’s pieces. However, in case black moves 

first, there is an option 1. … Rh2 which seems promising since it threatens to take either 

the white bishop at g2 or the white pawn at f2 – since the white king does not have 

enough time to protect both of them in this case. 

 

We will analyse both options – i.e. white and black playing first – using Stockfish 10. At 

first, let us assume that it is white’s turn, so, any of 1. Ke1 and 1. Ke2 should be preferred 

in order to move the white king closer to the king’s side pawns and protect the bishop in 

g2. Stockfish agrees with our view on the situation and it suggests 1. Ke2 as the best 

move with a -0.00 evaluation – i.e. an absolute draw, as we analyzed above. 

We now set up the same position but this time it is back’s turn to play. Stockfish now 

suggests as black’s best move 1. … Rh2 with a -3.22 evaluation – i.e. it almost wins the 

game in favour of black, since ~3 is a typical winning evaluation for most chess engines. 

However, if we take a closer look to the board, we see that the following move sequence 

leads to a draw: 2. Ke2 Rxg2 3. Kf1 Rh2 4. Kg1. Indeed, from this position – see Figure 2 – 

Figure 1: A troublesome position for most chess engines (black to move). 
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black has no immediately useful move and after the white plays 5. f3 the game is 

ensured to be a draw6. 

 

 

 

This is not the only position known to cause trouble to chess engines. Another famous 

one is shown7 in Figure 3. There, black have superior material – two rooks for a bishop – 

and, were it their turn to play there is no doubt that they win – e.g. 1. … bxc3+ opens the 

b file for black rooks while it breaks white’s chain of pawns. 

However, in case it is white’s turn, there is a striking path to draw. Indeed, starting with 

1. Ba4+!! the black are forced to accept the white’s bishop sacrifice, otherwise, 1. … Kc4 

                                                        
6 Observe that the black king has no way to move behind the white’s pawns since the paired 

white pawns at f3 and g3 form a wall. As far as the remaining black rook is concerned, it has two 

open files to take advantage of, e and h. Nevertheless, both are within the white king’s reach – 

the white needs exactly one tempo to move their king around g1, g2, f1 and f2 according to 

where the black rook is located. 

7 This position was suggested by International Master I. Kourkounakis, whom we sincerely 

thank. 

Figure 2: A draw position (black to move). After black’s move, 5. f3 constructs a fortress on 
white's king's side which is impossible to penetrate for black. 
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2. Bb3+ Kb5 3. Ba4+ and white threaten with draw by triple repetition. However, the 

following forced sequence of moves: 1. … Kxa4, 2. b3+ Kb5 3. c4+ Kc6 4. d5+ Kd7 5. e6+ 

leads to a clear draw, since, whatever may be black king’s fifth move, 6. f5 creates a 

fortress around the white king – see Figure 4. So, in case white plays there is a single 

move which leads to a totally closed position which allows white to escape with a draw, 

in spite of finally being down in material by two rooks! 

The key move for white in the above setting, 1. Ba4+!!, is relatively easily spotted by a 

somewhat experienced amateur. However, it is not such an easy task for most chess 

engines. Again, we provide Stockfish 10 with the initial position shown in Figure 3 and 

ask for the best move for the white. Surprisingly, it gives 1. c4+ (-9.92 at 26 moves 

depth) which naturally leads to 1. … Kxc4 and gradually to the destruction of white’s 

position, since now the black have the possibility to clear a file with their two rooks. 

 

Even more impressive is how Stockfish values white’s single chance to escape with a 

draw. When requested to analyse 1. Ba4+ Stockfish returns five different variants, with 

the best of them being evaluated at -12.69 at 32 moves depth. That is, it completely loses 

a quite obvious move sequence for most human players and, on top of that, considers it a 

very bad move. 

Figure 3:  White plays and draws! 
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The above positions, as well as some similar ones, indicate how several situations in 

chess which are relatively easy to tackle for most amateur players, pose impossible 

challenges to otherwise powerful chess engines. A reason that may account for this 

absurd behaviour may be the way in which most chess engines “learn” chess, when 

compared to humans. While a human player is capable of seeing both strategic as well as 

tactical aspects of every position on the chessboard, most contemporary chess machines 

have, as we have already discussed, access only to the game’s tactical aspects as well as 

any domain specific metrics are hard-coded into them. Nevertheless, given the vastness 

of training in terms of previous games “studied” by a chess engine, they appear to play 

according to typical human strategic patterns. Borrowing some terms from biology, a 

chess engine’s “phenotype” appears to be both strategically and tactically oriented – as 

that of a human chess player – while its “genotype” is purely tactical. 

1.2.2 Deeper in the weaknesses of contemporary chess engines 

While in most cases, especially against human players, the aforementioned form of lack 

of game understanding is overwhelmingly covered by such machines’ tactical 

superiority, positions as the above two, which allow for far less tactical manipulations, 

unveil some of their weaknesses. We consider it useful at this point to proceed to a 

further analysis of the positions presented in subsection 1.2.1 in order to extract some 

Figure 4: The white's fortress. 
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more abstract common features that could account for the failure of chess engines of 

Stockfish’s calibre8. 

As we have observed, both positions presented in 1.2.1 are more or less closed, pruning 

tactical capabilities for both sides and also restricting the effect of any additional 

material on the board to a minimum level – see especially Figure 3. Taking a closer look, 

we will also observe that both of them rely on the same ideas that white exploits in 

order to arrive to a drawing position. Indeed, at first, some material is sacrificed – in 

both our cases, a bishop – while the next moves aim at restricting black’s lines of attack 

and, consequently, building a more closed position.  

We could now take another step towards a more abstract view on the two positions 

presented above. The defending side’s sacrifice can be interpreted as sacrificing some 

tactical feature – in both cases material but not necessarily restricted to it – in order to 

gain enough time to bring the game to a position from which the opponent’s tactical 

advantages cannot be utilised. Indeed, in both cases the white behaves in a way opposite 

to that many chess machines would choose. Seeking a better position in terms of 

strategic attributes, game tactics are sacrificed for the sake of destroying the opponent’s 

tactical advantages as well. That is, instead of trying to improve their own position from 

a tactical point of view – e.g. by saving their bishop at g2 in Figure 1 which leads to 

taking the minimum possible tactical damage of losing one pawn (at f2) – the white play 

so as to minimize black’s tactical possibilities to a level that they will be no threat to 

their position.  

Additionally, strategic attributes are the ones which explicitly lead white’s playing – 

alongside with the goal of ruining black’s tactical game as we explained above – in the 

sense that in both positions the white does not strive to improve their tactical game but 

to take advantage of existing and create new strategic features that will lead to a “steady 

state” on the board from which no side has something to win. 

1.2.3 A possible solution to such cases 

Should a chess coach use the above positions as study cases in a class, they would 

possibly aim, among others, to demonstrate situations in which the concept of “fortress” 

                                                        
8 At this point we should mention that Leela Chess Zero, an open-source Deep Neural Network 

chess engine based on Deepmind’s AlphaZero approach yielded similar results to the ones 

reported by Stockfish 10, in terms of suggested moves, position evaluation and so on. 
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comes into play. Describing the notion of a fortress, one may say that, in short, it is a 

position from which the attacking side, which typically has some advantage – be it of 

tactical or strategic nature – cannot “capitalise” this superiority due to the position being 

too restricting – either by itself, as in Figure 4, or by allowing one side to constantly 

prohibit any further progress, as in Figure 2, or by other similar means. This is a 

definition that can be easily captured in terms of natural language and can also be 

relatively easily explained and discussed between people as well as be recognized on a 

board whenever it occurs. Nevertheless, would it be possible to take advantage of this 

piece of human knowledge by transferring it to a chess machine? Or, more broadly, 

could we coach a chess machine in a way more or less similar to the one a chess coach 

trains their students and provide to it such fragments of our knowledge directly and 

explicitly? 

Should the above be possible, we could take advantage of the already accumulated 

knowledge of humans about chess and avoid the excessive amount of computational 

power needed by Deep Learning or tree search algorithms in order to efficiently train a 

chess machine. Moreover, by allowing for human chess players to coach a chess 

machine, it comes as a natural consequence that the machine’s konwledge should be 

extensible in the sense that, any time needed, the coach, would be able to alter the it  

and, hence, its “view” of the game itself. 

1.3 Structure of the Thesis 

The rest of this thesis is structured in five chapters which address in various ways the 

three posed questions (Q1, Q2 and Q3) presented in 1.1. 

In chapter 2 we review previous approaches to computer chess as well as how they 

relate to human chess – i.e. the extent to which they have been successful at competing 

human players. We also present and discuss to more detail approaches several 

approaches that have had a significant impact in the history of automated chess playing 

as far as their design principles as well as their implementation are concerned. 

In chapter 3 we discuss possible answers to questions Q1 and Q2 as presented in section 

1.1. Namely, we present and explain through numerous examples a theoretical 

framework of human-machine interaction (Machine Coaching) which will serve as our 

foundation upon which the rest of our proposal will be based. Also, in this chapter we 
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introduce a (first order) language which is intended to be utilised as a means of 

interaction between humans and machines in the context of Machine Coaching. 

In chapter 4 we present our implementation of all the required functionality regarding 

Machine Coaching as well as that of a chess Graphical User Interface (GUI). Altogether, 

we have designed a chess bot which is capable of learning chess with the assistance of a 

human coach. Namely, the designed chess bot starts with no actual knowledge about the 

game of chess other than the game’s rules and, by receiving feedback from a human 

coach in the form of arguments in favour or against moves given a board position, it 

gradually refines its playing style, converging to its coach’s theory about the game of 

chess under certain conditions. 

In chapter 5 we present results regarding the designed system’s evaluation in two 

orthogonal directions. At first, we assess the efficiency of our reasoning engine – mostly 

in terms of execution time against several other system parameters i.e. the time in which 

it constructs a representation of its theory given knowledge (in the form of prioritized if-

then rules) and contextual information. Next, we present and discuss opinions of several 

professional chess players and coaches regarding the adopted methodology and to what 

extent it seems applicable as well as what features should it additionally include in their 

opinion. 

Lastly, in chapter 6 we summarize all the work done so far towards the construction of a 

chess bot capable of capturing a human coach’s high-level strategic guidelines as well as 

the useful feedback we received by chess experts. Moreover, we also present possible 

future directions towards which the current work could be extended, based, among 

others, on experts’ feedback presented in chapter 5. 

Part of the functionalities developed for the purposes of this thesis have been also utilised 

for other purposes, among which is the WeNet project. For more information, see the 

project’s official website: https://www.internetofus.eu/. 

 

  

https://www.internetofus.eu/
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Chapter 2 
Literature Review 

In this chapter we review works related to chess machines/engines and the approaches 

adopted in their design. More precisely, this chapter’s structure is as follows: (i) in 

section 2.1 we present a brief historical review of the most seminal attempts to 

construct human-level playing chess machines until Northwestern University’s Chess 4.x 

chess machines; (ii) in section 2.2 we present and discuss chess machines and chess 

engines after Chess 4.x including the seminal Deep and Deep(er) Blue as well as 

contemporary Deep Learning approaches. 

2.1 The first attempts to automate chess playing 

In this section, we will explore approaches to automate chess playing that date before 

the emergence of highly competitive chess machines such as Northwestern University’s 

Chess 4.x and the alike. As surprising it might be, humanity attempted to automate chess 

playing long before computers had emerged in the middle of the twentieth century, 

nevertheless with no significant success in beating human players in most cases. 

2.1.1 Mechanical approaches 

As we have already mentioned in chapter 1, probably the first attempt to construct a 

non-human entity that could play chess dates back to 1770, when Wolfgang von 

Kempelen constructed The Turk, a mechanical chess playing automaton (Standage, 

2002: 18-23). The Turk appeared to be a highly skilled player since it managed several 

victories against professional chess players of its time as well as Napoleon Bonaparte 

and Benjamin Franklin (Standage, 2002: 18-23). As one may easily suspect, The Turk 

was actually a fraud, however, this was unveiled no sooner than it was destroyed by a 

fire in the Chinese Museum of C. W. Peale (Levitt, 2000: 40-41) in 1854. The game was 

played by a human player who was hidden inside the machine, which was about the size 

of a  table – about 80cm tall, 60cm wide and 1.10m long (Standage, 2002: 22-23). 

Remarkably, the human player inside the Turk was not seen even if all its four rear 

doors were opened simultaneously, adding more to the mystery of its successes against 
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human players. Nowadays, The Turk has been reconstructed by J. Gaughan and is 

periodically exhibited to several plays and conferences, mostly related to magic (Levitt, 

2000: 243). 

After Kempele’s Turk, there were also some other attempts based on the same idea – i.e. 

a human playing inside a chess “automaton” on its behalf – such as Ajeeb or Memphisto 

(Shaeffer, 1997: 90, Gumpel, 1889: 46) with the latter being more innovative compared 

to the its predecessors since the human player was not hidden inside Memphisto but, 

instead, controlled it from distance using an electromagnetic controller (Harding, 2012: 

284). 

It was no sooner than 1912 and Leonard Torres y Quevedo’s El Ajedrecista (The Chess 

Player) that the first actual chess automaton was designed and presented in public. The 

Ajedrecista was not capable of playing an entire game of chess but a specific end-game, 

namely a king and rook versus king finale – the Ajedrecista played as white (king & 

rook) while the human player had control of the black king. It was always successful at 

mating the black king while it was also capable of recognizing any illegal moves of the 

black king and alert the opponent (Atkinson, 1998: 20-22). The Ajedrecista’s 

functionality was based on a chessboard on which pieces were plugged, forming a closed 

electrical circuit which represented each position on the board (Montfort, 2003: 76). 

Also, the machine was programed with a simple and complete – yet not optimal, in terms 

of moves played – algorithm for mating a game using a king and a rook against a sole 

king – this position is a quite easy endgame since the only thing the white has to be 

careful of is to avoid stalemate9. Quevedo’s El Ajedrecista is still functional until today 

and is kept at Madrid’s Universidad Politécnica. 

2.1.2 Non-mechanical approaches 

Apart from Quevedo’s El Ajedrecista there was no other significant mechanical chess 

automaton throughout human history, at least not one matching the Ajedrecista’s level. 

Also, it is no sooner than the 1940’s that another attempt to design a non-human chess 

playing entity took place, but this time in a different setting. Konrad Zuse, a German 

computer scientist, often referred to as the inventor of modern computers (Rojas, 1997: 

5), started developing at 1942 what is thought to be the first chess engine in human 

                                                        
9 A stalemate is a position in which a player has no legal move to play while it is their turn and is 

the basic draw position in chess. 
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history (Knuth, Pardo, 1976: 203). However, Zuse’s intention was not to design a chess 

engine for the sake of it. Instead, his chess engine was more supposed to serve as a 

complex example about a high level programming language that he had been designing 

then, Plankalkül. As a result, we do not have much evidence about its performance 

against other (human) players, however, it was known to fully support the game of 

chess – a remarkable achievement for that time, given that Plankalkül supported only 

one primitive data type (bits) (Bauer, Wössner, 1972: 679-681). 

In the years after Zuse’s chess machine, several other attempts to design and implement 

a chess engine were presented, however most of them failed to run on contemporary 

computers. We shall at first focus in a remarkable paper by Shannon (Shannon, 1950: 1-

18), in which he introduces several of the ideas that would later be part of the design 

most chess machines. In this direction, after discussing how calculating all possible 

positions and then deciding which is the best move – either by some ad-hoc measure or 

by consulting a “dictionary” (Shannon, 1950: 4) which assigns each position to the “best” 

move, according to some expert – is not a feasible strategy to address the problem, he 

introduces the notion of an evaluation function that, according to some predefined 

attributes, assigns a utility value to each position10. Furthermore, he also describes some 

algorithms according to which a chess playing machine could play against other players. 

Delving into more details, Shannon first describes a greedy minimax algorithm that 

allows a machine to choose the best move modulo a given depth of search 𝑛 (Shannon, 

1950: 5-12). The algorithm’s key idea is that, assuming that an evaluation function 

assigns positive values to positions that benefit the white and negative values to these 

that are of black’s benefit, the white side in each turn seeks to find that move which 

maximises the evaluation function given that the black side seeks to minimise it. So, 

given a depth of search 𝑛 and assuming that the machine plays as white, the machine 

seeks to find the move that the black would play after 𝑛 moves – i.e. the move that 

minimises the evaluation function at the final position. Then, given that move, it returns 

back to find which of the remaining white moves maximise the evaluation function given 

that black will play the move found previously. Progressing in a similar manner, it 

returns to the root of the possible positions’ tree – i.e. to the current position – and 

returns the move that maximises the evaluation function given all the next moves that it 

                                                        
10 The very same idea has also been roughly described by Wiener in (Wiener, 1948: 48-50). 
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has calculated. Evidently, as Shannon himself observes, this is not an efficient method 

for finding the next move to play for the machine, at least not for a sufficiently large 

depth 𝑛 since it requires for the entire game tree to be computed (Shannon, 1950: 7-8). 

Shannon concludes his work with considerations and projections about future 

directions chess engine design could explore. What he is at most concerned (Shannon, 

1950: 12-16) are ways in which the tree of all game positions could be pruned so as to 

lower the computational complexity of the above algorithm, while he also discusses 

ways in which excessive pruning could be avoided – so as to allow for seemingly short-

term bad moves to be explored in case they can lead to a long-term advantage – e.g. 

pawn sacrifices or moves that lose a tempo11 and so on. 

About a year after Shannon published the work discussed above, namely in 1951, A. 

Turing and D. Champernowne publish what was considered to be the first chess 

program that is capable of playing an entire game of chess. Turochamp, as was its name, 

was designed to play chess against other players by calculating the “best” move 

according to a position evaluation function – more or less as Shannon had already 

described in (Shannon, 1950: 5-12) – performing a two-move depth search (Copeland, 

2004: 563-564). However, in contrary to Shannon’s approach, position evaluation as 

well as move selection do not follow a recursive minimax approach. Instead, Turochamp 

assigns a certain value to each occurring position on the board and then proceeds in 

selecting the move which has the highest average score (Copeland, 2004: 563-564). For 

instance, should white’s 1. d4 lead to say 20 different possible responses by black with 

the resulting positions evaluating at 𝑓(𝑝1), 𝑓(𝑝2), … , 𝑓(𝑝20), then Turochamp would 

prefer 1. d4 on condition that the average evaluation of this move, i.e. 
𝑓(𝑝1)+𝑓(𝑝2)+⋯+𝑓(𝑝20)

20
 

is the highest among the corresponding average scores of other moves. As with 

Shannon’s approach on the game, the algorithm was extremely heavy for the time’s 

machines resulting to it never being run during Turing’s lifetime. However, Turing and 

Champernowne executed the algorithm at least once by hand, playing against 

Champernowne’s wife (Champernowne’s Obituary, 2000: 262) – for the record, this 

game was the first and only victory as well as match of Turochamp. 

                                                        
11 In chess, a tempo is a single move of one of the two players. In general, tempo in chess is a 

significant strategic factor since oftentimes it determines whether a position is winning or not 

for one side – we shall present and study such examples in next chapters of this thesis. 
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Following Turing and Champernoewne’s example, several other computer scientists 

decided to explore the possibility of building a chess playing machine, with more or less 

success. Namely, short after Turochamp, D. Prinz designed, in 1952, a computer 

program that could be run on contemporary machines and solve any mate-in-two 

problem (Bowden, 1957: 292-295) – i.e. in case in a position it was guaranteed to exist a 

mate combination in two moves, then Prinz’s program was capable of finding it. Four 

years later, in 1956, Los Alamos chess was designed by P. Stein and M. Wells in the Los 

Alamos Laboratories (Anderson, 1986: 104-105). Los Alamos chess was a chess machine 

that could play a full game of a simplified chess variant, named Los Alamos12 and which 

is also the first actual chess machine that has recorded a victory against an amateur 

chess player13 (Pritchard, 1994: 175). 

Right after these partial solutions to the problem of designing a machine capable of 

playing a whole game of chess against a human player, in the late 1950’s (namely, 1958) 

Bernstein’s chess program was presented in public. It was a Shannon Type B program 

(Shannon, 1950: 15-16) in the sense that it used a forward pruning methodology in 

order to reduce the size of the search space while running a two double-move14 depth 

minimax search – four half-moves in total – 2 for the playing side and two for the 

opponent’s (Bernstein, Roberts, 1958: 5-6). As mentioned by the long-time world 

champion Emmanuel Lasker, who had been invited to play against Bernstein’s chess 

program, “It played a passable amateur game” (McCorduck, 2004: 185). 

The decades of 1960’s and 1970’s were quite fruitful as far as computer chess is 

concerned. In 1962, one of the first chess machines that played “convincingly well” 

appeared; Kotok-McCarthy – named after its two designers, A. Kotok and J. McCarthy 

(Kotok, 1962: 12). Kotok-McCarthy was based on a minimax alpha-beta searching 

                                                        
12 Los Alamos chess variant is played on a 6 × 6 board with no bishops for both sides as well as 

the following restrictions: (i) no castling is allowed; (ii) no promotion of a pawn to a bishop is 

allowed; (iii) pawns move strictly one square at a time and, consequently, there is no initial 

pawn double move or en-passant capture (Pritchard, 1994: 174-176). 

13 The machine won its third match of Los Alamos chess in 23 moves against one of the Los 

Alamos Scientific Laboratory assistants who had been taught the game’s rules for the first time 

some days prior to the game against the machine (Pritchard, 1994: 175). 

14 In chess, a double-move is a pair of moves where the first is played by white and the second by 

black 
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approach15 and, unlike previous approaches, it had variable search depth, in the sense 

that it stopped either at eight (8) half-moves depth or at a “stable position” (Kotok, 

1962: 8). Its evaluation function took under consideration material balance, king 

protection, pawn structure, tempo advantage and development (Kotok, 1962: 2-6).  

In middle 1960’s (namely, 1965-67), R. D. Greenblatt presented Mac Hack 6, another 

chess machine that, compared to its predecessors, was highly successful. Indeed, Mac 

Hack 6 was the first computer program that was allowed to compete in usual chess 

tournaments against human players while it also was the first one to score a victory 

against a human player in an official tournament game – namely, Game 3 in 

Massachusetts State Championship, 1967, the second tournament it took part (Levy, 

2013: 65). Sooner that year, it had also managed to draw a game16 against a human 

player. Mac Hack 6, as its predecessors, made use of a minimax alpha-beta pruning tree 

search algorithm accompanied by a position evaluation function to detect the best move 

in a given board position. Its success compared to previous approaches was due to 

several factors. To begin with, Greenblatt’s good understanding of the game seems to 

have played some significant role – as per his own words “they were very weak players, 

both Kotok and McCarthy … And I said, gee, I can do better than that” (Gardner, 2005: 

13-14). Indeed, Greenblatt was a more knowledgeable chess player than most computer 

scientists that had tried to develop chess machines/programs in the past, something 

reflected in the about fifty different heuristics that were utilized in Mac Hack’s design in 

order to efficiently narrow down the plausible moves list that was used to expand the 

game tree in minimax search (Greenblatt, 1969: 804). 

                                                        
15 Alpha-beta tree search relies on the simple idea of pruning branches of the tree that are found 

to lead to moves of lower utility for the playing player than some previously found move 

sequence. For instance, if the white have found a move in some branch that evaluates, say, at 

+1.5 (in favour of them) then any branch found to lead to some move of value 𝑣 < +1.5 is 

rejected, given that the black will play so as to minimise white’s benefit – consequently, 

maximizing their. As a result of the above, the alpha-beta algorithm is sensitive to the order in 

which the moves are checked, since a better move encountered early in the search will lead to, 

expectedly, more branches to be pruned (Mashey, 2005: 12-13). 

16 Again, the first official draw of a computer against a human player – in the winter Amateur 

Tournament of the Massachusetts State Chess Association, Game 3 (Levy, 2013: 64). 
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Another factor that can account for Mac Hack’s efficiency was that it was the first chess 

program that included a hash table containing all previous positions played, something 

that dramatically reduced search time. More precisely, when a position was found 

during search, it was stored in a hash table alongside with the search results – i.e. the 

value of the position as calculated by the evaluation function. Furthermore, the depth to 

which this position was found was also stored among other information, so when the 

very same position occurred on board and as a terminal position of some branch of the 

game tree – i.e. leaf node –, the results were immediately recovered from the hash table, 

saving significant computation time (Greenblatt, 1969: 806-807). 

On top of the hash table as well as the refined heuristics regarding plausible move 

suggestion, there were also other features that facilitated Mac Hack’s work. For instance, 

a secondary search was deployed when a search yielded a new move as a possible 

optimal choice. The search begun at the depth at which the analysis of the main variant 

of the new move had stopped, typically for a single double-move, so as to “cheaply” 

increase the search depth (Greenblatt, 1969: 807). Mac Hack 6 was also provided access 

to an opening book designed especially for the purposes of the project. The main 

objective was to reduce the chance that Mac Hack would fall for typical opening traps 

often set up by human players. 

Most of the approaches that appeared during the next years were mainly modifications 

and extensions of Mac Hack’s design principles. The next major shift in computer chess 

came with Northwestern University’s Chess program, designed by L. Atkin and D. Slate, 

starting from 1968 (Jennings, 1978: 108-109). Chess 4.5 was the first computer program 

to win in an official tournament against human players in 1976 while the year after, the 

program’s improved version, Chess 4.6, won the 84th Minnesota Open against players 

close to Master level (Hapgood, 1982: 827-830). The same year, 1977, Chess 4.6 also 

managed to defeat the United States chess champion, W. Browne, who had himself 

invited the program to a match after the latter had won the 84th Minnesota Open earlier 

this year (Douglas, 1979: 111). The next version of Chess, Chess 4.7, while it lost a match 

series against D. Levy by 4½ - 1½ (3 wins, 1 draw and 1 loss for Levy), became the first 

computer chess program to ever defeat a Master level human player in a single game 

(Douglas, 1978: 84). 

Compared to almost a decade of no significant progress after Greenblatt’s chess 

program, Chess’s consecutive wins against highly skilled human players came as a bolt 
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from the blue. As expected, various innovations were included in the program’s design. 

Indeed, apart from maintaining known good practices such as alpha-beta pruning 

introduced by McCarthy and Kotok (Kotok, 1962: 2-3) and transposition tables 

introduced by Greenblatt (Greenblatt, 1969: 805-806), Chess also introduced 

bitboards17 in computer chess, which facilitated parallel processing in several 

circumstances. Apart from that, Chess also extended Greenblatt’s transposition hash 

table idea as follows: apart from keeping encountered positions alongside their value, as 

computed by the machine’s evaluation function, and the depth at which they were found, 

they also allowed for moves that have previously led to a cut-off to be kept in it. As a 

result, move prioritisation became more efficient, leading to better performance given 

alpha-beta pruning algorithm’s sensitivity in the order by which the moves are 

examined. 

Chess 4.x series also introduced some other techniques which, while being of smaller 

magnitude than the ones already mentioned, jointly contributed by a significant amount 

to it being such a sufficient chess player compared to any other previous approach. 

These include, but do not restrict to, the following ones: (i) instead of generating all 

plausible moves and then expanding each one of them, Chess did generate one move at a 

time and abandoned search should that move lead to a cut-off (Frey, Atkin, 1978: 189); 

(ii) instead of re-calculating the evaluation function at each position, Chess kept it 

gradually updated as it went through several adjacent positions leading to a significant 

reduction in computation time (Frey, Atkin, 1978: 190); (iii) serialisation of the way the 

evaluation function is computed, which means that decisive factors – such as material 

balance – are computed first and, if needed, any other computations are made (Frey, 

Atkin, 1978: 191); (iv) use of bitmaps encoding win/draw results in most typical 

endgame categories, so as to compensate for humans’ intuitive play at this stage of the 

game (Newborn, 1977: 119-129). 

By the end of the 1970’s, chess machines had started making massive steps in 

approximating human level of playing. While Chess 4.7 did not manage to finally beat 

Levy in an official match, it was the first machine to record a win in a single game against 

a chess master. The leaps done since the beginning of the 20th century and Quevedo’s 

mechanical El Ajedrecista to Northwestern University’s Chess were gigantic and 

                                                        
17 Bitboards are data structures that encode board squares and/or game pieces using bits (Atkin, 

Slate, 1983: 84). 
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astonishing, should one take into account that computer science was a relatively young 

field. However, it yet remained for the best human chess players to be convincingly 

defeated by machines. 

2.2 Mastering the game 

The rise of the 1980’s was accompanied by the announcement of the Fredkin Prize by 

the Edward Fredkin Foundation of Cambridge, Massachusetts (Mittman, 1980: 5). The 

prize was three-tiered, including: (i) a $5,000 prize for any chess machine that would 

first achieve a Master status; (ii) a $10,000 prize for any chess machine that would be 

the first to acquire an International Master status and; (iii) a $100,000 prize to any chess 

machine that would manage to become World Chess Champion – i.e. beat a running 

World Chess Champion. 

The first tier prize, as Chess 4.7 had already shown, was closer than one would suspect. 

Indeed, in 1981 Belle chess, a chess machine developed by K. Thompson and J. Condon at 

Bell Laboratories was the first chess machine to get a Master level ranking. While 

previous advances in computer chess were, mostly, due to a parallel work in creating 

more efficient algorithms as well as more powerful machines, Belle was superior 

compared to most chess machines of its time due to its hardware based approach. While 

algorithmically it run an alpha-beta pruning algorithm as its predecessors – using some 

new improvements which sped it up (Fishburn, 1980: 29) – it was the faster move 

generation as well as move sorting and evaluation that made it successful. As per 

Thompson’s words “It ran about 160,000 positions per second. Typical software ran 

about 6,000 positions per second; that’s on a fast machine” (Mashey, 2005: 14). 

Another computer machine that introduced several innovations in computer chess was 

Cray-Blitz, developed by R. M. Hyatt, A. E. Gower and H. L. Nelson. While, as Belle did, 

Cray-Blitz relied on state of the art hardware, it also utilised software that had not been 

used in earlier chess machines (Hyatt et al., 1990: 111). As with all major chess 

machines of its time, it relied on alpha-beta pruning as well as on most of the heuristics 

and search space reduction techniques that had been introduced in the Chess 4.x series 

of chess machines (Hyatt et al., 1990: 111-112). Its most significant contribution was 

essentially its quiescence search methodology. To begin with, during search the search 

tree was split into three regions with the first of them being a typical full-width search 
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utilising alpha-beta pruning (Hyatt et al., 1990: 112-115) as well as known heuristics – 

e.g. null move, transposition tables and so on. 

Once search in tree region one had come to its end, search to tree region two started 

from certain tree nodes by expanding by two double moves – i.e. four plies – from the 

point where search in region one had stopped. As stated in (Hyatt et al., 1990: 115-116), 

the main purpose of this second (quiescence) search region was to further elaborate on 

positions where a king seems to be in a difficult position – where difficulty is measured 

in terms of the evaluation function – aiming to gain some advantage, usually in material. 

Then, Cray-Blitz entered the third region of the tree, which at some occasions 

overlapped with region two, and was dedicated to further exploring solely capture 

moves. 

Another remarkable feature of Cray-Blitz is the way in which position evaluation was 

conducted. It is indeed one of the first machines that introduced quite sophisticated 

strategic parameters into piece ranking which allowed for some kind of contextually 

variable value of pieces – e.g. in certain positions, knights were considered better than 

bishops while in others the opposite was true. Also, Cray-Blitz introduced a novelty 

regarding tournament games – both against machines as well as against human players. 

Namely, it took a flexible stance against time utilisation by entering a “deep think” mode 

whenever it was in a difficult position – be it the game’s current position or some best 

move in a main variation examined. During that “deep think” mode it allocated 

additional time than the predetermined one in order to find a move/variation in which it 

could restore balance in the game (if possible). That additional time allocation was 

proportional to material loss that occurred in that position (Hyatt, 1990: 129-130). 

Having achieved Master ranking, the next goal for computer chess was to beat a chess 

Grand Master in an official game. This took place no sooner than 1988, when HiTech, 

designed by H. Berliner and C. Ebeling, beat A. Denker, US grandmaster in a four game 

match with a 3½ - ½ score (3 wins and one draw for HiTech). HiTech was quite 

innovative in terms of algorithmic means it utilised, since, as claimed by the H. Berliner, 

the machine advanced “from Master to Senior Master with no hardware change” 

(Berliner, 1989: 12). While it remained close to the almost sacred alpha-beta pruning 

algorithm as well as to most techniques that had been introduced by the Chess 4.x 

machines, it also introduced some significant novelties. 
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At first, it built up on Cray-Blitz’s legacy and set time utilisation as one of its priorities in 

terms of design. HiTech internally ranked moves to “obvious” and “hard” ones and 

accordingly allocated time – the characterisation was at some extent hard-coded while 

HiTech also had access to an oracle of knowledge in order to facilitate such assertions. 

Thus, it could efficiently dedicate more time in searching moves that would lead it to 

losing positions so as to find possibly better candidate moves. Also, HiTech developers 

utilised the notion of Singular Extensions (Anantharaman et al., 1988: 2) in order to 

easily detect moves that were considerably better than other sibling moves – i.e. moves 

at the same depth in the search tree – and focus on path variations of these moves, 

leading to deeper search when a sequence of strong moves was found (Berliner, 1989: 

18-19). 

Furthermore, HiTech deviated from previous approaches regarding another crucial 

factor that allowed it to capture more complex relations on the chessboard and, 

consequently, drastically improve its performance. Until its time, most known 

approaches to computer chess made use of linear evaluation functions, resembling more 

or less weighted means of all the factors taken into account. On top of that tradition, 

HiTech introduced non-linear evaluation functions (Berliner, 1989: 16-17) which are, in 

fact, arbitrary functions of the state of any square on the chessboard. Such functions are 

not computed serially, since this was expected to lead in a blow-up in computation time, 

but, instead, they are computed through a reduction process using a table look-up 

method (Berliner, 1989: 17-18). 

Following HiTech, there were several approaches to adopt and refine its methodologies 

such as Deep Thought, an ancestor of Deep Blue. For reasons of completeness, we shall  

refer to both of them. Deep Thought was the first chess machine to beat a human Grand 

Master in a tournament game in 1989 (Hsu, et al., 1990: 44). It ran on a quite strong 

machine for its time, allowing it to compute about 750,000 positions per second (Hsu, et 

al., 1990: 45). Deep Thought, in parallel with HiTech, made use of the singular extension 

algorithm which helped focus on particularly important positions, as in the case of 

HiTech, and was, along with the latter, the first known chess machines to use selective 

search – i.e. deviating from a typical alpha-beta pruning by temporarily looking only 

towards one direction and much deeper than the rest branches of the search tree. 

But, possibly the most important feature introduced by Deep Thought was the notion of 

a “self-training” evaluation function (Hsu, et al., 1990: 45-46). Instead of hard-coding the 
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weights on a linear evaluation function as with most past approaches or introduce non-

linearity as HiTech did, Deep Thought used a hill climbing algorithm to find optimal 

values for the evaluation function’s weights making use of a pool of 900 grandmaster 

games (Hsu, et al., 1990: 47). However, since the above method was computationally 

expensive, it was used in certain difficult cases, while in most cases a simpler approach 

was adopted that sought to minimise mean square error of the estimated move against 

the optimal move – which was either a move that was played by some grandmaster in a 

sample game or a result returned from a deep search, in case of some known concept 

(Hsu, et al., 1990: 48). 

Building on the innovative approaches introduced by Deep Thought, its team proceeded 

in building Deep Thought 2 – which was intended to be stepping stone towards the 

construction of Deep Blue (Campbell, et. al., 2002: 58) – as well as Deep and Deep(er) 

Blue. For the rest of this chapter, we will refer to both Deep and Deep(er) Blue as Deep 

Blue, referring primarily to the latter version, which beat G. Kasparov in 1997.  

Extending the work done in Deep Thought, Deep Blue adopted a somewhat different 

stance on game tree search. Having at its disposal vast amounts of computational 

resources and utilising strong parallel processing – resulting to searching capacity of 2-

2.5 million positions per second, the highest of its time – instead of typical alpha-beta 

pruning techniques, Deep Blue adopted a highly selective search, avoiding pruning at 

earlier stages in almost any case (Campbel, et al., 2002, 60-61) so as to efficiently 

explore any variant to some minimum depth, in case it led to a better position later. 

Furthermore, Deep Blue took advantage of both software search, utilising sophisticated 

heuristics as Deep Thought, which modifying a set of about 8,000 parameters, as well as 

enhanced hardware search – which was, nevertheless, non-alterable (Campbell, et al., 

2002: 64-72). Not restricting to the above, Deep Blue was also granted access to an 

opening book as well as an “override” book which allowed for last minute changes prior 

to some game so as to avoid typical and known opening traps. Once the opening of a 

game had come to its end, rendering Deep Blue’s opening book useless, Deep Blue could 

take advantage of an “extended” book which provided access to about 700,000 games 

played by grandmasters. Using information from this book, Deep Blue was able to assess 

moves not only with respect to its own evaluation function but also to enhance its 

“judgement” by providing bonuses or penalties to its evaluations (Campbell, et al. 2002: 

76-78). At last, Deep Blue could also access a series of endgame databases, mostly the 
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ones provided by K. Thompson (Mashey, 2005: 18-22) which contained endgame 

positions and their outcome/winning move sequences encoded in bitboards and 

obtained by a retrograde analysis starting from a final board position and proceeding 

backwards. 

The years that followed Deep Blue’s victory against G. Kasparov, the then-reigning 

World Chess Champion, saw several chess engines, both open as well as closed-source 

(e.g. Rybka). Probably the most successful of them all that also still uses an alpha-beta 

pruning based methodology is Stockfish (Romstad, et al., 2008). Stockfish relies on most 

of the aforementioned heuristics – e.g. the null move heuristic – as well as typical 

representation methods – such as bit-boards and transposition tables – but amongst its 

most significant attributes is its very aggressive pruning policy. However, since it has 

repeatedly been empirically validated that over-pruning may lead to winning variants 

being pruned, eventually leading to defeat, Stockfish also adopts a late move reduction 

policy. That is, it does not prune branches of the game search tree immediately but 

allows for a shallow search at first so as to verify, up to some certain level, that no good 

move is being cut off. 

Recently, approaches that deviate from the typical tree search methodologies presented 

up to now have emerged. From these, Deepmind’s AlphaZero is undoubtedly the most 

eminent. AlphaZero, in contrast with most chess computer programs, is not chess 

specific, as stated in (Silver, 2017: 1). Instead, it relies on a tabula rasa reinforcement 

learning methodology under which it can accumulate knowledge about the game by self-

playing and self-assessment. More precisely, when it comes to choosing a move, instead 

of utilising a typical alpha-beta pruning variant, AlphaZero plays simulated games 

against itself while in each simulation it picks up its next move by being one of high 

probability and value according to its deep neural network. Once all simulations have 

been completed, it returns the corresponding probability vector that occurs from the 

above process – also known as Monte-Carlo Tree Search (MCTS). Given the above 

probability vector, 𝜋, at a certain position AlphaZero picks moves according to it while, 

once the game is over, it compares its evaluation ( +1, 0 or −1 in the case of chess 

corresponding to win, draw and loss respectively) with its neural network’s estimation 

about the outcome of the game and it adjusts the parameters accordingly using gradient 

descent so as to minimise the occurring mean square error. Simultaneously, it also seeks 
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to maximise the similarity of its network’s policy18 vector to the probability vector 𝜋 

(Silver, 2017, 2-3). AlphaZero, in spite of being game independent, has successfully 

managed to defeat Stockfish in recent experiments by an impressive score: 28 wins, 72 

draws and 0 losses.  

                                                        
18 A policy in terms of reinforcement learning is a probability distribution defined over the set of 

pairs of states and actions according to which the agent acts. 
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Chapter 3 
Machine Coaching 

In this chapter we will present and explain through examples of application the learning 

methodology of Machine Coaching as well as the induced human-machine interaction 

protocol. The structure of this chapter is as follows: (i) in section 3.1, Machine Coaching 

is presented as a meeting point between typical Machine Learning methodologies and 

Declarative Programming; (ii) in section 3.2, a first order language suitable for reasoning 

in the context of Machine Coaching as well as its syntax are defined; (iii) in section 3.3, 

the theoretical principles of a reasoning engine that conducts reasoning in the context of 

Machine Coaching are presented. 

3.1 High-level description of Machine Coaching 

As we have already discussed in chapter 1, in order to utilise human chess players’ 

knowledge about the game in a chess machine’s training process as well as improve the 

machine’s performance on several cases where it is easy for a human to adapt, we argue 

that a more declarative approach is necessary. For these purposes, Machine Coaching 

(Michael, 2019: 81-82) seems an appropriate choice, as it will be further explained in 

this chapter. 

At a higher level, Machine Coaching is a Machine Learning paradigm that allows a human 

user to transfer knowledge, personal preferences and/or heuristics to a machine by 

providing pieces of advice to it in the form of arguments in favour or against certain 

actions/behaviours. Assuming for a while that we have at our hands a language through 

which a machine and a human can interact in such way, a typical Machine Coaching 

scenario would be the following one: 

1. At first, a human user asks for some piece of advice – in our context, it could be 

some move suggestion, for example – from the machine on a certain 

circumstance – e.g. on a specific board position. 

2. The machine, with any knowledge it currently has at its disposal – which, in the 

beginning of the coaching process may include nothing – as well as any 
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contextual information available, returns a piece of advice as well as an argument 

supporting that piece of advice which, at the same time, serves as an explanation 

to the human user. 

3. The user, on seeing the suggested action/behaviour as well as the corresponding 

explanation, has two options19: 

a. Either to accept the machine’s advice as well as the explanation it has 

provided about it, when consequently nothing changes in the machine’s 

knowledge and the user may ask for another piece of advice – return, 

hence, to step 1; 

b. Or to not accept the machine’s advice and/or the corresponding 

explanation, in which case, the user is prompted to provide counter-

argumentation to the machine about why they did so. The machine 

integrates the above counter argumentation to its knowledge base and is 

again ready to accept any new advice request from the user – return, 

hence, to step 1. 

In order to clearly demonstrate the above human-machine interaction, we present a 

simple example of the above in the context of chess. Again, we assume that there exists a 

common language of communication between the human user and the machine in which 

all the following arguments are being expressed. Also, let us assume that we have 

already had some brief training session with our bot and have given it a single guideline: 

to play its pieces towards the centre20 of the board when still in the opening phase of a 

game21. 

Assume that our chess bot plays as black and it is its turn to play in the position shown 

in Figure 5, which has occurred from white’s 1. e4. Upon our request for its next move – 

i.e. its advice/suggestion in the given context (position on the chessboard) – it responds 

with the following passage: 

                                                        
19 The exact interaction protocol will be presented and discussed later on in this chapter. 

20 We define as the board’s centre squares the squares e4, d4, d5 and e5. 

21 We make this assumption for the purposes of our demonstration only. 
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“I would suggest making the move 1. … e5 since we are still in the game’s 

opening phase and in such cases it is better to move pieces towards the board’s 

centre.” 

 

So far so good, since 1. … e5 is an acceptable response to 1. e4. Next, the white plays 2. 

Nf3, threatening the black pawn at e5. We ask again what is on our bot’s “mind”, given 

this situation on the board – shown in Figure 6 – and we receive the following response: 

“I would suggest making the move 2. … d5 since we are still in the game’s opening 

phase and in such cases it is better to move pieces towards the board’s centre.” 

We should expect such advice since we have assumed that the only guideline our bot has 

is to play its pieces in the centre of the chessboard when it is in the opening stage of a 

game and the only move towards the board’s centre left is 2. … d5. However, since our 

bot is still “inexperienced”, we would like to prohibit it from playing gambits22, 

especially ones known to lead to inconvenient positions in the middle of the game for 

                                                        
22 A gambit in chess is an opening variant in which some material is sacrificed in order to gain 

some strategic or tactical advantage as compensation for it – e.g. better control of the board’s 

centre or the initiative against the opponent. 

Figure 5: The position after 1.e4. 
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the black – this one, in particular, is known as the Elephant’s Gambit (de Firmian, 1999: 

150-151). So, we decide to advice our bot to be more cautious by protecting its pieces 

when they are under threat by providing the following counter-argument to its 

(suggestion, explanation) tuple: 

“When you are still in the opening phase of a game and some of your pieces is 

threatened, prefer moves that defend this threat by supporting the piece under threat 

rather than moves that simply bring your pieces to the centre.” 

Given this counter-argument, we locally de-activate our previous advice of moving 

pieces towards the board’s centre squares in situations where there is also another 

feature on the board, other than the fact that we are currently on the opening stage of 

the game – i.e. an opponent’s threat to win some material over us. The refined 

knowledge base would lead the bot to choose between moves such as 2. … Nc6, 2. … d6, 

2. … Qe7 and so on, which all defend the black pawn at e5. By continuing in a similar 

manner, we provide further advice to the chess bot, gradually allowing it to capture 

larger parts of our theory about playing chess. 

 

As one may observe, Machine Coaching stands between Machine Learning and 

Declarative Programming. On the one hand, it falls in the broader category of Machine 

Figure 6: The position after 2. Nf3. 
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Learning since it allows for a machine to accumulate (domain specific) knowledge by 

capturing a (human) user’s heuristics and preferences. On the other hand, in the 

paradigm of Machine Coaching the machine is not instructed in an imperative way how 

to search for or construct that knowledge. On the contrary, the user expresses 

declaratively what they want the machine to behave like by providing advice and, in a 

sense, the machine finds a way to follow these instructions, if possible. 

However, apart from allowing a human to train a machine in a more declarative way, 

Machine Coaching also allows for the learning process to be transparent with respect to 

the system’s functionality. At each time, the machine informs the user about the 

rationale on which it relied to reach its conclusion, so the user is always aware of the 

way it operated. The above will allow us to consider Machine Coaching as an 

interpretable learning methodology, as defined in (Arrieta, et al., 2020: 84) since at each 

time the user is capable of understanding the entire process by which the model reasons 

and learns based on their own advice. Moreover, Machine coaching may also be 

considered a simulatable paradigm since each suggestion is based on rules that originate 

from the user’s theory about some domain and, hence, the user, given all the information 

available to the machine is expected to be capable of simulating its function23. 

In the following sections we will thoroughly discuss Machine Coaching as presented in 

(Michael, 2019: 83-85) providing chess-specific examples about each new notion 

introduced. Thus we expect that more light will be shed on how interpretability and 

transparency are achieved to a significant extent by adopting Machine Coaching as our 

learning methodology. 

3.2 A language for Machine Coaching 

In this section we formalise a language that will support interaction between humans 

and machines in the context of Machine Coaching while it will also allow for a further 

                                                        
23 This may need to be further studied since, even if the machine’s theory is at every time a 

subset of that of the user, assuming the former had no previous knowledge, this may not 

necessarily imply that a user can simulate the machine’s functionality within a reasonable time 

frame. One factor that could account for this is that some fragments of the user’s theory may lead 

to counter-intuitive inferences – from the user’s viewpoint – which may lead to spending more 

time than expected to understand the machine’s rationale behind them. 
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formalisation of Machine Coaching’s theory. As with most parts referring to Machine 

Coaching in this thesis, we mostly follow the presentation in (Michael, 2019: 83-85). 

3.2.1 Describing the language of Machine Coaching 

Until now, we have vaguely used the term knowledge base to refer to a data structure 

where the machine’s knowledge, as provided by the user, is kept. However, as the 

previous example clearly demonstrates, it does not suffice for the machine’s knowledge 

base to be a typical list/array of rules. Indeed, in the above example, we may rewrite the 

two arguments presented as follows – again, we use natural language to express these 

arguments for reasons of simplicity: 

Argument 1: [Rule 1] 

     Rule 1: If a move brings a piece to the centre of the board then suggest that move. 

     Argument 2: [Rule 2, Rule 3] 

Rule 2: If a move brings a piece to the centre of the board but there exists a threat 

to one of my pieces and another move that defends that threat then reject the 

first move. 

Rule 3: If a move brings a piece to the centre of the board but there exists a threat 

to one of my pieces and another move that defends that threat then suggest the 

second move. 

As we see, in the context of Figure 6 all three rules are triggered which leads to a conflict 

between rules 1 and 2. As a result, we need some mechanism in which such conflicts are 

resolved, which cannot be accommodated by a typical knowledge base. Thus, as 

described in (Michael, 2019: 83), the notion of a prioritised knowledge base is 

introduced. In a prioritised knowledge base, apart from the rules themselves, a priority 

relation is defined over all pairs of conflicting rules which facilitates conflict resolution, 

in the sense that rules of higher priority are preferred when a conflict arises. 

So, in our example, we would like Rule 2, which is conflicting with Rule 1, to be declared 

of higher priority than Rule 1 so as to capture the exceptional character Rule 2 has over 

Rule 1. Indeed, while Rule 1 expresses a general principle in chess opening theory – i.e. 

that of moving one’s pieces towards the centre of the board in order to control it – Rule 

2 describes a position on the board which demands a different manipulation due to an 
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additional feature – i.e. the opponent’s threat to take a piece of ours – and, hence, the 

usual way of action should not be followed in this case. 

Bearing these in mind, we now proceed on presenting and discussing the theoretic tools 

we will need in order to strictly formulate the aforementioned notion of a prioritised 

knowledge base as presented in (Michael, 2019: 83). At first, let us assume that we have 

at our disposal a first order language 𝐿 which: 

 Allows for countably many constant symbols (also called constants for short). 

Constants are intended to be interpreted as our universe’s entities, so, in the 

context of chess some typical constant symbols could be e4, a3 and d7 which all 

represent squares or pawn, queen and rook which represent chess pieces or 

even black and white which represent the colours of the two players. 

 Allows for countably mane variable symbols (also called variables for short). 

Variables are intended to serve as placeholders for constants in various 

expressions. 

 Allows for countably many predicate symbols of arity 𝑛, where 𝑛 ∈ ℤ>0 (also 

called n-ary predicates or simply predicates for short). Predicates are intended to 

be interpreted as relations among entities of our universe. In the context of chess, 

a binary predicate could be starts_from(Move,Square) which is intended to 

express the relation of a square (Square) being the starting square of a move 

(Move). In the same way, a unary relation in the universe of chess could be 

plays_as(white) which is intended to express the fact that the bot plays as 

white. 

 Contains a special binary predicate symbol, called the equality symbol, which is, a 

priori interpreted in any case as the binary relation of congruence between two 

entities of our universe24. 

 Contains a universal quantifier symbol, which is intended to be interpreted as 

for all entities in our universe. 

                                                        
24 This is not verbosely stated in (Michael, 2019: 83) however we considered useful to include an 

equality symbol in our language since it was found to be necessary in several occasions – see 

next chapter for more. 
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 Contains three logical connective symbols which are intended to be interpreted 

as logical conjunction, material implication and logical (classical) negation 

respectively. 

At this point it would be useful to introduce some concrete notation for our language so 

as to help clarify future expressions and definitions. More precisely: 

 We will denote variables by any finite alphanumeric sequence – allowing also for 

the text underscore symbol – which starts with a capital letter of the latin 

alphabet. As a result, Piece_2 and Colour do denote variable symbols while 

_Piece or colour or 2piece do not. 

 We will denote constants by any finite alphanumeric sequence – again, allowing 

for the text underscore symbol – which starts with a lowercase letter of the latin 

alphabet. As a result, pawn and e2 do denote constant symbols while Pawn or 

3queen are not. 

 We will denote predicates by any finite alphanumeric sequence – again, allowing 

for the text underscore symbol – which starts with a lowercase letter of the latin 

alphabet and is preceded by a comma-separated list of its arguments enclosed in 

parentheses. 

 We will denote the special equality binary predicate by ?=(X,Y), where X and Y 

are its two arguments. 

 We will denote the logical connector of negation with the symbol - (the minus 

symbol) while we will use the comma symbol (,) so as to denote logical 

conjunction. So, if colour(pawn,white), is_at(pawn,e4) holds it means that 

both colour(pawn,white) and is_at(pawn,e4) hold, while in the opposite 

case in which -is_at(pawn,d4) holds then is_at(pawn,d4) does not hold. 

 We will also denote the logical connector of material implication by the word 

implies. For instance, is_at(Piece,e4) implies is_at_centre(Piece) 

means that either is_at_centre(Piece) or -is_at(Piece,e4) holds. 

 In all expressions, we will assume that any variables are within the scope of some 

universal quantifier and, as a result, we will not introduce any special notation 

for it. 

Now, using the above, we define the following: 
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 A literal is either a predicate itself or its negation. Also, a literal is called negative 

when it consists of a negated predicate and positive otherwise. Positive literals 

are interpreted as predicates – i.e. they represent n-ary relations between 

entities of our universe – while negative literals are interpreted as relations that 

don’t hold in our universe. We also define conflicting literals to be two literals 

such that one of the is the negation of the other. For instance, literals 

 –colour(black) and  colour(black) are conflicting. 

 A rule is a triplet (name, body, head) were: 

o name is any finite alphanumeric sequence – including text underscore, as 

above – and denotes the rule’s name; 

o body is a conjunction of literals, that is, given the notation defined above, a 

comma-separated list of plain of negated predicates; 

o head is a single literal. 

Also, as far as rules are concerned, we define the following notation: 

name :: body implies head; 

where implies is the material implication connective, name, body and head correspond 

to the rule’s name, body and head respectively, :: is a delimiter separating the rule’s 

name from its main part and ; denotes the rule’s end. Lastly, we also say that two rules 

are conflicting in case their heads are conflicting literals, as defined above. 

Now, given the above, we also define a context to be a non-empty collection of pariwise 

non-conflicting literals. Our intention is for a context to be interpreted as a set of facts 

that describe a specific situation in a given setting. So, in our case (chess), a context 

describing the initial position on the board may contain literals such as 

is_at(pawn,white,a2) or is_at(queen,black,d8) and other similar ones, where 

is_at(Piece,Colour,Square) is intended to be interpreted as “a piece of type Piece 

and of colour Colour is at square Square”. 

Now, we have now at our disposal all the needed means in order to define a prioritised 

knowledge base. We will say that a tuple 𝑘 = (𝜌, ≺) is a prioritised knowledge base if: 

1. 𝜌 is a set of rules as defined above; 
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2. ≺ is an irreflexive antisymmetric priority relation25 ≺ over all pairs of conflicting  

rules in 𝜌 × 𝜌. 

At a higher level, a prioritised knowledge base seems capable of capturing the subtleties 

of the advice taking procedure described in 3.1. Indeed, as we have already argued, it is 

mandatory that conflicting rules are included in the machine’s knowledge base since in 

this way the refutable nature of human argumentation with respect to contextual 

information can be efficiently captured. 

It remains to provide a formal definition of an argument. However, we consider it useful 

to first provide some examples of application of the language we have described above 

in the context of chess. As a result, we will present and discuss the formal definition of 

arguments as well as anything related to reasoning and learning in the context of 

Machine Coaching at the end of the chapter, in section 3.3. 

3.2.2 Examples of Machine Coaching in chess 

Up to now we have defined a language through which all interaction between humans 

and machines will take place in the context of Machine Coaching.  In this subsection we 

are going to present some examples specifically in the context of chess so as to 

demonstrate the capabilities of Machine Coaching’s language as described in 3.2.1. 

To begin with, we will first present the example discussed in section 3.1 in order to 

make a direct comparison between natural language and the language we have designed 

for Machine Coaching as well as for reasons of completeness. So, at first we would like to 

describe the rule: 

Rule 1: If a move brings a piece to the centre of the board then suggest that move. 

To do so, we will at first assume that we have access to a binary predicate, 

to_square(Move,Square) where Square is intended to be substituted by any square 

constant, hence, meaningful substitutes for Square are: 

 Square: a1, a2, ... , h7, h8. 

while meaningful substitutes for variable Move could be: 

                                                        
25 In other words, ≺ satisfies the following: (i) there is no rule 𝑟 such that 𝑟 ≺ 𝑟 (irreflexivity); 

(ii) if 𝑟 ≺ 𝑟′ for two conflicting rules 𝑟, 𝑟′ then 𝑟′ ≺ 𝑟 does not hold (antisymmetry). 
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 Move: e2e4, g2f3 and, in general, any legal move in a UCI format26. 

Also, we will make use of a literal suggest(Move) which will denote that a move should 

be suggested as an appropriate one. Using the above, we can at first express the meaning 

of the phrase “a piece is moved at the centre of the board”, using the following five 

rules27: 

C_1 :: ?=(Square,e4) implies is_at_centre(Square); 

C_2 :: ?=(Square,d4) implies is_at_centre(Square); 

C_3 :: ?=(Square,e5) implies is_at_centre(Square); 

C_4 :: ?=(Square,d5) implies is_at_centre(Square); 

Occ :: to_square(Move,Square), is_at_centre(Square) implies 

occupies_centre(Move); 

Next, we need to define what the “opening phase” of a game of chess is. To do so, we will 

need a predicate like current_move(Count) where Count is some integer valued 

variable which corresponds to the current double-move count. Using this predicate, we 

may define the game’s opening phase as follows28: 

Op :: move_count(X), ?<(X,11) implies game_phase(opening); 

In the above expression we also used a mathematical comparison predicate, ?<(X,Y) 

which is intended to be interpreted29 as 𝑋 < 𝑌. In order to express Rule 1, we will also 

                                                        
26 A move in UCI format is a string of 4 or 5 characters where: (i) the first two characters denote 

the rank and the file of the move’s starting square; (ii) the third and the fourth characters denote 

the rank and file of the square to which the piece is moved and; (iii) the last (fifth) character 

denotes the piece to which a pawn is promoted in case the move is a promotion move - equal to 

the empty character if the move is not a promotion move. 

27 The symbol ?=(·,·) that appears in the following rules denotes our language’s equality 

symbol. 

28 Note at this point that we could have also used a constant symbol opening as Op rule’s head - 

indeed, our implementation of Machine Coaching’s language allows for constants to be 

interpreted as predicate symbols of zero arity – see next chapter for more. So, it is more of a 

matter of preference rather than anything else whether one chooses to define a new predicate 

symbol or just a constant. 

29 We will elaborate on the definition of mathematical relations and operations in the context of 

our language in the next chapter, where we discuss issues regarding the language’s 
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need a predicate plays_as(Colour) so as to be able to distinguish between the colours 

of each player as well as a moves(Move,Piece) predicate which is intended to be 

interpreted as: move Move moves a piece of type Piece. Lastly, we will also assume that 

we have access to another binary predicate30, move_played_by(Move,Colour) which 

is interpreted as: move Move is played by player of colour Colour. Now, given the above 

predicates as well as rules, we can express Rule 1 as indicated below:  

Rule_1 :: plays_as(Colour), occupies_centre(Move), 

move_played_by(Move,Colour), game_phase(opening) implies 

suggest(Move); 

Before proceeding to expressing Rules 2 and 3 in the language we have defined, it would 

be useful to first make some remarks regarding the above. At first, we could have 

avoided rules C_1 to C_4 as well as Occ by creating four “instances” of Rule_1 by using 

to_square(Move,Square) in a similar fashion as in rules C_1 to C_4 and Occ. 

However, we preferred to describe a new predicate, occupies_centre(Move) 

primarily to demonstrate the possibility of “defining” our own predicates as well as 

because doing so leads to more efficient coding – i.e. it is considered a good practice in 

the context of our language. Indeed, in the above way we are introducing eventually less 

rules in the machine’s knowledge base since, were rules C_1 to C_4 not used, we would 

be obliged, to create four “instances” of Occ as well as of each rule that refers in some 

way to central squares of the board. 

Furthermore by “defining” new predicates, we are allowed to define any new higher-

level notion we need, provided that it is within the expressive limits of our language – 

i.e. it is definable through first order if-then rules as defined in 3.2.1 as well as any built-

in predicates provided. Moreover, by having concretely defined the notion of central 

squares once, should it occur that this definition needs to be changed at some time in the 

future – e.g. extended to include more squares – it suffices to overwrite rules C_1 to C_4 

                                                                                                                                                                             
implementation. In general, the implementation allows for all typical mathematical operations 

and functions to be computed, even if such function symbols are not allowed in our language, in 

principle.  

30 This predicate is needed since even if exactly one player moves at a time in a game of chess, it 

is useful for each context describing a certain position to also include the opponent’s moves in 

case a null move is played by us. 
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with new ones – in case we had not used such rules, we would have to override any rule 

referring to the notion of “centre”. 

Now, we proceed to expressing Rule 2 in our language. Rule 2 is expressed in natural 

language as follows: 

Rule 2: If a move brings a piece to the centre of the board but there exists a threat 

to one of my pieces and another move that defends that threat then reject the 

first move. 

So, as with Rule 1, we will first describe what primitive information is required – which 

will be encoded in some built-in predicates – as well as define any new higher level 

information needed. To begin with, we will suppose that we have access to a ternary 

predicate, is_at(Piece,Colour,Square) which is intended to encode the fact that a 

piece Piece of colour Colour is located at square Square. As a result, meaningful 

constants that could be substituted in place of each variable are: 

 Piece: pawn, knight, bishop, rook, queen, king. 

 Colour: black, white. 

 Square: a1, a2, ... , h7, h8. 

Furthermore, we also need access to a predicate attacked_by(Colour,Square) 

which is intended to represent the fact that the player of colour Colour attacks square 

Square with at least one of their pieces31. Using the above, we could describe a threat as 

follows: 

Threat :: plays_as(Colour1), -plays_as(Colour2), 

is_at(Piece,Colour1,Square), attacked_by(Colour2,Square) 

implies threatened(Square); 

                                                        
31 Note that atttacked_by cannot be expressed in terms of to_square since pawn capture and 

non-capture moves are not the same – in contrast with what happens with any other piece. 
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Having defined what a threat32 is, it remains to express the notion of defending a square. 

To do so, we will make use of a new predicate we assume we have access to: 

controls(Square1,Piece,Colour,Square2) which we intend to be interpreted as: a 

piece of type Piece and colour33 Colour form square Square1 controls34 square 

Square2.  

Using the above predicates we can define the notion of a move defending a square as 

indicated below: 

Def :: plays_as(Colour1), -plays_as(Colour2), 

attacked_by(Colour2,Square1), to_square(Move,Square2), 

moves(Move,Piece), move_played_by(Move,Colour1), 

controls(Square2,Piece,Colour1,Square1) implies 

defends(Move,Square1); 

Observe how we do not demand for a piece to occupy a square we defend, since we take 

care of that in the definition of a threat. Now, we proceed in expressing Rule 2 using all 

the above, as follows35: 

Rule_2 :: occupies_centre(Move1), to_square(Move1,Square), 

threatened(Square), defends(Move2,Square) implies  

-suggest(Move1); 

In a similar fashion, we can express Rule 3 as indicated below: 

                                                        
32 Threat defines threat only for the bot, in the sense that we could not use the same rule to 

express the fact that we are threatening an opponent’s piece at some square. Nevertheless, this 

suffices for the purposes of our demonstration here. 

33 We need to know the piece’s colour since legal capture moves – as well as legal pawn moves in 

general – are depended on the pawn’s colour and not only on its type – i.e being a pawn. 

34 We say that a piece controls a square if it can make a capture move towards that square on 

condition that a piece of opposite colour is located there. So, control moves coincide with 

pseudo-legal moves of any piece but for pawns which move restricted to their file but can 

capture pieces only on adjacent files. 

35 We could well have avoided being so explicit in the declaration of Threat which would have 

led to including is_at in the declaration of Rule 2, however we decided to keep Rule 2 as simple 

as possible, using higher level predicates, so as to bear more resemblance to its natural language 

representation. 
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Rule_3 :: occupies_centre(Move1), to_square(Move1,Square), 

threatened(Square), defends(Move2,Square) implies 

suggest(Move2); 

Observe that we have not demanded in none of Rules 2 and 3 that the two moves under 

consideration are different. So, it could happen that a move that both moves a piece 

towards the centre of the board as well as defends an opponent’s threat exists, which 

would trigger both Rule 2 as well as Rule 3, leading thus to a conflict. Depending on how 

we have set priorities among Rules 2 and 3, this move will be suggested – in case Rule 3 

is of higher priority than Rule 2 – or not – in the opposite case. We will delve into more 

details about rule prioritisation in section 2.3 as well as in chapter 4, where we discuss 

the chess specific user interface we have designed. 

3.3 Argumentation and Learning in the context of 

Machine Coaching  

In this section we will discuss the way in which reasoning is conducted in the context of 

Machine Coaching. To do so, we first need a notion of arguments. In general, as we will 

see in this section, arguments appear in several occasions throughout Machine Coaching. 

Namely: 

 The machine uses arguments internally in order to reach to a conclusion about 

which action(s), behaviour(s) or item(s) should be suggested to the user. 

 The machine user arguments as a means of interaction with the user. More 

precisely, when the machine returns a piece of advice, it also returns, as we have 

already discussed, an explanation about it. The explanation is, actually, the very 

same internal argument that led the machine to this conclusion. As a result, one 

may claim that the machine is being by its definition transparent as well as 

interpretable – in the way defined in (Arrieta, 2020: 85-89) – since it provides 

access to its internal mechanisms to the user. 

 The machine accepts any user feedback in the form of an argument. Should a user 

disagree with the machine’s suggestion and/or explanation, as we have already 

discussed in 3.1, the user expresses their disagreement by providing counter-

argumentation of some kind to the machine. 
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3.3.1 Arguments in the language of Machine Coaching 

We will now proceed to defining an argument, as presented in (Michael, 2019: 83). Let 𝑔 

be some literal, 𝑘 = (𝜌, ≺) be a prioritised knowledge base, 𝑥 be some context – i.e. a set 

of pairwise non-conflicting literals – and 𝐴 a subset of 𝜌 ∪ 𝑥. We say that 𝐴 is an 

argument for 𝑔 in 𝑥 under 𝑘 if the following hold: 

1. 𝐴 ≠ ∅, 

2. starting form literals in 𝐴 ∩ 𝑥 and by repeatedly applying modus ponens using 

rules in 𝐴 ∩ 𝜌 we can infer 𝑔, 

3. 𝑔 cannot be inferred by any proper subset of 𝐴, i.e. if ∅ ≠ 𝐵 ⊂ 𝐴 then we cannot 

infer 𝑔 as described in 2 by substituting 𝐵 in place of 𝐴. 

Also, we will refer to the (unique) rule 𝑟 ∈ 𝐴 that has 𝑔 as its head as the argument’s 

crown rule36. 

Before we present some examples of arguments, we will first discuss the conditions that 

appear in the above definition. The first condition demands that an argument is a non-

empty set, i.e. it contains at least one literal from 𝑥 or at least one rule from37 𝜌. As far as 

the second condition is concerned, it demands that our argument is actually an 

argument for 𝜌, in the sense that we can infer it from our hypothesis. Note at this point 

that it is possible that an argument does not contain any rule at all, in which case it 

should contain 𝑔. One could interpret such detrimental arguments as restating some 

already known fact – since we assume that literals belonging to a context are by default 

interpreted as facts that are true in a certain situation within our setting. 

The third condition is a more technical, yet quite important one. It demands for 

arguments to be minimal in the sense that nothing else other than what is needed is 

included in an argument for 𝑔. This allows us to avoid trivial cases of making a 

distinction between arguments for a certain goal literal 𝑔 that differ by, say, a rule or a 

literal that does not lead to further implications regarding 𝑔. 

                                                        
36 Observe that such a rule may not always  exist – e.g. in case 𝐴 = {𝑔} – while its uniqueness, 

whenever it exists, is guaranteed by condition 3. 

37 In case an argument 𝐴 is a singleton it can either be {𝑔} or {𝑟} where 𝑟 is a rule that has 𝑔 as its 

head. 
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We now proceed in some examples, so as to clarify the above. To begin with, let us 

revisit the example we have presented in 3.1. Consider the following fraction of the 

example’s knowledge base, let 𝑘, where we have simplified Rule_1 to Rule_1b by 

dropping the dependency on the game’s phase for reasons of simplicity: 

Rule_1b :: occupies_centre(Move), move_played_by(Move,Colour), 

plays_as(Colour) implies suggest(Move); 

Occ :: to_square(Move,Square), is_at_centre(Square) implies 

occupies_centre(Move); 

C_1 :: ?=(Square,e4) implies is_at_centre(Square); 

C_2 :: ?=(Square,d4) implies is_at_centre(Square); 

C_3 :: ?=(Square,e5) implies is_at_centre(Square); 

C_4 :: ?=(Square,d5) implies is_at_centre(Square); 

 

 

Also, let us consider the following context, let 𝑥 – again, we assume there are no other 

predicates available, so as to keep this first example minimal – which describes the 

position shown in Figure 7 (white to move). 

Figure 7: White to move 
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to_square(a1a2,a2); 

to_square(a1b1,b1); 

to_square(a1b2,b2); 

to_square(d3d4,d4); 

to_square(h8h7,h7); 

to_square(h8g8,g8); 

to_square(h8g7,g7); 

Let us now assume that we want to examine whether there is an argument for 

suggest(d3d4) in context 𝑥 under the above knowledge base 𝑘. At first, we observe 

that by considering 𝐴 = 𝑥 ∪ 𝑘 ≠ ∅ we can infer suggest(d3d4) using rules and literals 

in 𝐴.  So, the first two conditions are satisfied. However, the third condition regarding 

the argument’s minimality is not satisfied by any means, since we could, for instance, 

remove to_square(h8g7,g7) or rule C_3 and we could still infer suggest(d3d4) 

from the new reduced set. 

As one may easily observe, the only choice for 𝐴 that also conforms with the third 

condition in the definition of an argument is the following one38: 

A = {to_square(d3d4,d4), C_2, Occ, Rule_1b}; 

Indeed, removing any of the above from 𝐴 would lead to suggest(d3d4) not to be 

inferred from 𝐴 – e.g. removing rule C_2 would result in Rule_1b not being triggered 

and, as a result, its head would not be inferred. 

Note that, given a context 𝑥, a prioritised knowledge base 𝑘 and a goal literal 𝑔, should 

there exist an argument 𝐴 for 𝑔 in 𝑥 under 𝑘 it is by no means guaranteed to be unique. 

In order to demonstrate this, let us add the following rules to 𝑘, with priority higher than 

any other rule: 

                                                        
38 Note at this point that ?=(e4,e4) is not included in our context, however rule C_2 is included 

in our argument. As we shall see in chapter 4, ?=(X,Y) is treated in a broader sense than a 

congruence relation. More specifically it is treated in the more general context of unification. In 

our case, this means that ?=(Square,e4), given that Square is unassigned, leads to the 

substitution Square/e4 which triggers rule C_2. In general we will not explicitly include such 

literals in the representation of a context, however we will assume that they are included 

whenever needed, as in this example. 
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Rule_5 :: controls_centre(Move) implies suggest(Move); 

Rule_4 :: plays_as(Colour), move_played_by(Move,Colour), 

to_square(Move,Square1), moves(Move,Piece), 

controls(Square1,Piece,Colour,Square2), is_at_centre(Square2) 

implies controls_centre(Move); 

Also, let us extend the previous context with the following literals – we will not refer 

verbosely to any literals that would be typically included but are not useful in this 

example: 

 plays_as(white); 

 moves(d3d4,pawn); 

 move_played_by(d3d4,white); 

 controls(d4,pawn,white,e5); 

Using the above knowledge base and context, we can also see that there is a second 

argument 𝐵 for suggest(d3d4), namely: 

B = {plays_as(white), moves(d3d4,pawn), to_square(d3d4,d4), 

move_played_by(d3d4,white), C_3, Rule_4, Rule_5}; 

Furthermore, it is also possible that arguments both in favour as well as against the 

same literal may be constructed given a context 𝑥 and a prioritised knowledge base 𝑘. 

Indeed, consider the following knowledge base, where the predicate symbol 

is_checkmate(Move) indicates that move Move is a checkmate move: 

Rule_7 :: plays_as(Colour), move_played_by(Move,Colour), 

is_checkmate(Move) implies suggest(Move); 

Rule_6 :: plays_as(Colour), game_phase(opening), 

moves(Move,queen), move_played_by(Move,Colour)  

implies –suggest(Move); 

Op :: move_count(X), ?<(X,11) implies game_phase(opening); 

Also, consider the following significant fragment of a context which describes the 

position shown in Figure 8 (black to move): 

plays_as(black); 

move_played_by(d8h4,black); 
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moves(d8h4,queen); 

move_count(2); 

is_checkmate(d8h4); 

 

Based on the above, we can construct the following argument supporting 

suggest(d8h4): 

A = {is_checkmate(d8h4), move_played_by(d8h4,black), 

plays_as(black), Rule_7}; 

But, again based on the above context and knowledge base, we can also construct an 

argument for –suggest(d8h4): 

B = {move_played_by(d8h4,black), plays_as(black), 

move_count(2), moves(d8h4,queen), Op, Rule_6}; 

3.3.2 Defining an Argumentation Framework 

Having defined and thoroughly presented the notion of argument in the context of 

Machine Coaching, we will now proceed in defining an argumentation framework as 

declared in (Dung, 1995: 325-334). To do so we need to define an ordered pair 

(𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) where 𝐴𝑟𝑔𝑠 is a set of arguments and 𝐴𝑡𝑡 is a binary attack relation on 𝐴𝑟𝑔𝑠, 

Figure 8: Black to move and win. 
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i.e. 𝐴𝑡𝑡 ⊆ 𝐴𝑟𝑔𝑠 × 𝐴𝑟𝑔𝑠 (Dung, 1995: 326). For the rest of this subsection, let 𝑥 be a 

context and 𝑘 = (𝜌, ≺)  prioritised knowledge base. 

As far as the set of all arguments, 𝐴𝑟𝑔𝑠, is concerned, we let 𝐴𝑟𝑔𝑠 be the set of all 

arguments in 𝑥 under 𝑘 (Michael, 2019: 83). As far as the 𝐴𝑡𝑡 relation of attacks between 

arguments is concerned, following (Michael, 2019: 83) we will make the following 

choices under the ASPIC+ framework (Prakken, 2010: 96-114): 

 We choose the context 𝑥 as an axiom set (Prakken, 2010: 98) – i.e. as a set of 

premises against which it is not possible to argue. This means that arguments 

cannot be attacked on their premises, so, contextual information is considered to 

be always true. Intuitively, this expresses the idea that facts that describe a 

certain situation cannot be disputed – e.g., in our context, a board position 

cannot be disputed by any of the players, as well as the same applies to the 

game’s rules. 

  We choose all of the rules in our knowledge base to be defeasible, that is, given 

that the assumptions of a rule all hold then the rule’s head may hold (Prakken, 

2010: 97). This, defeasibility is one of the factors that is intended to capture the 

refutable character of human reasoning, since, in most everyday situations – as 

well as in chess – little are the chances that a rule holds absolutely, on every 

occasion. Instead, most rules are dependent on the wider context into which 

they are applied. 

 We choose rebutting attacks between arguments (Prakken, 2010: 101). In more 

detail, an argument 𝐵 rebuts another argument 𝐴 when argument 𝐵 leads, 

possibly among others, to a conclusion that contradicts some of the conclusions 

of 𝐴. In a sense, allowing for rebutting attacks means that for an argument 𝐴 to 

hold, no other counter-argument may be triggered by a given context, so each 

single conclusion of 𝐴 is accepted in that given context. 

 We also order arguments according to the last-link principle (Prakken, 2010: 

109). That is, we say that an argument 𝐴 is preferred over another argument 𝐵 if 

the last rule of 𝐴 is preferred over the last rule of 𝐵 according to the priority 

relation ≺. 
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As a result, we could say that an argument 𝐴 supporting 𝑔 attacks another argument 

𝐵 which contains a rule 𝑟 with head −𝑔 (i.e. (𝐴, 𝐵) ∈ 𝐴𝑡𝑡) in a context 𝑥 under a 

knowledge base 𝑘 = (𝜌, ≺) if one of the following conditions is true: 

1. 𝑔 ∈ 𝑥 – i.e. the conclusion of argument 𝐴, 𝑔, is an indisputable fact; 

2. 𝑡 ⊀ 𝑟, where 𝑡 is the crown rule of argument 𝐴 – i.e. argument 𝐴 is not less 

preferred than the sub-argument 𝐵′ of 𝐵 which has 𝑟 as its crown rule. 

We will now present some examples so as to clarify the above notions. To begin with, 

consider the two last arguments 𝐴 and 𝐵 presented in the previous subsection (3.3.1), 

namely: 

A = {is_checkmate(d8h4), move_played_by(d8h4,black), 

plays_as(black), Rule_7}; 

B = {move_played_by(d8h4,black), plays_as(black), 

move_count(2), moves(d8h4,queen), Op, Rule_6}; 

As we can see, 𝐴 attacks 𝐵 but not the other way around. Indeed, Rule_7 of argument 𝐴 

attacks argument 𝐵 on Rule_6. However, the same does not hold for 𝐵, as it may contain 

a rule that leads to a conflict with 𝐴, nevertheless Rule_7 is preferred over Rule_6 – 

since Rule_7 appears above Rule_6 in the knowledge base. 

As another example, consider the following knowledge base39 which contains Op,  – 

where, as we have previously declared, rules are listed by descending priority: 

Sac :: plays_as(Colour1), -plays_as(Colour2), 

move_played_by(Move,Coulour1), to_square(Move,Square1), 

controls(Square2,Piece,Colour2,Square1) implies –suggest(Move); 

Cap :: plays_as(Colour), move_played_by(Move,Colour), 

is_capture(Move) implies suggest(Move); 

Noq :: plays_as(Colour), move_played_by(Move,Colour), 

game_phase(opening), moves(Move,queen) implies –suggest(Move); 

Op :: move_count(X), ?<(X,11) implies game_phase(opening); 

                                                        
39 Any predicates that have not been presented yet, are intended to be interpreted as indicated 

by their names – e.g. is_capture(Move) is intended to be interpreted a: move Move is a 

capture move. 
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Also, consider the following fragment of a context which describes the position shown in 

Figure 9: 

plays_as(black); 

-plays_as(white); 

move_played_by(d8h4,black); 

to_square(d8h4,h4); 

is_capture(d8h4); 

move_count(2); 

moves(d8h4,queen); 

controls(h1,rook,white,h4); 

In the above context we can detect three interesting arguments, let 𝐴, 𝐵, 𝐶: 

A = {move_count(2), move_played_by(d8h4,black), 

plays_as(black), moves(d8h4,queen), Op, Noq}; 

B = {move_played_by(d8h4,black), plays_as(black), 

is_capture(d8h4), Cap}; 

C = {plays_as(black), move_played_by(d8h4,black), 

-plays_as(white), to_square(d8h4,h4), 

controls(h1,rook,white,h4), Sac}; 

Figure 9: A not so difficult choice. 
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Among the three arguments described above, given that 𝑁𝑜𝑞 ≺ 𝐶𝑎𝑝 ≺ 𝑆𝑎𝑐, we have an 

attack from argument 𝐵 to argument 𝐴 – since 𝑁𝑜𝑞 ≺ 𝐶𝑎𝑝 – as well as another attack 

from argument 𝐶 to argument 𝐴 – since 𝐶𝑎𝑝 ≺ 𝑆𝑎𝑐. 

3.3.3 Grounded Extension of an Argumentation Framework 

As our next step, we would like to investigate what one could safely deduce given a 

prioritised knowledge base 𝑘 and a context 𝑥 as well as whether there is an efficient 

algorithm that computes the set of inferred literals. A possible answer to this question, is 

to adopt, as in (Michael, 2019: 83-84), Dung’s Grounded extension of an argumentation 

framework which expresses the grounded (skeptical) semantics as declared in (Dung, 

1995: 329).  

We will need some definitions before we proceed to the definition of an argumentation 

framework’s grounded extension. Given an argument 𝐴 and a set of arguments, 𝑆, we 

will say that 𝐴 is acceptable with respect to 𝑆 if and only if for any other argument 𝐵 

that attacks 𝐴 there exists another argument 𝐶 ∈ 𝑆 such that 𝐶 attacks 𝐵 (Dung, 1995: 

326). That is, 𝑆 provides enough arguments so as to defend all attacks against40 𝐴. 

Let now 𝒜 = (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) be an argumentation framework. Then, the characteristic 

function of 𝒜 is a function 𝐹𝒜: 𝑃(𝒜) → 𝑃(𝒜), where by 𝑃(𝑋) we denote the powerset of 

a set 𝑋, such that 𝐹𝒜(𝑆) = {𝐴 ∈ 𝐴𝑟𝑔𝑠 ∶ 𝐴 is acceptable with respect to 𝑆} (Dung, 1995: 

328-329). Using 𝐹𝒜  the grounded extension 𝐺𝒜  of 𝒜 is defined as the first, with respect 

to set inclusion, fixed point of 𝐹𝒜  (Dung, 1995: 329). 

Let us clarify the above definition by describing a process in which one may find the 

grounded extension of an argumentation framework. Let, as above, 𝒜 = (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) 

denote an argumentation framework and also let 𝐹 be its characteristic function. We 

start from the empty set, ∅, and proceeds as follows: 

1. If 𝐹(∅) = ∅ we have found the first fixed point of 𝐹 so 𝐺𝒜 = ∅ and we are done. 

2. If 𝐹(∅) ≠ ∅ then we proceed to finding 𝐹2(∅) ≔ 𝐹(𝐹(∅)). Again, in case 

𝐹2(∅) = 𝐹(∅) then 𝐺𝒜 = 𝐹(∅) and we are done. 

3. If 𝐹2(∅) ≠ 𝐹(∅) then we proceed to computing 𝐹3(∅) and so on. 

                                                        
40 Intuitively, this corresponds in some way to having a view 𝐴 on some certain topic as well as 

sufficient evidence and/or knowledge – enclosed in 𝑆 – so as effectively argue against any 

attempt to dispute that view. 
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Given that 𝐹 preserves set inclusion41, so at each step we either stop to some fixed point 

or proceed with a larger set of arguments, it is guaranteed that we can compute the 

grounded extension42, 𝐺𝒜 , of 𝒜. 

Let us now discuss the intuition behind grounded semantics, as defined above43. At first, 

we compute 𝐹(∅) which corresponds to the set of arguments 𝐴 ∈ 𝐴𝑟𝑔𝑠 that are 

acceptable by ∅. This intuitively describes inferences that need no further support to 

defend against attacks from any other arguments – i.e. there is no argument 𝐵 that 

attacks any argument 𝐴 in 𝐹(∅). Should 𝐹(∅) = ∅ then we cannot proceed any further 

since ∅ = 𝐹(∅) = 𝐹(𝐹(∅)) = ⋯ = 𝐹𝑛(∅) = ⋯ and, consequently, there is no argument 

included in 𝐺𝒜 . 

However, in case 𝐹(∅) ≠ ∅ we proceed by computing 𝐹(𝐹(∅)), that is, the set of 

arguments that, even if attacked by some other arguments, can be defended by 

arguments that, themselves, are not attacked by any other argument. Hence, we can also 

guarantee that such inferences can be convincingly trusted. In the same fashion as 

above, if 𝐹(𝐹(∅)) = 𝐹(∅) then we have constructed tour argumentations framework’s 

grounded extension while, in case the above does not hold, we proceed by computing 

𝐹 (𝐹(𝐹(∅))) = 𝐹3(∅). As with the previous case of 𝐹2(∅), we make a step forward 

towards arguments that, apart from the previous two cases, may be attacked by 

arguments that are themselves attacked by other arguments in 𝐹(∅). We continue in the 

same way until we reach 𝐹’s first fixed point. 

                                                        
41 Indeed, let 𝑆 ⊆ 𝑇 and 𝐴 ∈ 𝐹(𝑆). Then, since any attack against 𝐴 is defended by an argument 

from 𝑆 the same applies for 𝑇, with leads to 𝐴 ∈ 𝐹(𝑇) and, consequently, to 𝐹(𝑆) ⊆ 𝐹(𝑇). 

42 Indeed, to prove this, it suffices to prove that 𝐹 has always at least one fixed point. To prove 

this, let 𝐶 ≔ {𝑆 ⊆ 𝐴𝑟𝑔𝑠: 𝑆 ⊆ 𝐹(𝑆)}. Observe that 𝐶 ≠ ∅ since ∅ ∈ 𝐶 and let 𝑇 ≔ ⋃ 𝑆𝑆∈𝐶  – which is 

well defined, since 𝐶 ≠ ∅. At first, we will prove that 𝑇 ⊆ 𝐹(𝑇). Indeed, since 𝑆 ⊆ 𝑇 for any 𝑆 ∈ 𝐶, 

since 𝐹 preserves set inclusion we get 𝐹(𝑆) ⊆ 𝐹(𝑇) for any 𝑆 ∈ 𝐶. As a result, 𝑇 = ⋃ 𝑆 ⊆ 𝐹(𝑇)𝑆∈𝐶  

and, since 𝑇 = sup 𝐶 – this is easy to prove – we obtain 𝑇 ⊆ 𝐹(𝑇). For the inverse inclusion, 

observe that, since 𝑇 ⊆ 𝐹(𝑇), since 𝐹 preserves set inclusion, we also have 𝐹(𝑇) ⊆ 𝐹(𝐹(𝑇)). 

Hence, by 𝐶’s definition, we obtain 𝐹(𝑇) ∈ 𝐶 so, since 𝑇 = sup 𝐶 we also have 𝐹(𝑇) ⊆ 𝑇. So, 

𝑇 = 𝐹(𝑇) and, as a result, 𝑇 is a fixed point of 𝐹. 

43 They are also referred to as skeptical semantics in (Dung, 1995: 329), which unveils that the 

intention is, as we will explain, to capture a set of inferences that can be safely proved under a 

knowledge base 𝑘 in context 𝑥. 
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At a higher level, we could describe the above process of constructing the grounded 

extension of an argumentation framework as an iterative process in which we start by 

arguments that need not be defended by other arguments and then gradually add 

arguments such that they (i.e. the new arguments) can be supported against other 

attacks by arguments that we have already accepted – by counter-attacking those 

attacking arguments. In the above context, the terms grounded and skeptical seem 

plausible. 

The above property of “groundedness” of grounded semantics is evidently a desired 

property when it comes to argumentation, in the sense that it allows for inferences to be 

“safely” conducted. Furthermore, skeptical semantics have been chosen for two more 

reasons: (i) they lead to a single model44 which conforms to results from other fields 

about the emergence of a single model in human reasoning (Stenning, Lambalgen, 2012: 

125-128); (ii) the grounded extension of an argumentation framework can be efficiently 

computed (Michael, 2019: 83-84).  

Having explained at an abstract level the motivating ideas behind the definition of an 

argumentation framework’s grounded extension as well as our own motivation for 

choosing it in our setting, we shall present an example of a grounded extension in our 

context – i.e. chess. Consider again the following arguments 𝐴𝑟𝑔𝑠 ≔ {𝐴, 𝐵, 𝐶} where: 

A = {move_count(2), move_played_by(d8h4,black), 

plays_as(black), moves(d8h4,queen), Op, Noq}; 

B = {move_count(2), move_played_by(d8h4,black), 

plays_as(black), is_capture(d8h4), Cap}; 

C = {plays_as(black), move_played_by(d8h4,black), 

-plays_as(white), to_square(d8h4,h4), 

controls(h1,rook,white,h4), Sac}; 

Also, let the attack relation be defined as follows: 𝐴𝑡𝑡 ≔ {(𝐶, 𝐵), (𝐵, 𝐴)}. Then we 

compute the grounded extension of the argumentation framework (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) as 

indicated below: 

                                                        
44 Indeed, given that the grounded extension of an argumentation framework 𝒜 is defined as the 

least fixed point of its characteristic function 𝐹𝒜 , it is by its definition, unique. 
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 At first, we compute 𝐹𝒜(∅). Evidently, given our attack relation, the only 

argument that can stand unsupported by other arguments is argument 𝐶 so 

𝐹𝒜(∅) = {𝐶}. Since 𝐹𝒜(∅) ≠ ∅ we need to proceed further. 

 Next, we compute 𝐹𝒜
2(∅) = 𝐹𝒜(𝐹𝒜(∅)). Since 𝐶 ∈ 𝐹𝒜(∅) and 𝐹𝒜  preserves set 

inclusion, we also have 𝐶 ∈ 𝐹𝒜
2(∅). Moreover, since 𝐵’s attack on 𝐴 is defended 

by 𝐶 ∈ 𝐹𝒜(∅) we obtain that 𝐴 ∈ 𝐹𝒜
2(∅). Also, observe that 𝐵 ∉ 𝐹𝒜

2(∅) since it is 

being attacked by 𝐶. 

 Next, we compute 𝐹𝒜
3(∅) = 𝐹𝒜(𝐹𝒜

2(∅)). Observe that 𝐵, the only argument not 

already included in the framework’s grounded extension cannot be included 

since 𝐵 is being attacked by 𝐶. Given the fact that 𝐹𝒜  preserves set inclusion, we 

obtain that 𝐹𝒜
3(∅) = 𝐹𝒜

2(∅), hence, 𝐹𝒜 ’s first fixed point is {𝐴, 𝐶}. 

As a result, the corresponding grounded extension of the given argumentation 

framework (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) is {𝐴, 𝐶} which reflects also our intuition that, given the above 

three arguments as well as their attack relation, we cannot convincingly argue in favour 

of 𝐵 while, as shown above, we can when it comes to𝐴 and/or 𝐶. 

3.3.4 Efficient Computation of an Argumentation Framework’s Grounded 

Extension 

While the computation of the grounded extension of an argumentation framework is 

efficient in terms of the number of arguments included in it, this does not hold when it 

comes to the sizes of the knowledge base 𝑘 = (𝜌, ≺) and the context 𝑥 from which the 

argumentation framework has been constructed (Michael, 2019: 84). Indeed, 

computation time may well be exponential in terms of the number 𝑛 = |𝜌| of rules 

included in 𝑘 as well as in the number of literals, 𝜆 = |𝑥|. To demonstrate this, consider 

the following knowledge base: 

R_1 :: a1(X1) implies a2(X1); 

R_2 :: a2(X1), b(X2) implies a3(X1,X2); 

R_3 :: a3(X1,X2), b(X3) implies a4(X1,X2,X3); 

… 

R_n :: an(X1,X2,…,Xn-1) b(Xn) implies an+1(X1,X2,…,Xn); 

Also, consider the following context: 

a1(1); a1(0); b(1); b(0); 
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Given the above, we can construct the following arguments, possibly among others – 

where, by 𝐴 → 𝑔 we denote that argument 𝐴 supports some literal 𝑔: 

A0 = {a1(0), R_1} -> a2(0); 

A1 = {a1(1), R_1} -> a2(1); 

A00 = {a1(0), b(0), R_1, R_2} -> a3(0,0); 

A01 = {a1(0), b(1), R_1, R_2} -> a3(0,1); 

A10 = {a1(1), b(0), R_1, R_2} -> a3(1,0); 

A11 = {a1(1), b(1), R_1, R_2} -> a3(1,1); 

A000 = {a1(0), b(0), R_1, R_2, R_3} -> a4(0,0,0); 

… 

A111…1 = {a1(1), b(1), R_1, R_2, …, R_n} -> an(1,1,…,1); 

Evidently, the above arguments are 2 + 22 + 23 + ⋯ + 2𝑛−1 = 2(2𝑛−1 − 1) = 2𝑛 − 2, so, 

indeed, the corresponding grounded extension needs time at least exponential in 𝑛 to be 

computed. Observe in the above how the size of the context, 𝜆, did not play any role in 

the exponential blowup of the representation of the argumentation framework – the 

same context containing four (4) literals suits for any value of 𝑛 ∈ ℤ>0. As a result, we 

shall look for a better representation for a grounded extension since using arguments 

may lead to exponentially large computations. 

A way to efficiently compute the grounded extension of an argumentation framework 

𝒜𝑘(𝑥) induced by a prioritised knowledge base 𝑘 and a context 𝑥 is presented in 

(Michael, 2019: 84). To do so, we introduce at first the dual representation of a 

grounded extension being the tuple (𝑥, 𝜌𝑘(𝑥)) where 𝜌𝑘(𝑥) is the set of rules included in 

the arguments of the grounded extension of an argumentation framework 𝒜𝑘(𝑥). As 

demonstrated in (Michael, 2019: 84), dual representations are to a one-to-one 

correspondence with grounded extensions in the sense that any argument contained in 

𝒜𝑘(𝑥) can be reconstructed using the context 𝑥 as well as the set of rules 𝜌𝑘(𝑥) and, 

conversely, any argument in 𝑥 under 𝜌𝑘(𝑥) is an argument included in the grounded 

extension of 𝒜𝑘(𝑥). 

Next, we present an algorithm which efficiently computes the dual representation of a 

grounded extension of an argumentation framework 𝒜𝑘(𝑥) with respect to the number 

of rules included in 𝜌𝑘(𝑥) as well as the context’s 𝑥 size. 

The algorithm is the following one: 
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1. At first, given 𝑘 and 𝑥, construct the inference graph 𝐺 of 𝑘 – i.e. the graph that 

includes anything that may be inferred from 𝑥 and 𝑘 using modus ponens. 

2. Then, construct a list, 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠, which initially contains all the literals 

included in the given context 𝑥, as well as a 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 list which is initially 

empty. 

3. Loop through the following steps until no new literal is added in the 

𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 list: 

a. Remove from the inference graph any literals that conflict with literals in 

𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠. 

b. For each argument that has remained in the inference graph 𝐺 keep only 

its crown rule45. 

c. Add any rule whose body literals are all included in 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 and 

which also is preferred against to any other conflicting rule with respect to 

𝑘’s priority relation, ≺, to the 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 list. 

d. For each rule in 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 add its head to 𝑚𝑎𝑟𝑘𝑒𝑑𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠. 

We shall now, as with previously introduced notions, explain the above algorithm by 

providing an example. Let us consider again the three arguments 𝐴, 𝐵, 𝐶 of our previous 

example as well as the corresponding attack relation. Given the set of all rules contained 

in them, 𝜌, as well as the literals of context 𝑥 we can construct the corresponding 

inference graph 𝐺 as shown in Figure 10. Also, let 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 and 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 be 

the two lists of marked literals and marked rules accordingly. Then: 

1. At first, we initialise 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 by adding all context literals to it. Thus: 

markedLiterals = {plays_as(black), -plays_as(white), 

move_played_by(d8h4,black), to_square(d8h4,h4), 

is_capture(d8h4), move_count(2), moves(d8h4,queen), 

controls(h1,rook,white,h4)}; 

2. Next, we proceed to step 3b – since no literals conflict with marked ones at the 

moment. For the time being, all rules are maintained since all may be crown rules 

for a suitably selected argument46. 

                                                        
45 Remember that and for an argument 𝐴 for 𝑔, the argument’s crown rule has been defined to be 

the (single) rule that has 𝑔 as its head, provided that such a rule exists. 
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3. Now, as we see in Figure 10, given our list of marked literals, rules Op as well as 

Cap and Sac have all their body literals marked, so we add them to markedRules 

– there are no conflicts to resolve here. We also add the rules’ heads 

 -suggest(d8h4) and game_phase(opening) to markedLiterals. 

4. We remove suggest(d8h4) from 𝐺 since it conflicts with some marked literal. 

5. Now, we see that the only remaining rule, Noq, has all its body literals marked 

and there is no other rule left in 𝐺 conflicting with Noq and is also preferred 

against it, so we shall not include Noq in markedRules and, consequently, we add 

no new literals to markedLiterals. 

6. Since no new literals were added during the previous iteration, the process 

terminates. 

So, we see that indeed, we can reconstruct using literals in markedLiterals and rules 

in markedRules all arguments found in the grounded model of our argumentation 

framework. 

 

Figure 10: The inference graph of our example. The blue ellipse includes all context literals 
while the red polygon all marked ones. 

3.3.5 Learning in the context of Machine Coaching 

Up to now, we have defined how argumentation is conducted within the scope of 

Machine Coaching, as well as a language within which argumentation is conducted. It 

remains to describe the learning process. In general, learning in the context of Machine 

Coaching is defined (Michael, 2019: 84) using Probably Approximately Correct (PAC) 

                                                                                                                                                                             
46 As far as rules Noq, Cap and Sac are concerned, they are evidently included since they are 

crown rules for the arguments 𝐴, 𝐵 and 𝐶 respectively. As for rule Op, we can construct an 

argument with it as crown rule, namely D = {move_count(2), Op}. 
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semantics, as described in (Valiant, 1984: 1136-1137). Namely, we say that an algorithm 

is a probably approximately conformant learner of some feedback class47 

𝐹 = 𝐹(𝐼, 𝑂, 𝐴) using a hypothesis class48 𝐻 if for every 𝛿, 휀 ∈ (0,1], every probability 

distribution 𝐷 over inputs in 𝐼 of size 𝑛 and every 𝑓 ∈ 𝐹 of size 𝑠 it can, given access to 

𝛿, 휀, 𝐹, iteratively invoke the following process: 

1. Get an input 𝑥 ∈ 𝐼 either randomly under 𝐷 or by actively choosing it. 

2. Select an output from 𝑦 ∈ 𝑂. 

3. Ask for some advice 𝑓(𝑥, 𝑦). 

After time at most 𝑔 (
1

𝛿
,

1
, 𝑛, 𝑠) the algorithm terminates and returns, except with 

probability 𝛿, a hypothesis ℎ ∈ 𝐻 such that 𝑓(𝑥, ℎ(𝑥)) = 𝑛𝑜𝐴𝑑𝑣𝑖𝑐𝑒 except with 

probability 휀 (Michael, 2019: 84). We will also say that the algorithm is an efficient 

conformant learner if 𝑔 is of polynomial complexity with respect to its parameters. 

Explaining the above definition, we could roughly say that, given any desired probability 

of failure 𝛿 ∈ (0,1] as well as any desired probability of accuracy 휀 ∈ (0,1] we can say 

that there exists an algorithm capable of capturing a theory about something – e.g. chess 

– by a process during which the algorithm makes predictions about examples it 

encounters and receives pieces of advice about them (i.e. its predictions). Then, given 

that the algorithm terminates at some time – dependent on the two given probabilities 

as well as the size of each example and the corresponding pieces of advice – by 

providing a model of our theory which is accurate allowing for errors to occur with 

probability 휀. Additionally, the algorithm may not yield the above model of our theory 

with probability at most 𝛿. 

                                                        
47 A feedback class is defined to be a set of feedback functions 𝐹 ≔ {𝑓: 𝐼 × 𝑂 → 𝐴}, where 𝐼, 𝑂, 𝐴 

are the input, output and advice sets respectively. That is, 𝐹 contains functions which, given an 

input – i.e a learning example – and an output – i.e. the machine’s prediction – return an advice. 

We also demand, as in (Michael, 2019: 84) that for each input 𝑥 ∈ 𝐼 there exists at least one 

𝑦 ∈ 𝑂 such that 𝑓(𝑥, 𝑦) = 𝑛𝑜𝐴𝑑𝑣𝑖𝑐𝑒 – i.e. there exists at least one acceptable output for any 

input. 

48 A hypothesis class is defined as a set of functions 𝐻 ≔ {ℎ: 𝐼 → 𝑂} which, given an input 𝑥 ∈ 𝐼 

returns an output ℎ(𝑥) ∈ 𝑂 – in other words, given a learning example it returns a prediction 

about it. 
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The above is a quite general definition of learnability, however, we shall restrict 

ourselves to discussing a certain algorithm presented in (Michael, 2019: 84-85) which 

describes a learning protocol under which learning is guaranteed to be efficient49. Under 

this protocol, we choose a specific feedback class 𝐹 described as follows – let 𝑘 denote a 

knowledge base which describes the theory we aim to learn as well as 𝑥 denote some 

arbitrary context: 

 A predicted rule will be considered unrecognised if it is not encountered in 𝑘 – i.e. 

if it is not some rule in our theory. 

 A predicted rule will be considered superfluous if it does not contribute to any 

argument in 𝑥 under 𝑘. 

 A rule will be considered incomplete if it does not appear in a prediction while it 

is included in 𝑘 and its inclusion would lead to some additional argument from 

the machine. 

 An argument will be considered indefensible if there exists no other argument in 

𝑥 under 𝑘 that attacks it while it attacks some argument in the machine’s 

prediction. 

 No response, if none of the above holds. 

Given the above feedback class as well as the condition that conflicting rules in 𝑘 are 

linearly order with respect to ≺, then, as proved in (Michael, 2019: 85) the following 

algorithm is a probably approximately conformant learner: 

1. Let 𝑘 = ∅ be the machine’s initial knowledge base. 

2. For each randomly chosen input 𝑥: 

a. Predict the corresponding dual representation 𝑦. 

b. Receive the user’s advice 𝑓(𝑥, 𝑦) according to the above protocol. 

c. Delete any rules considered superfluous or unrecognised, add rules that 

are labeled as incomplete or lead to counter-arguments by the user with 

higher priority than any existing rule in the knowledge base, 𝑘. 

3. Repeat the above until the user provides no response for 𝑚 consecutive cycles, 

where 𝑚 is polynomial with respect to the aforementioned parameters – see the 

definition of a probably approximately conformant learner above. 

                                                        
49 By efficient, we mean that learning is conducted in polynomial time with respect to various 

PAC related parameters. 
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Observe how the above learning protocol accommodates all the desired functionality as 

described in chapter 3, section 3.1, where we demanded for the capability of a user to 

provide the machine with counter-argumentation with respect to suggestions and 

explanations provided by the machine. 
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Chapter 4 
Implementation 

In this chapter, the implementation of the chess coach is presented. The structure of the 

chapter is as follows: (i) in section 4.1, we present the implementation of our first order 

language as well as make some crucial remarks regarding several features; (ii) in section 

4.2, we present the implementation of the reasoning engine; (iii) in section 4.3, we 

present some chess-specific features regarding our final chess bot and; (iv) in section 

4.4, we present the designed Graphical User Interface (GUI) that accommodates all the 

above functionalities as well as our implementation of the interaction protocol 

presented in chapter 3. 

4.1 Implementing a First Order Language 

As we have seen in the previous chapter, both human-machine interaction as well as 

reasoning in the context of Machine coaching do rely on a first order language that 

efficiently captures the semantics of the domain of application. As a result, the way in 

which the aforementioned language will be implemented is expected to affect our work 

at a significant extent, as far as its technical aspects are concerned. 

We aimed towards a generic implementation, that is, our language is not domain-

specific and can accommodate any other task that would require a similar functionality. 

Moreover, as one may see throughout the rest of this section, the language could be 

extended to allow for general first order reasoning by also implementing function 

symbols as well as altering the way unification is conducted in our context – i.e. without 

taking into account function symbols. In the rest of this section we will discuss not only 

the way the language presented in chapter 3, section 3.2 has been implemented but also 

discuss some subtle points of our implementation. 

4.1.1 Basic implementation of the language 

In this subsection we will discuss the way in which the language described above has 

been implemented in java. The implementation is, as we will see, quite generic in the 

sense that by additionally implementing function symbols, any algorithm that needs a 
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typical first order language could utilise its structures. Also, this language will be used, 

as presented in chapter 3, section 3.2, as a base upon which any Machine Coaching 

related algorithm, as presented in (Michael, 2019: 83), will be implemented – also in 

java. 

Given the structure of the language of Machine Coaching as described above - as well as, 

in general, the structure of any first order language - an object-oriented approach 

seemed to be the most appropriate for our task. Under such a view, each entity of our 

language - i.e. each class of symbols - would be considered a separate object, allowing for 

it to have any functions related to its object specific functionalities, which would 

naturally lead into more efficient and intuitive coding, among others. Below, we present 

how each of the components of a first order language, as defined in chapter 3, section 

3.2, has been implemented: 

1. First order predicates are described by a Predicate class which includes the 

following fields: (i) an integer field, arity, which corresponds to the predicate’s 

arity; (ii) a String field, name, which corresponds to the predicate’s name; (iii) a 

list of variables field, variableList, which corresponds to the predicate’s list of 

variables/arguments. 

2. Constants are considered as predicates of zero arity (arity=0). Hence, each 

constant is an instance of Predicate class with arity=0 and its variable list 

equal to the null object50. 

3. Variables are described by a Variable class which has as fields: (i) a string field, 

name, which corresponds to the variable’s name; (ii) a Predicate field, value, 

which corresponds to the variable’s value, in case it is assigned (null otherwise). 

Evidently, since our target is to implement a first order language, the value field 

is not intended to take any other values other than zero arity predicates – i.e. 

constants, as explained above51. 

                                                        
50 While this contradicts a usual practice in first order logic of thinking of constants as function 

symbols of zero arity – e.g. (Enderton, 2012: 80-81). Our intention is to also allow for 

propositional knowledge bases and contexts to be expressed in our language, even if this is not 

relevant to our specific domain of application – i.e. chess. 

51 Actually, there is no restriction when it comes to the implementation of the Variable class, 

that prohibits assigning a predicate of positive arity to a variable as its value. However, the way 
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4. Literals are described by a Literal class which has as fields: (i) a Predicate field, 

atom, which corresponds to the literal’s predicate; (ii) a Boolean field, sign,  

which corresponds to the literal’s sign – i.e. sign=false means that the literal is 

negative while sign=true means that the literal is positive.  

5. Rules are described by a Rule class which has as fields: (i) a String field, name, 

which corresponds to the rule’s name; (ii) a list of literals field, body, which 

corresponds to the rule’s body; (iii) a literal field, head, which corresponds to the 

rule’s head. 

6. Knowledge bases are described by a KnowledgeBase class which has as fields: (i) 

a list of rules field, rules, which contains the knowledge base’s rules; (ii) a 

CHECK DATA STRUCTURE field, priorities, which corresponds to the priority 

relation defined between conflicting rules of the knowledge base. 

7. Contexts are described by a Context class which has a single list of literals field, 

CHECK literals, which corresponds to the context’s literals. This class was 

included mostly in order to facilitate the design of certain context-related java 

methods – since, as one may observe, a list of literals itself need not be a separate 

class, should no other additional functionality be introduced in it52. 

4.1.2 Remarks about the language’s implementation 

We shall discuss now some remarkable features of the designed language. To begin with, 

negation in the context of our language is treated as classical negation, in contrast to 

other approaches were negation is treated in the context of some sort of close world 

assumption – i.e., negation as failure. 

Next, our implementation takes into account the fact that the language is intended to 

have an equality symbol, that is, a binary predicate symbol denoted by ?=(X,Y) which is 

always interpreted as the congruence relation in any universe. As a result, for any 

constant c in our universe, we have that ?=(c,c) while no other instances53 of this 

                                                                                                                                                                             
in which variables are treated in the rest of the code ensures that only zero arity predicates – i.e. 

constants – are used as values for variables. 

52 As one may observe, apart from the absence of a separate constant class, the rest of our 

implementation reflects the structure of a typical first order language with no function symbols, 

as described in chapter 3, section 3.2. 

53 By saying “instances of some predicate” we refer to any literal built from that predicate, either 

positive or negative 
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predicate are true. Note that, even if the above holds for any constant of our universe, it 

is not explicitly included in any context generated. Instead, we have adopted a different 

methodology so as to avoid adding numerous trivial instances of ?=(·,·) in all contexts 

and, as a result, leading to an unnecessary increment of the reasoning algorithm’s 

execution time. 

The desired behaviour, as described above, has been achieved in the following way: 

 In case both arguments of ?=(·,·) are constants of our universe, let a and b 

respectively, then the ?=(a,b) holds exactly when constants a and b coincide – 

i.e. they refer to the same entity in our universe. In terms of our implementation, 

it means that all fields of the two predicate objects that correspond to a and b are 

equal. 

 In case exactly one of the two arguments of ?=(·,·) is a constant, let a, while the 

other is an unassigned variable, let X, then we one of the following takes place: 

o If ?=(X,a) – or ?=(a,X) – is the only literal in the rule’s body54 then X is 

unified with a, yielding the substitution {X -> a}. 

o If ?=(X,a) – or ?=(a,X) – is not the only literal in the rule’s body then, 

given a substitution S that includes all variables in any other (non-

numerical) literal55 in the rule’s body, should the substitution contain an 

assignment for X, then X is assigned with the corresponding value, let b, 

and ?=(b,a) is evaluated as in the first case. However, should X do not 

appear in S, X is unified with a and {X -> a} is added to S. 

 In case none of the arguments of ?=(·,·) is a constant, hence both are 

unassigned variables, let X and Y, similarly to the previous case, one of the 

following takes place: 

o If ?=(X,Y) is the only literal in the rule’s body, then X is unified with Y – 

see next section about more details on how this would affect inference56. 

                                                        
54 It is not allowed to use ?=(·,·) in a rule’s head, given that ?=(·,·) is defined to express the 

congruence relation between entities of any specified universe and, as a result, it cannot be 

overridden. 

55 See the next remark for more details about numerical literals and the way they have been 

implemented in our language. 

56 Under normal conditions, given that all literals are variable-free in our setting, such an 

occasion is not expected to occur. 
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o If ?=(X,Y) is not the only literal in the rule’s body, then, given a 

substitution S that includes all variables in any other (non-numerical) 

literal in the rule’s body, we have three further cases: (i) if S does not 

include X nor Y then X is unified with Y as above; (ii) if S includes one of 

the two but not the other, then the unassigned variable, without loss of 

generality, let X, is assigned with the same value as Y and {X -> c} is 

added to S, where c is the value of Y; (iii) if both variables are included in 

S then, as in the first case, ?=(X,Y) holds if and only if both variables are 

substituted by the same constant symbol in S. 

We will refer again to the way ?=(·,·) has been defined as well as to how it affects the 

implementation of the reasoning algorithm described in chapter 3, section 3.3, in the 

next section. 

Our next remark is related to the execution of usual numerical operations, the 

introduction of several mathematical functions as well as the definition of the less than 

relation between numbers (<) in our language. While addition, multiplication and the 

usual order relation between numbers may be defined in terms of our (first order) 

language, we preferred to allow for such expressions to be computed externally, using 

built-in functions provided by java, so as to avoid unnecessary long arguments57 where a 

large part of them would be dedicated to proving e.g. that 3 + 7 < 98 − 5. 

At this point we should also note that equality between numerical expressions in the 

context of our language is also captured by the already defined ?=(·,·) predicate. As 

far as equality between numerical constants is concerned, there was no need to make 

any changes in the algorithm we have presented above, since each number is considered 

                                                        
57 Indeed, in order to do so, one way would be to include two ternary predicates +(X,Y,Z) and 

·(X,Y,Z) with the intended interpretation being that Z is the sum/product of X and Y 

respectively, as well as a binary predicate <(X,Y) denoting the usual order relation between 

numbers. Moreover, we would need to provide all axioms describing a totally ordered field as 

well sufficiently many constant symbols describing “enough” numbers, which is evidently 

insufficient. Even restricting ourselves to natural numbers, it would still be required to allow for 

a function symbol succ(X) denoting the successor of X – or, equivalently, a predicate symbol 

succ(X,Y) denoting that Y is the successor of X – as well as include <(0,S(0)) in every context 

– so as to allow for any comparison to be computed by the rest of the order axioms. 



 

66 
 

a constant of our universe58. However, in the case non-constant numerical expressions, 

several changes were needed to be made. We will describe in full detail this part of our 

implementation in section 4.2, after having presented our implementation of the 

reasoning algorithm described in chapter 3, section 3.3.  

We should also note that in the context of our language, any mathematical expression 

should be written in usual infix notation, using parentheses were needed to determine 

priority among mathematical operators and functions. So, for example, an expression 

such as the following one: 

√𝑥2 + 3𝑥 + 11 − sin 𝑥 

is written as follows, using infix notation59: 

sqrt(X^2 + 3*X + 11) - sin(X) 

At last, all mathematical operations and functions60 that are allowed in our language as 

of the time this thesis was written are presented in Table 1. 

Name Symbol Example  

Addition + 32+5 

Multiplication * 4*6 

Subtraction - 4-56 

Division / 7/8 

Integer division (remainder) mod 14 mod 3 

                                                        
58 This is achieved during parsing, following our language’s syntax, as defined in chapter 3, 

section 3.2. Namely, during parsing a predicate’s arguments, any string starting with a capital 

letter of the latin alphabet is considered to denote a variable, while any other string sequence 

that starts either with a lowercase letter or a numerical digit (including the minus symbol, −) is 

considered as a constant symbol. 

59 Space characters between symbols indicating nothing and were inserted only to facilitate 

reading. 

60 As far as mathematical constants are concerned, the only constant recognised during parsing, 

apart from real numbers represented in usual decimal notation, is 𝜋, as of the time this thesis 

was written. Euler’s number 𝑒 was not considered necessary to be included since it could be 

accessed by using the exponential function – exp(1). 
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Integer division (quotient) div 5 div 2 

Exponentiation ^ 5^3 

Sine function sin sin(4) 

Cosine function cos cos(pi) 

Tangent function tan tan(2*pi) 

Cotangent function cot cot(-6) 

Exponential function exp exp(2*6) 

Natural logarithm function log log(pi) 

Base-2 logarithm function log2 log2(8) 

Table 1: Mathematical operations and functions recognised by the language. 

4.2 Reasoning and Argumentation 

In this subsection we will discuss how the algorithm presented in chapter 3, section 3.3, 

for the construction of the dual representation of the grounded extension of a 

contextualised argumentation framework 𝒜𝑘(𝑥) has been implemented, utilising all the 

above structures of our first order language. 

4.2.1 Implementation 

In order to implement the algorithm as described in chapter 3, section 3.3 as well as in 

(Michael, 2019: 84), we introduce the following classes: 

1. A Substitution class which represents a substitution of variables. It consists of 

a java Hash Map field, substitutions, which maps variables to constants61 – i.e. 

instances of the Variable class to instances of the Predicate class with zero 

arity (arity=0). Apart from that, it also accommodates several substitution-

specific methods that are useful when it comes to First Order Forward Chaining – 

e.g. applying a substitution to a given literal, which is utilized mostly in the 

unification algorithm. 

2. An InferenceGraph class which has the following fields: (i) a list of literals field, 

nodes, which corresponds to the graph’s nodes – which, in the current setting, 

are literals that are either included in a given context or that can be inferred from 

the given context and rules; (ii) a square Boolean array field, edges, which 

                                                        
61 It also contains another Hash Map field, tiedVariables, which maps unassigned variables to 

other unassigned variables. However, this field is not utilised in our work. 
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corresponds to the (directed) edges of the inference graph - with true at position 

(i,j) implying that there exists an edge starting from node i and ending to node 

j, as they indexed in the nodes list; (iii) a Hash Map field, originRules, which 

maps each graph node - i.e. each literal - to a non-empty list of rules which led 

that literal to be included in the graph as a node during some stage of its 

construction loop – see below. The class also accommodates methods for 

properly adding and removing nodes from and to the graph as well as returning 

the crown rules of arguments in the graph. 

3. A DualRepresentation class which describes the dual representation of a 

grounded model. It contains as fields: (i) a KnowledgeBase field, kb, which 

corresponds to the given knowledge base; (ii) a Context field, context, which 

corresponds to some given context; (iii) an InferenceGraph field, graph, which 

corresponds to the inference graph constructed by kb and context – see below 

for more details; (iv) a list of literals field, markedLiterals, which corresponds 

to the list of marked literals in the dual representation – see (Michael, 2019: 84) 

as well as below for more; (v) a list of rules field, markedRules, which 

corresponds to the list of marked rules constructed during the construction of the 

dual representation – for more, see below, as well. Also, the class accommodates 

methods for finding arguments in the grounded model in favour of a certain 

literal, in case such an argument exists. 

As far as the dual representation of a grounded model is concerned, the construction 

algorithm described in (Michael, 2019: 84) is implemented as follows, given access to a 

context 𝑥 and a prioritised knowledge base 𝑘 = (𝜌, ≺): 

1. At first, using the context’s literals as well as the rules contained in the 

knowledge base, the inference graph, graph, describing all the possible 

inferences in 𝑥 under 𝑘 is constructed in the following way: 

a. Given all the literals in the given context and an initially empty list of 

literals, inferred, for each rule in the given knowledge base: 

i. A list of substitutions, Subs, of all the substitutions that unify all 

literals in the rule’s body given the context’s literals is constructed. 

ii. For each substitution in Subs apply that substitution to the rule’s 

head and, if it has not been included in inferred, then add it. 
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b. Terminate when no new literals is added in inferred for an entire loop 

over all rules. 

2. Next, a list of literals, markedLiterals, is constructed, initially populated by the 

context’s literals, as well as an initially empty list of rules, markedRules. 

3. Any literal in graph that conflicts with some literal in markedLiterals is 

removed from graph. 

4. All rules in 𝑘 whose body literals are all included in markedLiterals and which, 

at the same time, are preferred over any other conflicting rule whose body 

literals are also all in markedLiterals are added to the markedRules list. 

5. Next, the head of each rule in markedRules is added to markedLiterals. 

6. Steps 3 to 5 are repeated until convergence – i.e. until no more literals are added 

in markedLiterals. 

4.2.2 Remarks about the above implementation 

As we have mentioned in section 4.1, a subtle point which should be further clarified is 

how numerical expressions are evaluated in the setting presented above. To begin with, 

we will refer to any “numerical” instance of ?=(·,·) as well as any instance of ?<(·,·) 

as numerical literals while we will refer to any other literals as typical literals or simply 

as literals if this introduces no ambiguity. So, ?=(·,·) may be both a numerical as well 

as a typical literal, depending on whether at least one of its arguments is a numerical 

constant or expression using mathematical functions and/or operators62. 

The crucial point here is to describe how unification is conducted so as to allow for 

numerical literals to be externally evaluated using built-in java functions and operators. 

So, let some rule, rule, and also let body denote its body – i.e. body is a list of literals 

that serve as the rule’s antecedents. Also, let context denote a context. Then in order to 

find all substitutions of body according to context: 

1. All typical literals apart from instances of ?=(·,·) are unified with respect to 

context. Let subs denote the set of substitutions that occurs from this step. 

                                                        
62 One may say that ?=(·,·) is overloaded however this is not exactly true, given that the actual 

deviation from the formal definition of our language is that we introduce certain function 

symbols – i.e. mathematical functions. Apart from that, ?=(·,·) “behaves” as it should – i.e. as 

our language’s equality symbol. 
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2. For each substitution, sub, in subs and for each typical instance inst of ?=(·,·) 

in body apply sub to inst and: 

a. If both arguments of inst are constants but they are not unifiable then 

remove sub from subs. 

b. If both arguments are unassigned variables then remove sub from subs. 

c. If one of them, let X, is an unassigned variable and the other is some 

constant, let c, then extend sub by adding {X -> c} to it. 

3. For each substitution sub in subs and any numerical instance inst of ?=(·,·) in 

body apply sub to inst, evaluate externally any mathematical expressions and 

unify as in step 2. 

4. For each substitution sub in subs and any numerical literal num that has 

remained unchecked apply sub to num and evaluate externally all the occurring 

mathematical expressions. Since num is necessarily an instance of ?<(·,·), act as 

indicated below: 

a. If at least one of its arguments is an unassigned variable, then remove sub 

from subs. 

b. Otherwise, let a and b be the values of the literal’s left and right argument 

respectively. If 𝑎 < 𝑏 then proceed to the next literal or terminate in case 

there is no literal to proceed while if  not then remove sub from subs. 

So, for instance, should we have a rule with body [p(A), ?<(A-4,3)] and a context 

containing only the literal p(5), then, according to the above algorithm, we have: 

1. At first, A is unified with 5, giving the only possible substitution: {A -> 5}. 

2. Then, the aforementioned substitution is applied to the left argument of  

?<(A-4,3) resulting to the mathematical expression 5 − 3 < 3 which is true, 

hence {A -> 5} is accepted. 

4.3 Chess related features 

In this section we will discuss the domain specific features of the designed application, 

as well as the rationale behind them in cases where it is considered necessary to do so.  

To begin with, any chess related function is eventually based on python’s chess module 

which, in short, gives access to: 
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 An object-oriented implementation of the game of chess accommodating all 

typical chess functionalities as well as all current FIDE regulations – updated with 

each new version of the module. 

 A Scalable Vector Graphics (SVG) representation of a chessboard including last 

move highlighting, check highlighting as well as several other attributes that 

facilitate the game’s graphical representation. 

 Built-in functions providing access to several game-related information. For 

instance, using the module’s built functions one may have access to squares 

attacked by a certain player (in terms of colour) or by a specific piece on the 

chessboard in a given position. Moreover, access to higher level information such 

as pins in a given position on the board is also provided. 

The latter are utilised during context construction as we shall present next. In order to 

construct a context describing a certain position on the chessboard, we need first to 

define which built-in predicates other than the ones included in the already 

implemented generic language of Machine Coaching63 we consider necessary. Our 

choices will, at a significant extent, determine the expressiveness of our language since 

the available predicates determine the relations which we can utilise in our rules. In 

general we could split built-in predicates in the following classes: 

 Predicates regarding static features of each position such as possible moves and 

pieces of data about them – i.e., which side makes the move, what piece is moved, 

from which and towards which square it that piece moved, whether that move is 

a capture one and so on – or the absolute location of each piece on the board and 

so on. 

 Predicates regarding features related to game history as well as each position, 

such as castling rights for each player and side – i.e. kingside/queenside castling 

– en passant captures and so on. 

 Predicates regarding static features of the game and which are independent of 

the current position, such as whether the bot plays as black or white and so on. 

A comprehensive list of the built-in predicates as of the time this thesis is being written 

may be found in Appendix A. 

                                                        
63 As a reminder, these literals are ?=(X,Y), and ?<(X,Y). 
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Using built-in predicates, each time that it is the bot’s turn to play, a context describing 

the current position on the board as well as other necessary facts about the game is 

constructed and provided as an input to the reasoning algorithm – which is invoked by 

the application as a separate java sub-process. Before we proceed, it is important to 

make a remark about the context describing each position. As one may have already 

realised, in each situation both players’ legal moves are provided within the context. As 

it has also been explained before, it is useful to have information about what the 

opponent is capable of doing in a given position, should one forfeit their own turn64.  

However, since this leads to not all moves in a given context to be legal for the side to 

play, it is possible that a user may provide rules that allow for illegal moves to be 

considered adequate by the bot. To avoid such an absurd behaviour, a posterior check is 

performed once a move has been suggested by the bot, so as to ensure that it is legal 

and, in case it isn’t, an alternative move is chosen randomly from the set of available 

legal moves65. 

4.4 Graphical User Interface 

Chess coach’s GUI has been designed using python’s PyQt5 module – actually, a python 

binding of the Qt toolkit. While java offers plenty of native GUI development options, 

such as Java Swing, PyQt5 was preferred due to python’s chess module which provides 

access to a plethora of utilities related to chess – see previous section for more details. 

Thus, using PyQt5 alongside with python’s chess module, while invoking PRUDENS’s 

                                                        
64 This may happen in several occasions. At first, some certain moves of the opponent, like a 

checkmate move, are necessary so to avoid defeat in the next move. Secondly, it has been 

reported by several professional players – for more, see chapter 5, section 5.2 – as well as by 

most of the contemporary computer chess works that forfeiting one’s move and exploring the 

opponent’s moves on that position provides wider insight on the opponent’s plan – see also the 

discussion about the null move heuristic in (Greenblatt, 1969: 808). 

65 There is also another path to ensure that always legal moves are suggested by the bot which 

was not preferred due to leading to a modification of the bot’s knowledge base from entities 

other than the coach. Namely, a rule off the form Rule :: –plays_as(Colour), 

move_played_by(Move,Colour) implies –suggest(Move); could be introduced with 

higher priority than any other conflicting rule in the knowledge base, so as to provide an 

argument against the inclusion of illegal moves attacking any other argument for them. 
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reasoning engine as a service facilitated a more concrete and efficient implementation 

not only of the chess coach’s GUI but also of the application as a whole. 

In the rest of this section we present, in short, the designed GUI as well as the 

functionalities it accommodates as far as human-machine interaction and Machine 

Coaching in general are concerned.  

4.4.1 Starting screen: choosing a mode of coaching 

The application’s first screen is shown in Figure 11. As one may observe there, the 

screen consists of the following parts – starting from top left and proceeding right and 

down towards the opposite bottom right corner: 

 An “Import” button. This button, once pressed, redirects the user to a file opening 

dialog, where they are prompted to load a previous game. As we shall see later 

on, this facilitates an asynchronous model of coaching, in the sense that the coach 

provides advice based on a game that the bot has already played - e.g. against 

another bot or human player. 

 An “Approve” button. This button, once pressed, declares that a move played by 

the bot as well as the corresponding explanation for that move have been 

approved by the coach – i.e no counter-argument needs to be provided by the 

user. 

 A “Delete rule” button. This button, once pressed, redirects the user to a rule 

deletion dialog from which they can delete any rule they wish from the bot’s 

knowledge base - for more details consult subsection 4.4.2. 

 An “Add rule” button. This button, once pressed, redirects the user to a rule 

addition dialog from which they can add any rule they wish to the bot’s 

knowledge base - for more details, consult subsection 4.4.2. 

 A “Play as” button box which contains two buttons: “White” and “Black”. Once one 

of these buttons is pressed, the button box is replaced by a chessboard and the 

user is set to play accordingly to their choice - i.e. as white, on condition they 

have pressed “White” and as black otherwise. 

 A “Game” text field, where the game’s moves appear. The moves are displayed in 

typical UCI format - so as to match the format in which they appear in the 

“Explanation” section, see next for details. 
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 A “Knowledge Base” text field, where the prioritised knowledge base used by the 

bot in the current game - whether it is a loaded previous game or a game the user 

is playing against/with the bot in live mode. 

 An “Explanation” text field, where the explanation regarding a move made by the 

bot is presented. The explanation for a move is, by its definition, the argument 

that has internally led to its suggestion – for more details, consult 4.4.2. 

 

Figure 11: The application's starting screen. 

 

We now proceed by describing the two available modes of coaching. 

4.4.2 Live coaching 

Should the user choose to play a game against/with the bot, they are redirected to the 

screen66 shown in Figure 12. The only actual difference between this and the starting 

                                                        
66 When playing in live mode, there are two reasonable scenarios: (i) the coach is playing against 

the bot; (ii) the coach is playing alongside the bot by inspecting its moves during a game against 
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screen is that now a chess board appears in place of the “Play as” button box - we have 

assumed that the user has chosen to play as white for the purposes of our 

demonstration. 

 

Figure 12: Playing against/alognside our bot. 

 

As far as moves from the side of the user are concerned, they are executed by clicking 

first on the desired move’s starting square and right after on its destination square. 

Provided that the move is legal, it is executed, otherwise no change takes place and the 

application waits for the user’s next click. Regarding the bot’s moves, they are executed 

automatically, under the following protocol: 

1. A list of all legal moves alongside any other meaningful information about the 

position are properly encoded in the first order language presented in chapter 3, 

                                                                                                                                                                             
another player. For more details about the plausibility of these scenarios related to actual chess 

coaching, consult chapter 5, section 5.2. 
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section 3.2. This list constitutes the context describing the current position on the 

board. 

2. Next, the corresponding dual representation of the grounded extension of the 

emerging argumentation framework is being constructed – for more details, see 

chapter 4, section 4.2. 

3. Given the moves that have been suggested in step 2, the bot chooses randomly - 

i.e. with equal probability - one of them and plays it. In case no move was 

suggested, the bot, by default, chooses randomly a move from the set of all legal 

moves in the current board position. 

After the bot makes a move, the “Explanation” text field is updated with the 

corresponding explanation that has led the bot to that specific suggestion or nothing, in 

case no move was eventually suggested and the played move was merely randomly 

selected. 

After a move has been played by the bot and the user has checked the provided 

explanation, there are three options provided to the user, represented by the three 

buttons provided on the top right corner of the application’s window. Namely, the user 

is allowed to: 

1. Approve a move as well as the corresponding explanation for it. 

2. Delete a rule or a set of rules from the bot’s knowledge base. 

3. Add a rule or a set of rules to the bot’s knowledge base alongside their priority 

level with respect to other conflicting rules. 

In order to approve a played move as well as the corresponding explanation, the user 

can press the “Approve” button right over the “Game” and “Knowledge Base” fields or 

simply play their next move, without providing any counter-argumentation. 

In order to delete some rule(s) form the bot’s knowledge base, upon seeing the bot’s 

move as well as the corresponding explanation, the user can open the Rule deletion 

dialog by pressing the “Delete rule” button – see Figure 13. From there, they are allowed 

to delete any rules they wish as well as choose whether the changes should apply from 

the current game or once this game is over. 

As far as adding a rule – or more – to the bot’s knowledge base, this can be done by 

pressing the “Add rule” button – see Figure 12 – which redirects the user to the 
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corresponding dialog – see Figure 14. In this dialog, there are several options as far as 

rule construction is concerned. To begin with, the user is allowed to edit the Rule’s 

name, body and head fields on the left part of the window by hand. Alternatively, there is 

also the possibility of adding literals to the rule’s body and/or head by clicking on the 

desired built-in predicate in the “Built-in predicates” list and then pressing the “Add to 

body” or “Add to head” button accordingly67. Also, observe that at the rightmost part of 

the window, there is a text box in which a description about the currently clicked built-

in predicate is presented. This description includes the intended interpretation of that 

predicate in our context, a small example of some positions on the board described by it 

as well as a list of all meaningful constants for each of its variables – for a full list of all 

the built-in predicates as of the time this thesis was written, consult Appendix A. 

 

Figure 13: Rule deletion dialog. 

Observe that the user is also allowed to determine the new rule’s priority, by providing 

the rule right above which they wish their new rule to be included – on condition this 

field is left blank, the new rule is assumed to be preferred over any other conflicting rule 

already included in the bot’s knowledge base. While, at most cases, any new rules 

inserted in the bot’s knowledge base are expected to be considered of higher priority 

than the rest conflicting rules – since they are expected to constitute 

refinements/exceptions to already existing ones – there are certain occasions in which 

                                                        
67 The only built-in predicate that makes sense to be on a rule’s head is suggest(Move) which is 

by default used to indicate that a move should – or should not, in case it appears negated – be 

suggested as an adequate move. 



 

78 
 

we would prefer to keep a rule always on top of all the others. For instance, consider the 

following rule: 

Mate_1 :: plays_as(Colour), move_played_by(Move,Colour), 

is_checkmate(Move) implies suggest(Move); 

This rule, being of ground importance, is expected to be provided to the bot at some 

early stage of the learning process. In case Mate_1 was overridden by another rule, say 

for instance Noq, then in positions like the one presented in Figure 8, the bot would lose 

a mate in one move, which is, evidently, an undesired behaviour.  

 

Figure 14: Rule addition dialog 

Even if no conflicting rule of higher priority than Mate_1 exists in the bot’s knowledge 

base, it is expected that a checkmate move will not be the only one suggested in most 

positions – e.g. the position shown in Figure 8 – and, given that, the chance that it is 

finally played by the bot is narrowed down. To avoid such cases, one may also introduce 

the following rule, so as to override any other suggestion on condition that a checkmate 

move exists: 

Mate_2 :: plays_as(Colour), move_played_by(Move1,Colour), 

is_checkmate(Move1), move_played_by(Move2,Colour),  

-?=(Move1,Move2) implies -suggest(Move2); 

Examples as the above one indicate that it is of crucial importance to allow for rules to 

be maintained on top of others constantly. Under the semantics of Machine Coaching, as 

declared in (Michael, 2019: 85) and described in detail in chapter 3, section 3.3, we can 

achieve this by allowing the user to decide at each time whether a rule should be 
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preferred over any other conflicting ones or be set at a certain place among other 

conflicting rules68. 

Given the above three actions, the user may provide feedback in all five (5) ways 

declared in the Machine Coaching interaction protocol that is presented in (Michael, 

2019: 85). Namely: 

1. Unrecognised rules are deleted, as described in (Michael, 2019: 85), in the proof 

sketch of Theorem 4.3. 

2. Superfluous rules are deleted as well, again as described in (Michael, 2019: 85). 

3. Incomplete rules, i.e. rules in the user’s grounded model that do exist in the 

returned argument/explanation and whose inclusion in the machine’s knowledge 

base would have led to an argument conformant to the user’s theory (Michael, 

2019: 85), are added to the machine’s knowledge base. 

4. Indefensible arguments, i.e. arguments in the user’s grounded model that attack 

an argument of the machine’s theory but are not attacked by any other argument 

in the user’s model (Michael, 2019: 85), are provided rule by rule setting 

priorities accordingly. 

5. Approved explanations are treated by actually performing no operation on the 

machine’s knowledge base. 

Given the above implementation of the interaction protocol described in (Michael, 2019: 

85) and the additional assumption that rules in a user’s knowledge base 𝑘 = (𝜌, ≺) in 

our domain of application – i.e. chess – can be linearly ordered with respect to ≺, then 

Theorem 4.3 (Michael, 2019: 85) ensures that learning is conducted efficiently in the 

sense defined in chapter 3, section 3.3. 

                                                        
68 There are also options other than this that facilitate the aforementioned desired behaviour. 

For instance, on could also allow for strict rules (Prakken, 2010: 97) which cannot be disputed 

by any other contextual counter-argument. Moreover, one could also restrict randomness in the 

sense of specifying a (possibly non-uniform) probability distribution over suggested moves – 

this could also be manipulated by the user themselves e.g. by introduce a built-in predicate 

suggest(Move,Weight) where Move is some legal move and Weight is a number indicating 

how highly should Move be ranked during random selection. All these are addressed in more 

detail in chapter 6. 
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Summarising, during live coaching, the user is allowed to play a game against the bot – 

or, equivalently, spectate a game played by the bot against another (human or machine) 

player – and provide feedback to it either in the form of counter-argumentation or by 

approving its decisions, leading, under certain assumptions, to the bot converging to the 

user’s theory under the semantics defined in chapter 3, section 3.3. 

4.4.3 Study mode 

Apart from live coaching, the designed application also allows for an asynchronous 

coaching option, in the following sense: 

 The bot plays a game at some time against another (human or machine) player 

and records the game itself alongside with any arguments for the moves it has 

played. 

 At a later time, a (human) coach asks the machine to load the game so as to study 

it together. 

 At each of the machine’s move, the coach, viewing the argument that led to that 

move, provides feedback in one of the five ways declared in chapter 3, section 3.3. 

The above is implemented by the “Import” button in our design – consult Figure 11. By 

pressing it, the user is redirected to an “Open file” dialog where they can choose the 

specific game file to load69. Then, a hidden button, namely “Next move”, appears next to 

the “Import” button, above the chessboard – top left corner of the application’s window. 

Using this button, the user can proceed to the next move of the loaded game. 

As with live coaching, the same interaction options are provided to the (human) coach. 

More precisely, the coach may: 

1. Approve a move played in the loaded game as well as the corresponding 

explanation by pressing the “Approve” button – see Figure 11. 

2. Delete a set of rules included in the bot’s knowledge base by pressing the 

corresponding “Delete rule” button and making their choices from within the 

“Rule deletion” dialog. 

                                                        
69 Games are stored in JSON files loaded as python dictionaries with game moves as keys and the 

corresponding explanations, should they exist, as values, or None otherwise. 
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3. Add rules or entire arguments in the bot’s knowledge base by pressing the 

corresponding “Add rule” button and making their choices from within the “Rule 

addition” dialog accordingly. 

Note that in either case – i.e. live of study mode – the user is allowed to choose one way 

of interaction at a time, conforming to the interaction protocol presented in (Michael, 

2019: 85). That is, should a user choose e.g. to delete some rules from the bot’s 

knowledge base then they are not allowed to add any new rules to it no sooner than the 

next move has been played by the bot – the same applies to adding rules70. In a sense, 

this corresponds to the view that a user may consider machine’s explanations erroneous 

based on one criterion at a time. 

4.4.4 Game over dialog 

Once a game has come to its end, the user is prompted to make some decisions 

according to their next actions. More precisely: 

1. They are asked whether they wish to save the game played or not – this applies 

only to games played in live mode since games loaded in study mode are already 

saved. 

2. The user is asked whether they wish to play another game against the bot or not 

– this applies to both live as well as study modes – and, in case they wish to, they 

are prompted to pick a colour to play with. 

Also, once a game is over and the user has specified their preferences with respect to the 

above, any (temporary) files related to the previous game are deleted – consequently, an 

unsaved game cannot be restored. 

  

                                                        
70 In any case, this is implemented by temporarily deactivating the three interaction buttons on 

the top right corner of the application’s window once one of them has been pressed. 
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Chapter 5 
Evaluation 

In this chapter we will present several results regarding the evaluation of our work. We 

decided to assess our work in two orthogonal directions. On the one hand, we measured 

the efficiency of our implementation in terms of computation time with respect to 

several parametres. Doing so, we intended – apart from assessing the implementation 

itself – to empirically verify the theoretical results that are reported in (Michael, 2019: 

84) regarding the efficiency of the dual representation of a grounded model. On the 

other hand, given that our intention is to capture human knowledge and heuristics 

regarding chess and transfer them to a machine, we also interviewed domain experts in 

order to receive meaningful domain specific feedback. 

The structure of this chapter is as follows: (i) in section 5.1 we describe the 

methodologies used so as to assess the efficiency of our implementation, while we also 

present and discuss the results we obtained; (ii) in section 5.2 we present and discuss 

the feedback we received from professional players and chess coaches regarding our 

work. 

5.1 Evaluation of the implementation 

In this section we shall present several results regarding the assessment of the efficiency 

of our implementation as a whole as presented in chapter 4, sections 4.1 and 4.2. To do 

so, we will rely on synthetic data, given that no satisfactory sets of real data were found 

that could allow us to systematically modify and control all the major parameters we 

would like to. 

5.1.1 Generation of synthetic knowledge bases and contexts 

In this subsection we will describe the way in which our synthetic data – namely, pairs 

of knowledge bases and contexts – were generated. Before we describe our random 

knowledge base/context generation protocol in full detail we shall first mention that the 

parameters against which we decided to measure the build time of a grounded model’s 

dual representation are: 
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 Negation ratio, i.e. the ratio of negative literals over the total literals count 

included in a knowledge base – namely, in the rules’ bodies – as well as in a 

context. For the rest of this section, we will refer to the former as negation ratio 

unless it is differently indicated. 

 Predicate arity, i.e. the number of arguments a predicate includes, as defined in 

chapter 3, section 3.2. 

 (Rule) Body size, i.e. the number of literals a rule contains in its body. We will also 

refer to this parameter simply as rule size. 

 Knowledge base size, i.e. the number of rules a knowledge base contains. 

Proceeding now to the description of our random knowledge base/context generation 

protocol to begin with, in order to randomly generate a knowledge base, we need to 

decide upon a protocol by which we will randomly generate rules – we set aside the 

knowledge base’s priority relation between these rules for now. Furthermore, in order 

to generate a rule, we have to decide how literals are randomly generated and, 

consequently, predicates, variables and constants.  

Starting with the lowest levels of our language, the number of variables was not 

considered important since variables serve mostly as placeholders. So, in all the 

following experiments we take care to include enough variables from a combinatorial 

perspective so as to allow for all other parameters to be properly set. Similarly, since it 

was not among our intentions to explicitly measure the effect of context complexity - e.g. 

in terms of its size - we simply allowed for each variable to take values from an 

constants array of size five (5). 

Proceeding to predicates, given a fixed arity 𝑛 as well as a list of variables 𝑣𝑎𝑟𝑠 with 

length at least 𝑛, we randomly select a random sample of size 𝑛 from 𝑣𝑎𝑟𝑠 without 

repetition and assign it as the predicate’s list of arguments. We also randomly assign 

each predicate a name of the form pX, where X is some randomly generated integer, 

unique for each predicate71.  

Next, given a list of predicates 𝑝𝑟𝑒𝑑 as well as a negation ratio 𝑝 ∈ [0,1] we generate a 

literal by randomly choosing the literal’s sign with probability 𝑝 being negative and 
                                                        
71 In general, we avoided lengthy numbers in all generated instances. While this led to some 

difficulties in proof-checking that knowledge bases as well as contexts were properly generated, 

it also drastically reduced the generated files’ size. 
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positive otherwise. Given a list of literals, 𝑙𝑖𝑠𝑡, a rule is generated by selecting body 

literals from 𝑙𝑖𝑠𝑡 such that no repetitions occur as well as no conflicting literals are 

included in the occurring sample. As far as the rule’s head is concerned, it is selected 

from 𝑙𝑖𝑠𝑡 similarly. 

In order to generate a random knowledge base, we work as follows, given a desired size 

𝑛 as well as a list of rules, 𝑟𝑢𝑙𝑒𝑠: 

1. For each rule, 𝑟𝑢𝑙𝑒, in 𝑟𝑢𝑙𝑒𝑠: 

a. We randomly select an integer 𝑑𝑒𝑝𝑡ℎ from {1,2,3,4,5}. 

b. Let 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 be an empty list as well as denote 𝑟𝑢𝑙𝑒 by 𝑟𝑢𝑙𝑒0 

c. For 𝑖 from  to 𝑑𝑒𝑝𝑡ℎ repeat: 

i. If 𝑏𝑜𝑑𝑦𝑖−1 is the list of body literals of 𝑟𝑢𝑙𝑒𝑖−1 then let 𝑏𝑜𝑑𝑦𝑖 =

𝑏𝑜𝑑𝑦𝑖−1 ∪ {𝑙𝑖𝑡} where 𝑙𝑖𝑡 is some literal that neither itself nor its 

opposite appear in 𝑏𝑜𝑑𝑦. 

ii. Let ℎ𝑒𝑎𝑑𝑖 be the opposite of ℎ𝑒𝑎𝑑𝑖−1, where ℎ𝑒𝑎𝑑𝑖−1 is the head of 

𝑟𝑢𝑙𝑒𝑖−1. 

iii. Define rule 𝑟𝑢𝑙𝑒𝑖 to have 𝑏𝑜𝑑𝑦𝑖  as its body as well as ℎ𝑒𝑎𝑑𝑖  as its 

head and add it to72 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠. 

d. If by adding 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 the desired size of the knowledge base 𝑘𝑏 is not 

exceeded, then add them to the knowledge base by ascending priority 

with respect to their indices as well as with higher priority than any 

previous rules, otherwise add as many randomly generated rules are 

needed so as to reach the desired knowledge base size. 

At last, given a knowledge base 𝑘 as well as a list 𝑝𝑟𝑒𝑑𝑠 of all the predicates included in 

rules in 𝑘, we construct a context by randomly selecting a number of predicates from 

{1,2, … ,10} and then substitute all its variables with corresponding constants as well as 

deciding upon their sign given a negation ratio 𝑝 ∈ [0,1]. After variable instantiation has 

                                                        
72 We preferred this approach instead of simply adding rules that have not yet been included in 

our knowledge base so as to ensure that any knowledge base would contain some structure that 

could lead to conflicts and hence substantially assess our reasoning mechanism. However, since 

exception depth was not further manipulated in this series of experiments, no further results 

will be reported about it. 
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been completed, we add them to the context, so as to avoid duplicates as well as conflicts 

with already included literals. 

At this point we should observe that, given a negation ratio 𝑝 ∈ [0,1], a randomly 

selected literal 𝑙𝑖𝑡 is negative with probability 𝑝 should it be selected from the pool of all 

literals present within a knowledge base while the same is not necessarily true for a 

rule’s body. That is, there is a significant probability that given any non-trivial negation 

ratio 𝑝 ∈ (0,1) there exist rules in a randomly generated knowledge base whose body 

literals do not follow the distribution of the rest knowledge base as far as 

negative/positive literals are concerned. 

5.1.2 Build time against negation ratio 

One of the first variables we would like to investigate is negation ratio – i.e the fraction 

of negative literals among all literals appearing in rules as well as in contexts. Intuitively, 

we expect that the effect of negation ratio will be insignificant as far as build time of a 

grounded model’s dual representation is concerned. Indeed, consider two values of 

negation ratio, let 𝑝1, 𝑝2 ∈ [0,1] such that 𝑝1 ≠ 𝑝2 and let 𝑡 = 𝑡(𝑝) be the dual 

representation’s build time with respect to negation ratio, 𝑝. Let also (𝑘1, 𝑥1) and (𝑘2, 𝑥2) 

denote two (knowledge base, context) pairs with negation rations 𝑝1 and 𝑝2 

respectively. Should 𝑡(𝑝1) > 𝑡(𝑝2) then we can rename73 enough predicates in 𝑘1 so as 

to change its negation ratio to 𝑝2 or approximately 𝑝2 as well as analogously modify the 

corresponding context 𝑥1. In the same way, we can also change the negation ratio of the 

(𝑘2, 𝑥2) pair from 𝑝2 to 𝑝1. 

Given that build time is not expected to be sensitive to predicates’ renaming74, we 

should expect that pre- and post-renaming built times should be the same – or, at least, 

similar –, which would lead to 𝑡(𝑝2) > 𝑡(𝑝1) which contradicts our hypothesis. So, we 

expect 𝑡(𝑝1) = 𝑡(𝑝2) or at least 𝑡(𝑝1) ≈ 𝑡(𝑝2) for any negation ratios 𝑝1, 𝑝2 ∈ [0,1]. 

                                                        
73 By that we mean changing the name of a predicate from –p to p and accordingly for its 

opposite predicate in any occasion they appear in a given knowledge base as well as context. 

74 This is expected since in any occasion where two predicates are compared – e.g. during 

unification – whether a predicate appears negated or not in a literal is always taken into account 

in a symmetric way – i.e., there is not structurally different action taken when a literal is or is not 

negative. 
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Evidently, since our data have been randomly generated, we expect that some error may 

be introduce in the final result, however, this is not expected to be of much significance. 

Let us now proceed to presenting some related results so as to examine the validity of 

our thoughts. In Figure 15 one may observe average build time plotted against negation 

ratio. It appears that average build time and negation ratio are slightly positively 

correlated, however, both Pearson’s correlation 𝜌𝑝 = 0.509 as well as Spearman’s 

correlation 𝜌𝑠 = 0.5 are statistically insignificant (p-values 0.381 and 0.45 respectively), 

suggesting that build time seems to be independent of negation ratio, as we expected. 

 

Figure 15: Build time against negation ratio. No significant correlation between the two appears 
to exist. 

Note that in the above setting, negation ratio is manipulated in both each knowledge 

base as well as each corresponding context. That is, apart from manipulating the 

percentage of negative versus positive literals in a knowledge base’s rules’ bodies, we 

also manipulated accordingly the negation ratio within the context used alongside each 

knowledge base. In case we had left negation ratio constant throughout the above 

experiments we would expect build time to vary depending on knowledge base negation 

ratio since this would implicitly affect the number of rules triggered by a context and, 

consequently, the complexity of the emerging argumentation framework as well as its 
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dual representation. For instance, should we demand that context negation ratio is fixed, 

say, to 0.2 - that is, 20% of literals are expected to be negative within each context - then 

we would expect that build time should be decreasing as negation ratio in knowledge 

bases increases75. Indeed, in Figure 16 we see how build time varies as a function of 

knowledge base negation ratio given that negation ratio in corresponding contexts is 

fixed to 0.2. 

 

Figure 16: Build time against negation ratio given a relatively "positive" context. 

Calculating Spearman’s correlation76 for the above data, we take 𝜌𝑠 = −0.9 with the 

corresponding p-value being 0.083, modestly supporting our assertion that build time 

would be decreasing as negation ratio within knowledge bases increases. 

                                                        
75 This is expected since as negation ratio increases, more rules are expected to contain negative 

literals in their bodies and, consequently, less rules are expected to be triggered from the 

knowledge base’s corresponding context of which a little fraction consists of negative literals. 

76 Spearman’s correlation, in contrast to Pearson’s correlation, is robust to noise in data and is in 

general used to examine whether there exists a monotonic dependency between two variables – 

not necessarily linear, as with Spearman’s correlation. The closer Spearman’s correlation is to 1 

the better is the dependency between two variables described by an increasing function while 

the closer it is to -1 the better it is described by a decreasing function. 
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5.1.3 Build time against predicate arity 

We shall now explore the way in which build time is affected by manipulating predicate 

arity within the knowledge base’s rules. As a first estimate, we would expect that by 

increasing predicate arity within rules of a knowledge base, build time would also be 

increased, since the overall complexity of the knowledge base would be higher than in 

cases with less complex predicates77. We now proceed in analysing data we have 

obtained from the above series of experiments. 

As we see in Figure 17, build time, averaged over all the other parametres we are 

manipulating, seems to be, as expected, an increasing function of predicate arity. This 

also conforms to our intuition that more complex concepts require more processing 

time so as to make conclusions about them. 

 

Figure 17: Build time against predicate arity 

As one may observe in Figure 17, build time for predicates of arity equal to 1 is higher 

than build time for predicates of arity 3 or even 5. This behaviour is attributed to 

caching, which leads to reduced time loss in recalling cached data, explaining this 

                                                        
77 More intuitively, the more arguments a predicate has, the more complex dependencies it 

expresses amongst our universe’s entities 
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seemingly unexpected phenomenon. Supporting to our view will be findings about other 

parametres of our experiments which will also follow the very same pattern – i.e. build 

time will be slower in the beginning of an experimental cycle than right after due to the 

latter benefiting from caching. 

The above results regarding build time being increasing with respect to predicate arity 

are also modestly supported by the value of the Spearman correlation coefficient for the 

above data, namely 𝜌𝑠 = 1, with a corresponding p-value of 0.083. 

5.1.4 Build time against rule body size 

Apart from predicate arity, the size of rules contained in a knowledge base also capture 

the emerging argumentation framework’s complexity. Indeed, rules with larger bodies78 

may be interpreted as expressing more complex relations on top of other simpler ones. 

So, with this interpretation, the longer a rule’s list of antecedent the more complex its 

conclusion – or, more precisely, the relation its conclusion describes – is. 

 

Figure 18: Build time against rule complexity. 

                                                        
78 Since a rule by definition has exactly one head literals, its size is fully determined by the size of 

its body. 
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Bearing in mind the above, we see that Figure 18 supports our assertion, since rule body 

seems to be an increasing function of rule size. To verify it, we calculate Spearman’s 

correlation on the above data – after, as above, discarding the first point in our dataset 

due to the caching effect –, which yields a value of 𝜌𝑠 = 0.8 with the corresponding p-

value being 0.133, which again, modestly supports our intuition. 

5.1.5 Build time against knowledge base size 

A factor that is expected to drastically determine the efficiency of our implementation is 

the extent to which knowledge base size affects build time. As indicated in (Michael, 

2019: 84), build time increases polynomially with respect to knowledge base size and it 

is this assertion that we would like to empirically evaluate. To begin with, in Figure 19 

we see how build time, averaged over any other parametre other than knowledge base 

size, grows in terms of knowledge base size. As expected, this dependency is increasing – 

Spearman’s correlation coefficient, 𝜌𝑠 = 0.987, p-value equal to 2.2 ⋅ 10−16. It remains 

now to examine whether it is also polynomial with respect to knowledge base size. 

 

Figure 19: Build time against knowledge base size 

To do so, we will at first plot our data in log-log scale, as shown in Figure 20. This is done 

since, if 𝑥, 𝑦 are two variables with 𝑦 depending on 𝑥 based on a power rule, i.e. 𝑦 = 𝐴𝑥𝑘  

for some 𝐴 ∈ ℝ , 𝑘 ∈ ℕ, then, letting 𝑢 = log 𝑥 and 𝑣 = log 𝑦, we obtain: 
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𝑦 = 𝐴𝑥𝑘 ⇔ log 𝑦 = log 𝐴𝑥𝑘 ⇔ log 𝑦 = log 𝐴 + 𝑘 log 𝑥 ⇔ 𝑣 = log 𝐴 + 𝑘𝑢 . 

 

Figure 20: Build time against knowledge base size plotted on log-log scale so as to examine any 
polynomial asymptotic behaviour. 

So, on the log-log plane each monomial and, eventually, as 𝑥 approaches infinity, each 

polynomial, is represented by a straight line with slope equal to the degree of the 

monomial. Observe that the above is independent of the logarithm’s base as well as that 

we can, given a straight line 𝑣 = 𝑏 + 𝑚𝑢 on the 𝑢 − 𝑣 plane, get back to the 𝑥 − 𝑦 plane 

as follows: 

𝑣 = 𝑏 + 𝑚𝑢 ⇔ 𝑐𝑣 = 𝑐𝑏+𝑚𝑢 ⇔ 𝑐log 𝑦 = 𝑐𝑏(𝑐𝑢)𝑚 ⇔ 𝑦 = 𝑐𝑏𝑥𝑚, 

where 𝑐 is the chosen logarithm’s base. 

Based on the above, we conducted a linear regression over the our dataset as 

represented on the log-log plane, omitting however the very first entry – i.e. the case of 

knowledge base size being 1. The latter was done for two reasons. To begin with, by 

omitting the first point in our dataset we minimise the effect of caching, which is 

irrelevant to the asymptotic behaviour of our algorithm we are aiming to measure. 

Secondly, distances between points on the log-log plane are distorted since only the 



 

92 
 

upper right quartile of the Cartesian plane is mapped with 𝑢 and 𝑣 axis corresponding to 

the straight lines 𝑥 = 1 and 𝑦 = 1 on the Cartesian plane79. 

The resulting straight line may be seen in Figure 20 – p-value for both constants is less 

than 2 ⋅ 10−6. So, we may safely conclude that computation time as far as the 

construction of the dual representation of a grounded model is concerned is indeed 

polynomial in terms of the size of the knowledge base. For completeness, the 

corresponding polynomial curve as well as the aforementioned dataset plotted on the 

Cartesian plane are shown in Figure 21.  

 

Figure 21: The polynomially growing fitting curve describing build time against knowledge base 
size. 

5.2 Experts’ feedback 

In this section we will present and discuss the feedback we received form professional 

chess players as well as chess coaches regarding our work. Our aim was to gather useful 

information about how chess is viewed by them and, most importantly, how chess 

                                                        
79 More precisely, as one may observe, while distances between points lying on the (1, +∞) ×

(1, +∞) part of the Cartesian plane are brought together while the rest of the Cartesian plane is 

magnified – e.g. (0,1 × (0,1) is mapped to (−∞, 0) × (−∞, 0) on the log-log plane. 
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coaching takes place in practice, as well as the implications of the above to our work so 

far. Moreover, we also sought to get domain expertise regarding chess itself as a game as 

well as how they would think of our approach in terms of efficiency, plausibility and so 

on. 

5.2.1 The interviewing process 

In this subsection we will present the way in which interviews with chess 

players/coaches were conducted for the purposes of this thesis. 

At first, chess players and coaches from local chess clubs in Athens and its suburbs were 

contacted so as to start building up a network of people related to chess. Next, so as to 

diversify our sample of chess coaches and players as well as to receive more extensive 

feedback from the community, we contacted chess clubs from all over Greece. In total, 

more than 60 chess clubs were reached, however 17 chess players and coaches 

responded to our call for an interview while as of the time this thesis is written, 16 of 

them have been interviewed. 

Our initial call for chess players and coaches consisted of a brief description of the 

purpose of our work as well as the why we needed their assistance to it. Furthermore, a 

fifteen (15) page demo of our application was included so as to facilitate a better 

understanding of our aims as well as our work. 

After the first round of calls for chess players and coaches had been completed, we 

arranged online meetings with them which had, in general, the following structure: 

1. At first, we presented to them our work live by starting a live coaching session 

with our bot – see chapter 4, section 4.4 – so as to elaborate on what had been 

presented in the already sent demo. Apart from live coaching, we also 

demonstrated all other capabilities of our app, including study mode for the 

purposes of which we utilised games we have previously played against a trained 

bot80. 

2. After our presentation had been completed, we asked for further questions 

regarding the functionality of our application and/or the interaction protocol or 

anything that was unclear during the presentation. 

                                                        
80 The bot had been trained with game opening mostly in mind using rules based on principles 

found in (Lasker, 1946: 1-8). 
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3. Having clarified all points raised at the previous stage, we proceeded by asking: 

(i) for their views on the topic; (ii) whether and at what extent they considered it 

feasible that a bot could be trained in the presented way so as to play chess 

adequately in the first place; (iii) which analogies could they see between our 

interaction protocol and human player coaching; (iv) any other question that had 

occurred throughout the interview. 

4. Having completed the above discussion part, we concluded by summarising what 

had been discussed so as to verify that there were no misconceptions as well as 

asked anything we intended to but was not brought up during our 

conversation81. 

At this point we should mention that we did not focus in the means by which interaction 

is conducted - i.e. the language of Machine Coaching - but merely on interaction as a 

process by which knowledge is transferred from a human coach to a machine trainee 

and backwards, in the form of explanations about the machine’s actions. 

5.2.2 Feedback from the chess community  

In this subsection we will discuss the feedback we received from the chess community 

regarding our work. During the interviewing process we have had several discussions 

and received feedback regarding various aspects of chess not only as a game but also 

about chess coaching. The latter helped us a lot in making analogies with human-to-

human interaction in this context and led us to many thoughts about possible directions 

towards which we could conduct further research in the future – for more, see chapter 6, 

section 6.2. 

To begin with, our overall methodology was in general considered to be plausible and 

applicable to the game of chess, since it resembles that of human-to-human coaching 

and interaction between a trainer and their trainees. Indeed, as we were told by all 

experts we contacted, there are, as per their words, “no absolute rules in chess”. On the 

contrary, rules are only contextually superior to others, given certain characteristics of 

the position on the board as well as the player’s experience. For instance, while it is 

                                                        
81 In general, during the interviews, it was preferred from some point and after to let the expert, 

be it a player or a coach, to lead to conversation to any points they wished to – always regarding 

chess and within our purposes – so as to minimise the effect of our own views on the game and, 

hence, our own bias, as well as to broaden our view of the game and its strategic features. 
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generally not advised to move one’s king during the early or middle stages of the game, 

the king’s role is of an increasing importance as material for both sides becomes less and 

the game approaches its end. 

Additionally, the coaching modes allowed by our application - i.e. live and asynchronous 

coaching - were both considered as necessary during coaching since, as described 

thoroughly, the coaching process may contain both sessions where the trainee plays 

against their coach in order to receive live feedback on their moves as well as sessions, 

e.g. after official games, where played games are reviewed so as to find strong and weak 

moves as well as any other feature that may be relevant. 

We shall now continue by discussing a possible issue which was unanimously 

considered to be the most important by all the experts we came into contact and which 

we should overcome in order to build an efficiently playing chess bot. That is, the 

distinction made between strategy and tactics in the game of chess and how this could 

be effectively captured by our current approach. Actually, the aforementioned 

distinction proved to be more complicated than we had initially expected, so we shall 

present one by one all the remarks made by the experts82. 

To begin with, as per the words of one of the experts we have contacted, “the best 

strategic player would not be able to win should they not be capable of recognising a 

mate in two”. To elaborate more on this, all experts agreed that a language as the one we 

have defined seems capable to capture most if not all the strategic that may arise in any 

chess position – hence, our bot could potentially be a good “strategic player”. 

Nevertheless, it was by all of them considered dubious whether features regarding 

combinatorial aspects of the game, such as move counting, could be captured by if-then 

rules based on positional features – i.e. strategic attributes as well as purely positional 

ones – see chapter 3, section 3.2 as well as Appendix A for more details on what 

information regarding a position can be accessed as of the time this thesis is being 

written83. 

                                                        
82 For possible solutions on the issues which the expert’s comments and thoughts are unveiling, 

see chapter 6, section 6.2. 

83 At this point, it would be useful to remind that the only predicates of our language which 

directly facilitated move counting – up to one move depth – are controls and 

is_checkmate. 
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An example of counting which would, almost surely, not be captured by a completely 

strategic player is shown in Figure84 22. There, even if it seems improbable, the white 

plays and has a forced mate in 290 moves! Indeed, the sequence of white’s moves begins  

as follows: 

1. Rd1+ Bd4 2. c4+ Kd6 3. Rxg1 Bc3 4. Rd1 Bd4 5. Ka5 Bb7 6. Ka4 Ba8 7. Ka3 Bb7 

8. Ka2 Ba8 9. Kb1 Bb7 10. Kc2 Ba8 11. Kd3 Bb7 12. Re1 Ba8 13. Rf1 Bb7  

14. Rd1 Ba8 15. Kc2 Bb7 16. Kb1 Ba8 17. Ka2 Bb7 18. Ka3 Ba8 19. Ka4 Bb7  

20. Ka5 Ba8 21. Kb6 

 

This position, as one may observe – see Figure 23 –, is the same as right before white’s 

move 5. Ka5 with one subtle difference: it is now the black’s turn to play and not white’s. 

This was exactly the reason behind the white king’s “trip” from a5 to d3 and back to a5, 

i.e. to return to the same position but this time not having to play. In this case, the black 

have only one plausible move that postpones their mate, which is 21. … h4. Then, the 

white king starts again in a similar way his trip to d3 and, by repeatedly doing the same 

                                                                                                                                                                             
 
84 This position is attributed to O. Bláthy (possibly, 1929). 

Figure 22: White to play and mate in 290. 
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“trick”, the black will be gradually forced to push all their pawns on the h file down to 

rank 1, were the white rook will capture them. So, we arrive at a position where the 

white play 282. Kb6 and now the black have no pawn to move other than b2, which 

would be either way sacrificed sooner or later, while their next best option is 282. … 

Bb7. Regardless of which of the two moves the black prefer to play first, the white has 

now a mate in 8 as follows: 

282. … Bb7 283. Kxb7 b1=Q 284. Rxb1 Be5 285. Rd1+ Bd4 286. Rxd4 cxd4  

287. Kb6 d3 288. a8=Q Rxb8 289. Qxb8 dxe2 290. Qxd8# 

 

As one may observe, the major strategic feature that appears in the above position is 

that of zugzwang, i.e. a position in which one side is to move, however, any move it has 

at its disposal will make its position weaker85. Nevertheless, as one also may observe, it 

is only by means of move counting – i.e. game tactics – that one finds the right move 

                                                        
85 As per the words of one coach with whom we discussed about zugzwang, “it is the fact that 

tempo in chess may also be of negative value  - i.e. it would be better not to play in your turn – 

that makes the game so complicated”. 

Figure 23: Towards a zugzwang position. 
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sequence so as to properly take advantage of this strategic feature that appears 

(potentially) on the board after 17 accurate moves have been played. 

One may object that the above position is not a legal one86 and that, either way, it is an 

extreme case which should not affect our methodology in general – this is at least what 

we did in several conversations. However, we were provided with a plethora of 

positions in which tactics should come in the first place in a different way, each time. We 

decided to present three of them, the ones that seem to be the most accurate 

representatives of most cases in which tactics come to the foreground, overriding the 

importance of strategy. 

 

At first, consider the position shown in Figure 24 – white to move (Seirawan, 1999: 66). 

In contrast to the previous one, this is quite minimalistic. While, at a first glance, this 

position seems to be a draw – the white does not seem to be capable of taking advantage 

of their pawn at c7 since they are seemingly vulnerable to black rook’s checks while the 

black rook needs to be capable at any time to either check the white king or control the 

                                                        
86 Indeed, observe that the white has two same-coloured bishops which could happen only if 

some white pawn had been promoted to one of the two bishops. However, all eight white pawns 

are on the board. 

Figure 24: Fewer pieces, yet the same ideas. 
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white pawns threat to promote to c8. However, there exists a winning sequence for 

white, namely: 

 1. Kb5! Rd5+ 2. Kb4! Rd4+ 3. Kb3! Rd3+ 4. Kc2! 

At this point, see Figure 25, the white seems to have won since the black rook can give 

no more check nor threaten with a fork or so. However, black has 4. … Rd4!! which, in 

case of 5. c8=Q gives the black the possibility to play 4. … Rc4!! which forces the white to 

capture the black rook and leads to stalemate. However, white can tackle this threat as 

follows: 5. c8=R!! which avoids stalemate in case of 5. … Rc4+? and leads to a forced win 

for white. 

 

Again, in the above position we see how the path to victory for the white was not 

dependent on the strategic attributes of their position – i.e. the fact that they had a pawn 

ready to be promoted on the seventh line – but on move counting. 

Our next position comes from an actual game, where, quoting again one of our 

interviewees, “strategy can lead you to a winning position but it is up to move counting 

and tactics to make a win out of it”. As shown in Figure 26 (Vuković, 1993: 240), the 

white has a clear strategic feature they would like to take advantage of, which is the 

Figure 25: An almost winning position for white. 
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pressure on black’s pawn at h7. As one may also observe, in order to further increase 

pressure on this pawn, the white has several options – strategically equivalent as far as 

that specific feature is concerned. Namely, 1. Nf6, 1. Neg5 and 1. Nfg5 all lead to some 

piece of the white putting more pressure on h7. However, as we shall see next, it is the 

white bishop at g2 that will be the right choice. Namely, the game went as follows: 

 1. Nfg5! fxg5 2. Nf6! Bxf6 3. Be4 1-0, 

Since, in any case, the white mates at h7. 

 

 

What is of high importance here is the move sequence itself. Starting with 1. Nf6 would 

not work since then, trying to mimic the above, we would have 1. … Bxf6 2. Ng5 Bxf5 and 

now the black can defend white’s 3. Be4 with f5. Also, even which of the two knights 

moves to g5 initially matters, since, should the white play 1. Neg5 then they would not 

be capable of playing 2. Nf6. 

As for now, we have examined positions at which strategic superiority by itself does not 

suffice so as to ensure victory and precise move counting is needed. Our last example 

Figure 26: Capablanca - Nimzowich, 1928, white to move and 
win. 
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will present the previous idea in an extreme case, showing how a strategically sound 

move leads to defeat due ignoring the position’s tactics. So, let us consider the position 

shown in Figure 27 - black to move (Seirawan, 2003: 246). There, according to the coach 

that proposed us this position as well as Seirawan himself, the black’s strategic plan 

should involve blocking white’s game on the queen’s side so as to shift the game towards 

the king’s side and the centre, where the black seem to be well-positioned. Under this 

perspective, black’s move in the game,  1. … a5 is sound and actually blocks white pawns 

in the queen’s side87. 

 

However, black’s move ignore the position’s special tactical features, which allow for the 

following move sequence: 

    2. b5 Nd8 3. exf5! Bxf5 4. g4! hxg4 5. fxg4 Nxg4 6. Nxb6 cxb6 7. Bxa8 Qc8 8. Bf3 

Now, the white have managed to get an advantage in material which proved enough to 

lead them to victory. 

                                                        
87 In case the white play 2. bxa5 then the black can create substantial counter-play on the 

queen’s side by 2. … Nxa5 which leaves the white with a useless semi-open b rank and a hanging 

pawn at a3. 

Figure 27: Seirawan - van Wely, 1992, black to move. 
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While black’s move was not mistaken in terms of strategy, it was highly erroneous with 

respect to the position’s tactical attributes. The white, taking advantage of their white 

bishop on the h1-a8 diagonal – i.e., a strategic feature on the board - found an 

appropriate move sequence so as to capture the black’s rook at a8 by offering their 

knight.  

As explained by many experts we contacted, such positions are characteristic of the 

interplay between strategic and tactical playing in chess. As a conclusion, strategy is 

viewed as a high level heuristic while it remains for tactical game and move counting to 

actually make any strategic advantage an actual advantage capable of leading to win or 

draw - depending on the side playing. 

As we have mentioned above, since our learning methodology strongly relies on 

defeasible rules to draw inferences given a certain position on the chessboard, we 

expected that, by continuous coaching and interaction with a human chess coach, the bot 

would eventually capture a significant part of its coach’s theory or, at least, a reasonably 

sufficient part that would allow it to play at an acceptable level. 

Discussing the above idea with various experts one of them raised an interesting point. 

As we were told, a casual part of chess training involves studying hundreds of other 

games - either with or without a coach, depending on the player’s level - so as to get 

accustomed to as many positions on the board as possible and, thus, be capable of 

recognising appropriate conditions under which certain (strategic) features are prior to 

other. While this actually coincides with core ideas of our methodology, it also implicitly 

poses a question of high significance to the efficiency of our work: Is it plausible to 

expect that a human coach will be capable - in terms of time as well as cognitive 

resources - of describing enough positions so as to allow the trained bot to play at an 

acceptable level? 

The view of most of the experts was this does not seem to be possible, at least not in an 

efficient way. For instance, a formerly International Master and now chess coach of the 

Greek Coach Federation informed us that, when it comes to human players that start 

having little or no knowledge about strategic chess, it takes them about two (2) years in 

order to study enough positions with their trainees so as to demonstrate efficiently the 

most usual strategic patterns of the game. 
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One may argue that when it comes to human coaching the process is more time 

demanding since a human may be prone to errors a machine is not - e.g. omitting a rule 

during the evaluation of a position. Indeed, should two positions 𝑃1 and 𝑃2 be equivalent 

with respect to our theory, in the sense that they trigger the same rules, then a machine 

would not need to be exposed to both of them during its coaching, while a human player 

might need to be repeatedly exposed to strategically equivalent positions so as to 

minimise the chance that in a future equivalent position rule omission or similar errors 

will be avoided. 

Bearing in mind the above, the question posed above could be reformulated as follows: 

How many, in terms of order of magnitude, are the estimated positions a bot following 

the above learning methodology should be exposed to in order to play at an acceptable 

level? To this question, the answers we received varied, with the general line being, 

however, that the absence of explicit move counting in our design would imply that the 

final number of positions our bot should study with a coach would be insufficiently 

many. 

All in all, we could say that, while our approach as designed and presented to chess 

experts seemed plausible up to some certain extent, what troubled them most was the 

absence of an explicit move counting mechanism as well as whether it is possible, under 

the current methodology, to capture all, or at least the majority of, the tactical aspects of 

the game88. 

  

                                                        
88 We also received some feedback from one chess coach about transparency and how this could 

facilitate human-to-human chess coaching. Since it is a suggestion for a future extension of our 

work we will discuss it in the next chapter, in section 6.1, were possible future steps are 

presented. 
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Chapter 6 
Conclusion 

In this chapter we will discuss how the results we obtained from our scalability 

experiments as well as the feedback we received from the chess community will 

determine any future work. Additionally, we present a synopsis of our work as well as a 

brief summary of its evaluation as a whole. More precisely, this chapter is structured as 

follows: (i) in section 6.1 possible future steps that could be taken based on the results 

and views presented in chapter 5 are discussed; (ii) in section 6.2 we conclude. 

6.1 Future Steps 

Based on what was presented in chapter 5, in this section we shall discuss several 

directions towards which we could extend our current work. 

6.1.1 Technical aspects and scalability 

In terms of the technical part of our work, as it is presented in chapter 4, sections 4.1 

and 4.2, we intend to thoroughly re-examine build time against all the already examined 

parameters as well as exception depth and any other parameter that may be considered 

reasonable to examine. On the one hand, we are aiming in generating more realistic 

synthetic datasets since the ones used for the purposes of this thesis, while reasonably 

diverse, also had several weak points. For instance, each knowledge base contained only 

rules of a certain body length, which is quite unrealistic to occur in knowledge bases 

generated by human users. 

On the other hand, we also aim to examine the consistency of any results we have 

already found as well as any that will be found using synthetic data with respect to data 

generated by users in the context of chess. As our discussions with domain experts have 

revealed, chess is of such complexity that allows for quite diverse knowledge bases to 

emerge, given that one’s goal is to express high strategic concepts - e.g. zugzwang. As a 

result, we expect that the emerging knowledge bases will allow for us to manipulate 

effectively any parameter of the game we wish to. 
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6.1.2 Extensions of the current methodology 

Based on the feedback we have received from the chess community, several directions 

towards which we could search for extensions of the current Machine Coaching 

interaction protocol have emerged. To begin with, as shown in (Michael, 2019: 85), 

learning is guaranteed to be efficient under certain conditions which, among other, also 

require for the rules contained in a knowledge base 𝑘 = (𝜌, ≺) to be linearly ordered 

with respect to the knowledge base’s priority relation. However, with chess this may not 

be the case. So, it would be interesting as well as useful to explore whether more relaxed 

conditions regarding ≺ ceteris paribus would also lead to efficient learning as well as, in 

case linearity is needed, what other changes, e.g. in the complexity of the current 

interaction protocol would lead to efficient learning using non-linear priority relations 

under the current learning semantics. 

Another direction would be that of examining in which ways could our current choices 

from the ASPIC+ semantics be extended and/or altered as well what the effects of such 

changes are to the efficiency of reasoning and argumentation within them. For instance, 

in the domain of chess we may need, as indicated in chapter 3, section 3.3, some rules to 

be declared as strict. In this case, we would need to examine how this introduction of 

rules of different structure would lead to deviations from the already declared 

semantics. Moreover, it would also be necessary to examine up to what extent this 

affects the efficiency of argumentation and, consequently, that of learning. 

6.1.3 User Interface and Interaction 

As far as the existing user interface is concerned, it serves more as a way to demonstrate 

our work rather than an application that could be used by chess players and coaches 

directly, without at first providing some sort of training. On the one hand, we could 

enrich the existing GUI with more functionalities related to chess based on suggestions 

we received about how our GUI could be improved e.g. by including more graphic 

features when it comes to moving a piece - such as arrows indicating possible moves and 

so on. 

On the other hand, we should also focus on how explanations are presented to human 

users, given that, among others, explainability and interpretability are among our work’s 

core goals. As for now, as one may see in chapter 4, section 4.4, the user has access to the 

entire argument that has led to the execution of a move, however it is presented as a list 
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of rules expressed in the first order language we have defined in chapter 3, section 3.2. 

Evidently, this format affects the quality of interaction since it increases the cognitive 

load of the user, who has to first “translate” the machine’s output to natural language 

and then proceed in understanding its actual meaning. As a result, it seems mandatory 

to seek for ways in which arguments could be presented in a more user-friendly way, 

allowing for the users to allocate their cognitive resources in the coaching process itself 

and not its technical aspects. 

However, even if an argument is presented in natural language, in a user-friendly way, it 

may still provide unnecessary cognitive load to a user. Imagine, for instance, an 

argument with  a crown rule of the form: 

“Since this is a move that leads the opponent to a zugzwang, I preferred it”. 

The same argument is also expected to include very “primitive” rules, expressing low-

level relations between entities, such as: 

“If I play with white and a move moves a white piece then tag this move as mine”. 

Evidently, chess experts coaching a bot, having themselves defined notions such as my 

move or zugzwang would not need to constantly be informed about how they are 

defined in each of the machine’s explanations. As a result, in later versions of our 

application we may allow for arguments to be presented gradually, as per the user’s 

request. Namely, we may adopt the following methodology: 

1. Once a move is played by the bot, it provides as an explanation only the crown 

rule of the argument that led to that move being suggested. 

2. On condition that the user requests some further explanation about some of the 

crown rule’s antecedents, they are presented with the rules that led to them. In 

other words, they are presented with the crown rules of each sub-argument that 

supports the antecedents they requested further explanation for. 

3. Repeat step 2 while the user requests explanations at a deeper level and until the 

premises of an argument are returned. 

In the above context, the user is allowed to manipulate the amount of information they 

wish to include in an explanation, exploring the full argument from higher to lower level 

rules. 
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6.1.4 Introducing tactics 

The aspect of move counting as well as general tactical manipulations throughout a 

game was, as mentioned in chapter 5, section 5.2, the major concern regarding the 

efficiency of our methodology. However, given that the designed system has not yet been 

systematically evaluated in terms of being coached by experts and then playing games 

against human or even bot players, we cannot but be modest in any assertion we make 

about how tactical features are treated. What we can say, for sure, is that, indeed, there 

do exist cases in which our approach is expected to fail but for the case the user had 

previously instructed the bot to play in some specific way in that position89. And, as the 

feedback we received from the chess community unveiled, such positions are not 

uncommon. Even if we do not have clear evidence about our system’s behaviour with 

respect to tactical aspects of chess, we can still consider extensions of our current 

methodology that could allow for tactics to be introduced more actively. 

At first, we could substitute random selection of moves among the ones suggested by the 

bot by a more sophisticated selection process, e.g. based on alpha-beta pruning or any 

other known methodology for adversarial AI agents that we consider suitable for our 

purposes. Thus, we would also remove any randomness from our agent’s behaviour 

which could also result in hybrid explanations consisting of two parts were: 

1. The first part will be an argument that led to the suggestion of a set of moves 𝑀 

to be played by the bot. 

2. The second part will consist of the evaluation function’s score or any other metric 

we consider appropriate, given the methodology we have selected. 

However, even if the above approach is proved to lead to some improvements in our 

system’s performance as far as its chess playing level is concerned, it also reduces our 

model’s transparency and interpretability – as defined in (Arrieta et al., 2020: 84) –, 

given the fact that some component of its algorithm is neither known to the end user nor 

efficiently describable. 

Another way to introduce move counting explicitly in our system while at the same time 

we do not deviate from our initial aim of designing an interpretable system would be, at 

                                                        
89 For instance, one way to achieve this is by describing a specific position on the chessboard 

through a rule and then, using a more imperative approach, overriding any previous knowledge 

given that position appears on the board and explicitly asking for certain moves to be played. 
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first, to extend the built-in predicates our language gives access to so as to include more 

tactical attributes of the board. These attributes could include, but not restrict to forks, 

pins, x-ray attacks and, in general any tactical feature of the game chess experts may 

suggest us. By doing so, we provide the chance to the user to also explicitly introduce 

chess tactics in rules, thus allowing for a wider set of behaviours as well as game 

positions to be described. 

Moreover, we could also allow for the machine to count moves in the way described 

above but also further extend our language with the necessary predicates so as to build 

rules that could modify and control the extent to which the machine utilises its move 

counting. Namely, as a chess coach may instruct a player to count up to three main 

variants in any position while not exceeding the depth of 5 double moves during the 

opening stage of a game, in the same way we could introduce two new built-in 

predicates, let search_depth(·) and variants_count(·) which would capture the above 

parameters of move search. Similarly, we could allow for any other predicate which 

seems plausible to chess experts and which also resonates with common instructions a 

coach would provide to their trainees about move counting. 

Should we adopt the above or any similar methodology, it would be interesting to 

measure whether and, if so, by what extent is that “hybrid” bot superior in terms of 

chess playing against our current approach as well as at what level does its behaviour 

resemble that of a human trainee. 

6.1.5 Utilising our work in chess education and human coaching 

During the interviewing process one expert came up with a suggestion – in the form of a 

query of whether such a thing could be possible – about utilising our system, possibly 

after making its GUI more user-friendly, as discussed above, in human chess coaching. 

More precisely, what was suggested was to use the developed system as a cognitive 

coaching assistant in the following way: 

1. At first, a human coach trains the bot up to some desired level – possibly not 

equivalent to the coach’s one. 

2. Then, the bot is used in coaching human players by letting them play either 

against it or other players and on each move played by a human player, it also 

provides in the form of a suggestion the move that it would have played in that 

position alongside with the explanation. 
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The rationale behind the above proposal was that, should a bot be capable of capturing a 

coach’s theory about the game, even up to some certain extent, then this would allow for 

it to substitute the coach in simple tasks within a chess classroom or outside the it, as an 

assistant for students with whim they could study along and who (i.e. the assistant) 

would have a theory about the game which resonates with that of the human coach. 

6.2 Conclusions 

In this thesis we presented a complete methodology as well as its implementation that 

accommodate a transparent and interpretable way of coaching a computer to play chess. 

Our motivation was the fact that most of the current as well as past approaches on 

computer chess were designed with performance as their main principle while at the 

same time they did not allow for almost no fragment of human knowledge and expertise 

on the game to assist the machine’s effort. Furthermore, most contemporary approaches 

have adopted black-box machine learning methodologies which, consequently, lead to 

the behaviour of the bot being almost impossible to be interpreted by humans, at least 

without introducing any external tools. 

In order to address these issues appearing in black-box approaches, we adopted the 

Machine Coaching paradigm (Michael, 2019: 82-85). Under that, a machine is learning 

taking advantage of human knowledge about some certain domain of application by 

learning from it. Namely, the human coach, according to the machine’s actions as well as 

the corresponding explanations it returns about them, provides contextual advice based 

on their own knowledge which are accordingly stored in the machine’s knowledge base 

and alter accordingly its behaviour. 

The above learning paradigm was implemented in java by first implementing a generic 

first order language through which a user can interact with the machine. After that, all 

the necessary algorithms were implemented utilising the above language as well as 

extending it up to some point so as to allow for several desirable additional 

functionalities. The implementation of all the necessary learning functionalities was 

followed by the development of a domain specific user interface which allowed for a 

machine to be trained to play chess using the Machine Coaching methodology. 

Having implemented all the above, we assessed them on two orthogonal directions. At 

first, as far as the learning mechanism is concerned, we measured its efficiency with 

respect to several parameters and found results conformant with the corresponding 
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predictions of the theory of Machine Coaching. Secondly, we came into contact with 

numerous chess experts – either professional players or chess coaches – in order to 

explore how plausible and applicable our approach was as far as the specific domain of 

chess is concerned. The feedback we received from chess experts on the one hand 

indicated that, indeed, our approach was applicable to the game of chess while, on the 

other hand, it also provided material upon which we should reflect so as to further 

improve our designed system as well as possibly extend the currently used learning 

semantics accordingly. 
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Appendix A 
Built-in Predicates 

In this Appendix we present all built in predicates as of the time this thesis was written. 

is_at(Piece,Colour,Square) 

It means that a piece of type Piece and of colour Colour lies on square Square. 

For instance, in the initial board position, is_at(king,white,e1) describes the initial 

position of the white King. 

Meaningful constants for each variable are: 

 Piece: pawn, knight, bishop, rook, queen, king. 

 Colour: black, white. 

 Square: a1, a2,..., h7, h8. 

from_square(Move,Square) 

It means that a move Move starts from square Square. 

For instance, in the initial board position, move_starts_from(e2e4,e2) describes that 

move e2e4 starts from e2. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

 Square: a1, a2,..., h7, h8. 

to_square(Move,Square) 

It means that a move Move ends to square Square.  

For instance, in the initial board position, move_ends_to(e2e4,e4) describes that 

move e2e4 ends to e4. 

Meaningful constants for each variable are: 
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 Move: any move in uci form (e.g. g1f3). 

 Square: a1, a2,..., h7, h8. 

move_played_by(Move,Colour) 

It means that a move Move is played by a player with colour Colour. 

For instance, in the initial board position white's move e4 is described by 

move_played_by(e2e4,white). 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3) 

 Colour: black, white. 

moves(Move,Piece) 

It means that a move Move moves piece of type Piece. 

For instance, in the initial board position, moves(g1f3,knight) describes the fact that 

move g1f3 moves a knight. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

 Piece: pawn, knight, bishop, rook, queen, king. 

plays_as(Colour) 

It means that the bot plays with colour Colour. 

For instance, the fact that the bot plays as black is described by plays_as(black). 

Meaningful constants for each variable are: 

 Colour: black, white.", 

has_kingside_castling_rights(Colour) 

It means that player of colour Colour has kingside castling rights. 

For instance, after: 1. e4 e5 2. Nf3 Nc6 3. Bc4 white has kingside castling rights, which is 

described by has_kingside_castling_rights(white) 
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Meaningful constants for each variable are: 

 Colour: black, white. 

has_queenside_castling_rights(Colour) 

It means that player of colour Colour has queenside castling rights. 

For instance, after: 1. d4 d5 2. c4 e6 3. Nc3 Nf6 4. Bg5 Bb4 5. Qc2  white has queenside 

castling rights, which is described by has_queenside_castling_rights(white). 

Meaningful constants for each variable are: 

 Colour: black, white. 

is_kingside_castling(Move) 

It means that move Move is a kingside castling. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

is_queenside_castling(Move) 

It means that move Move is a queenside castling. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

move_count(Integer) 

It means that the current move count (i.e. the number of pairs of white-black moves) 

equals Integer. 

Meaningful constants for each variable are: 

 Integer: 1,2,3,… 
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is_capture(Move) 

It means that move Move is a capture move (en passant capture included). 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

pinned(Square,Colour) 

It means that the square Square is pinned to its king of colour Colour. 

For instance, after 1. e4 e5 2. Nf3 Nc6 3. Bb5 d6 the black knight at c6 is pinned by the 

white bishop at b5. 

Meaningful constants for each variable are: 

 Square: a1, a2,..., h7, h8. 

 Colour: black, white. 

is_promotion_to(Move,Piece) 

It means that move Move is a promotion to Piece. 

For instance, is_promotion_to(c7c8,queen) denotes the promotion of a pawn to a 

queen by moving from c7 to c8. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

 Piece: pawn, knight, bishop, rook, queen, king. 

is_attacked_by(Colour,Square,Piece) 

It means that a square Square is attacked by a piece of type Piece and colour Colour. 

Meaningful constants for each variable are: 

 Piece: pawn, knight, bishop, rook, queen, king. 

 Square: a1, a2,..., h7, h8. 

 Colour: black, white. 
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is_check(Move) 

It means that move Move is a check move. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

is_checker(Piece,Square) 

It means that piece Piece at square Square is currently giving a check. 

For instance, after: 1. e4 d5 2. Bb5+ it holds that is_checker(bishop,b5).  

Meaningful constants for each variable are: 

 Piece: pawn, knight, bishop, rook, queen, king. 

 Square: a1, a2,..., h7, h8. 

square_file(Square,File) 

It means that square Square lies on file File. 

For instance, square_file(e4,e) describes the fact that square e4 lies on file e. 

Meaningful constants for each variable are: 

 Square: a1, a2,..., h7, h8. 

 File: a, b,..., h. 

square_rank(Square,Rank) 

It means that square Square lies on rank Rank. 

For instance, square_rank(e4,4) describes the fact that square e4 lies on rank 4. 

Meaningful constants for each variable are: 

 Square: a1, a2,..., h7, h8. 

 Rank: 1, 2,..., 8. 
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is_en_passant(Move) 

It means that move Move is an en passant capture. 

Meaningful constants for each variable are: 

 Move: any move in uci form (e.g. g1f3). 

?<(X,Y) 

Built-in predicate that is interpreted as 𝑋 < 𝑌. 

For instance, ?<(3,4). 

Meaningful constants for both X and Y are any integers or double precision numbers. 

?=(X,Y) 

Built-in predicate that is interpreted as 𝑋 = 𝑌. 

For instance, ?=(5,5). 

Meaningful constants for both 𝑋 and 𝑌 are any integers or double precision numbers. 

suggest(Move) 

Built-in predicate that informs the system that move Move should be suggested (or 

should not be suggested, in case it appears negated). Typically, this predicate is used in a 

rule's head.  
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