
Open University of Cyprus

Faculty of Pure and Applied Sciences

 Master’s Degree Cognitive Systems

Master’s Thesis

Application of the Machine Coaching Paradigm on Chess
Coaching

Vasileios T. Markos

Supervisor
Loizos Michael

December 2020

i

Open University of Cyprus

Faculty of Pure and Applied Sciences

 Master’s Degree Cognitive Systems

Master’s Thesis

Application of the Machine Coaching Paradigm on Chess
Coaching

Vasileios T. Markos

Supervisor

Loizos Michael

This master’s thesis has been submitted as part of the requirements to obtain a
master’s degree

in Cognitive Systems
by the Faculty of Pure and Applied Sciences

of the Open University of Cyprus.

December 2020

ii

BLANK PAGE

iii

Abstract

In the past two decades computer chess has overcome human capabilities and efficiency

in all aspects of the game. This impressive achievement has been possible, especially

during the last decade, due to state-of-the-art Deep Learning methodologies that have

been developed. However, since such methods perform like black-boxes, prohibiting any

notion of interpretability by human users in the first place, it would be meaningful to

explore the possibility of designing an explainable and cognitively efficient chess bot. In

this thesis we present an efficient explainable interaction protocol accompanied by a

corresponding user interface for computer chess. Moreover, we also present useful

feedback from chess experts – professional players as well as chess coaches.

iv

Contents
Chapter 1 Introduction ... 1

1.1 Setting the problem .. 1

1.2 Motivation behind our work ... 6

1.2.1 Some examples where traditional approaches fail ... 6

1.2.2 Deeper in the weaknesses of contemporary chess engines 10

1.2.3 A possible solution to such cases .. 11

1.3 Structure of the Thesis .. 12

Chapter 2 Literature Review ... 14

2.1 The first attempts to automate chess playing .. 14

2.1.1 Mechanical approaches .. 14

2.1.2 Non-mechanical approaches .. 15

2.2 Mastering the game .. 22

Chapter 3 Machine Coaching ... 28

3.1 High-level description of Machine Coaching .. 28

3.2 A language for Machine Coaching ... 32

3.2.1 Describing the language of Machine Coaching .. 33

3.2.2 Examples of Machine Coaching in chess .. 37

3.3 Argumentation and Learning in the context of Machine Coaching 42

3.3.1 Arguments in the language of Machine Coaching .. 43

3.3.2 Defining an Argumentation Framework.. 47

3.3.3 Grounded Extension of an Argumentation Framework 51

3.3.4 Efficient Computation of an Argumentation Framework’s Grounded

Extension .. 54

3.3.5 Learning in the context of Machine Coaching .. 57

Chapter 4 Implementation ... 61

4.1 Implementing a First Order Language .. 61

4.1.1 Basic implementation of the language ... 61

v

4.1.2 Remarks about the language’s implementation ... 63

4.2 Reasoning and Argumentation... 67

4.2.1 Implementation ... 67

4.2.2 Remarks about the above implementation .. 69

4.3 Chess related features ... 70

4.4 Graphical User Interface ... 72

4.4.1 Starting screen: choosing a mode of coaching... 73

4.4.2 Live coaching .. 74

4.4.3 Study mode ... 80

4.4.4 Game over dialog .. 81

Chapter 5 Evaluation .. 82

5.1 Evaluation of the implementation .. 82

5.1.1 Generation of synthetic knowledge bases and contexts 82

5.1.2 Build time against negation ratio ... 85

5.1.3 Build time against predicate arity .. 88

5.1.4 Build time against rule body size ... 89

5.1.5 Build time against knowledge base size .. 90

5.2 Experts’ feedback .. 92

5.2.1 The interviewing process .. 93

5.2.2 Feedback from the chess community ... 94

Chapter 6 Conclusion ... 104

6.1 Future Steps .. 104

6.1.1 Technical aspects and scalability... 104

6.1.2 Extensions of the current methodology .. 105

6.1.3 User Interface and Interaction ... 105

6.1.4 Introducing tactics .. 107

6.1.5 Utilising our work in chess education and human coaching 108

6.2 Conclusions ... 109

vi

Appendix A Built-in Predicates .. 111

References .. 117

1

Chapter 1

Introduction

In this chapter, we will present the problem discussed in this thesis, the methodology we

adopted as well as the motivation behind our choices. The structure of this chapter is as

follows: (i) in section 1.1 we make a short introduction to the field of automated chess

and briefly describe the problem this thesis addresses; (ii) in section 1.2 we delve into

more details about the problem itself as well as the motivation behind the selected

methodology and; (iii) in section 1.3 we provide a brief outline of the rest of this thesis.

1.1 Setting the problem

During the past decades, Artificial Intelligence (AI) agents have been utilised in several

domains, from automated music suggestion – e.g. in several video/music streaming

platforms such as youtube, spotify and so on – to self-driving vehicles and smart devices

which provide everyday micromanagement suggestions. Regardless of the extent of

success of such agents in each domain of application, the level of penetration into most

people’s everyday routines is astounding, given the short time interval in which AI has

become more popular.

Even if AI applications are so widespread in everyday tasks, there were not so many

cases in AI’s relatively short history that have captured the public’s attention to such an

extent as G. Kasparov’s game series against IBM’s Deep and Deep(er) Blue in 1996 and

1997 respectively. Chess had long been considered “the touchstone of intellect”, as per

the words of Goethe, which led many to believe that designing a machine capable of

winning chess against humans would have many philosophical implications for human

thought as well as the game itself (Hsu, et al., 1990: 44). Given this highly intellectual –

and, hence, attributed only to humans – nature of the game, even Deep Blue’s 2-4 defeat

by G. Kasparov in 1996 was an alarming result for human primacy in chess: Deep Blue

had managed to take a win (in game 1) and two draws (in games 3 and 4) against a

running world champion and by many considered one of the best chess players in

2

history. Given its performance, the first win of a chess playing engine against a human

seemed closer than ever before. Indeed, in 1997 Deep(er) Blue managed to score a 3½ –

2½ victory against G. Kasparov by winning games 1 and 6 and drawing games 3, 4 and 5,

completing a remarkable milestone in AI’s history1 (Campbell, et al., 2002: 57-59).

Given the highly symbolic value of chess, as described by Goethe, Kasparov’s 1997

defeat against IBM’s Deep(er) Blue is also important for reasons beyond the game itself.

Attempts to design Chess machines and engines have been recorded since the middle of

the 18th century (Standage, 2002: 18-23) and they reflected, more or less each period’s

state of the art technologies. As a result, Deep(er) Blue’s victory signaled the beginning

of a new era for artificial intelligence; one in which AI applications would be capable of

supporting and, in many cases, substituting humans, carrying out typically human tasks,

oftentimes in a more efficient way.

Indicative of this new era and the re-established relationship between humanity and its

own technological devices are contemporary machine learning approaches and their

applications in various domains, a technological trend also reflected in chess playing

engines. Nowadays, most of the state of the art approaches in computer chess rely on

deep neural network methodologies – e.g. AlphaZero (Silver, et al., 2017: 1-3) – and/or

alpha-beta pruning or similar methodologies, possibly accompanied by some dedicated

hardware – e.g. the Stockfish chess engine (Romstad, Costalba, Kiiski, 2008). As recent

experience has indicated, such methodologies are overwhelmingly efficient in terms of

outperforming human players. For instance, AlphaZero was capable of scoring a 64-

36 victory (28 wins, 72 draws and 0 loses) against Stockfish 7 in 2017 (Silver, et al.,

2017: 4-5), while Stockfish – being denied access to its opening books and end-game

tables – had recently defeated H. Nakamura2 by a 3-1 score in 2014 (2 wins, 2 draws, 0

loses) even if Nakamura was supported by Rybka (another chess engine) in the first two

1 The remarkability of this accomplishment is highlighted by the fact that even today, 23 years

after his defeat, G. Kasparov claims that there was cheating from Deep(er) Blue’s side in the

second and sixth games of the re-matching series of 1997 – namely, that there was some human

intervention in certain parts of both games. Whether this claim is true or not, is of little

significance since in the years that followed Kasparov’s defeat chess machines have displayed

remarkably superhuman playing level.

2 The match was played in 2014 when Nakamura had an Elo ranking o 2798, being #5 in FIDE

world ranking.

3

games and was given a pawn advantage instead of Rybka’s support in the rest two

(Klein, 2014).

In spite of the aforementioned approaches’ efficiency, AI applications that rely on Deep

Learning methodologies also have some drawbacks. Of these, probably the most

alarming – and the ones of which we are mostly concerned – are non-interpretability

and vastness of cognitive load (for both human as well as machine players). Before we

proceed to discussing the above, we shall mention that for the rest of this thesis, we will

use the definitions of explainability and interpretability presented in (Arrieta, et al.,

2020: 85-89). Namely, we will say that a model is:

 explainable when it is capable of yielding reasons and/or details that clarify its

functionality to human users (Arrieta et al., 2020: 85);

 interpretable when by its design it allows for a human to understand its

functionality (Arrieta, et al., 2020: 85).

Note that interpretability is, by its very definition, a static property of a model, totally

defined by its design – in the words of Arrieta et al., it is a model’s “passive

characteristic” (Arrieta, et al., 2020: 84). On the contrary, explainability allows for

models that are not necessarily interpretable in terms of their design to be considered

explainable in the sense that explanations about their higher level functionality may be

produced and presented utilizing post-hoc explanation methodologies.

Also, we will say that a model is post-hoc explainable/interpretable or

understandable when it is capable of allowing for a human to understand its

functionality without revealing the way in which data and information are internally

processed (Montanov, Samek, Müller, 2018: 2) – i.e. the model is understandable in

terms of higher level functionality and not necessarily at a lower level. Lastly, we define,

as in (Arrieta et al., 2020: 85), model transparency as the capability of a model to be

understandable by itself, that is, without utilizing any external tools while we also adopt

the following three levels of transparency (Lipton, 2018: 42-45, Arrieta, et al., 2020: 88-

92):

 simulatability, which refers to the capability of a model’s function to be

efficiently simulated by a human – i.e. in case a human is provided with access to

4

all input data as well as to all the model’s parameters, then they should be able to

arrive to the same conclusion as the model in reasonable time (Lipton, 2018: 42);

 decomposability, which refers to the capability of separately explaining and

understanding each part of a model – namely, input data, model parameters as

well as the model’s calculation itself (Lipton, 2018: 44).

 algorithmic transparency, which refers to the attribute of the learning

algorithm itself being explainable, in the sense that a human can prove that a

unique solution will be produced even if unforeseen data are provided to it

(Lipton, 2018: 44-45).

In the above setting, it is clear that levels of transparency are presented in a descending

order with respect to how transparent the corresponding models are. That is, a

simulatable model is also decomposable and algorithmically transparent – since a

human user can fully simulate its function efficiently – and a decomposable model is

algorithmically transparent as well – since each of its components, including its learning

algorithm, is comprehensible by a human. Also note that the reverse inclusions, in

general do not hold – i.e. there exist models which fall into one of the above categories

but not to any above them3.

Bearing in mind the above, Deep Learning paradigms, being by their very definition

black-box Machine Learning methods, fail to be characterised as interpretable in a

similar manner that they fail to be characterised as transparent – given that they are not

even algorithmically transparent, since a Deep Neural Networks’ learning algorithm is

not ensured to be equivalently functional on different settings (Lipton, 2018: 45).

Nevertheless, there are several techniques such as ones deploying feature relevance

or the construction of local explanations (Arrieta, et al. 2020:87-88) that do provide

explanations on the decisions of a Deep Neural Network in a post-hoc manner – for a

more complete review and taxonomy of post-hoc explainability techniques utilised in

Deep Learning see (Arrieta, et al., 2020: 95-99) and, especially, Figure 11, p. 99 therein.

The above lack of transparency that characterises Deep Learning approaches also allows

for another drawback to emerge: not only is high cognitive load required by humans

trying to interpret a deep neural network’s behaviour but also the machine itself needs

3 For more details, consult (Arrieta, et al., 2020: 88-92).

5

to put effort in terms of computation time and information that needs to be processed.

Indeed, as far as the human side is concerned, yielding initially unexplainable output,

Deep Neural Networks often demand from users a significant amount of effort in order

for the latter (i.e. humans) to comprehend their output. This high demand in cognitive

resources undermines the extent to which users trust their results as well as makes

maintenance and systematic study of such systems more complicated.

The above weak points of current Deep Learning approaches in general and in particular

in computer chess have led us to the following interesting questions:

Q1. Is it possible to design chess engines whose behaviour – i.e. the moves they

suggest and/or play – is interpretable by humans in a non-post-hoc manner?

That is, is it possible to design and implement a chess engine which will be

comprehensible by a human user without using any other external tool and/or

methodology?

Q2. As an extension of the previous question, how could we transfer experts’ domain

knowledge to machines so as to make them, on the one hand, at least acceptably

efficient chess players as well as, on the other hand, make the learning process

more efficient? In a sense, this is equivalent to asking how one could transfer

human intuition and heuristics about chess playing to a machine directly and not

by letting it passively observe other games – be it games that have been played by

other entities or by the machine against itself.

Q3. In case the above are theoretically tractable, which are the domain specific

characteristics of chess that should be taken into account as far as the

construction of such a system is concerned? In other words, which attributes of

chess will be of significant importance in such an approach and how will they

affect the system’s design and implementation? Furthermore, which are the

views of domain experts about the plausibility and feasibility of such an

approach?

Our aim is to seek and provide answers to all three questions by finding appropriate

learning semantics that would allow for transparent interaction between humans and

machines as well as design a chess related user interface that can accommodate such

functionality. Moreover, we also aim to present the above to the chess community – i.e.

professional chess players as well as chess coaches – in order to assess our work and

rationale behind it.

6

1.2 Motivation behind our work

As we have already demonstrated, Deep Neural Networks as well as other non-

transparent approaches are characterised by two major disadvantages: (i) they are not

interpretable by humans and; (ii) they demand a vast amount of cognitive resources

from humans to comprehend them while they also are computationally expensive to

build both in terms of time as well as in terms of required training data.

In the context of chess, the above weaknesses result to the game being, at some extent,

“re-invented” by machines with their playing style often alienating even professional

chess players and coaches4. One may account for two major factors about the

aforementioned alienation when it comes to computer chess. At first, machines do not

perform, as explained above, in a way transparent to and interpretable by human

players, which naturally demands by humans increased cognitive effort when it comes

to understanding and studying moves played or suggested by several state of the art

chess engines.

Secondly, chess machines do not explicitly utilise human knowledge available when it

comes to chess playing. On the contrary, they draw all their “knowledge” about the game

and its tactics by studying games either played by other (human) chess players or by

themselves. Even in tree search based approaches, human knowledge is hard-coded in

the machine’s software and/or hardware, being, thus, inaccessible by the end-user. As a

result, a chess machine plays chess not according to some high level strategic rules

accompanied by a tactical understanding of the game but solely based on a tactical

comprehension of each position, relying on its massive superiority against human

players to overcome any strategic incapability of its own.

1.2.1 Some examples where traditional approaches fail

We will further elaborate on the above ideas – which constitute our basic motivation to

study chess and address questions Q1, Q2 and Q3 – by providing some examples.

Consider the position shown5 in Figure 1. In terms of pieces, the situation seems slightly

in favour of the white – three pawns and a bishop for a rook. However, the crucial point

4 These were indeed the words of some of the coaches we have come in contact with during the

research for this thesis when discussing AlphaZero’s playing style.

5 We would like to thank an anonymous reviewer who suggested this position as one in which

most chess engines fail.

7

here is not material but whose turn it is to move. In case white moves first, then this

position is a draw, since none of the two sides can substantially damage the other - both

kings can protect their pawns from the opponent’s pieces. However, in case black moves

first, there is an option 1. … Rh2 which seems promising since it threatens to take either

the white bishop at g2 or the white pawn at f2 – since the white king does not have

enough time to protect both of them in this case.

We will analyse both options – i.e. white and black playing first – using Stockfish 10. At

first, let us assume that it is white’s turn, so, any of 1. Ke1 and 1. Ke2 should be preferred

in order to move the white king closer to the king’s side pawns and protect the bishop in

g2. Stockfish agrees with our view on the situation and it suggests 1. Ke2 as the best

move with a -0.00 evaluation – i.e. an absolute draw, as we analyzed above.

We now set up the same position but this time it is back’s turn to play. Stockfish now

suggests as black’s best move 1. … Rh2 with a -3.22 evaluation – i.e. it almost wins the

game in favour of black, since ~3 is a typical winning evaluation for most chess engines.

However, if we take a closer look to the board, we see that the following move sequence

leads to a draw: 2. Ke2 Rxg2 3. Kf1 Rh2 4. Kg1. Indeed, from this position – see Figure 2 –

Figure 1: A troublesome position for most chess engines (black to move).

8

black has no immediately useful move and after the white plays 5. f3 the game is

ensured to be a draw6.

This is not the only position known to cause trouble to chess engines. Another famous

one is shown7 in Figure 3. There, black have superior material – two rooks for a bishop –

and, were it their turn to play there is no doubt that they win – e.g. 1. … bxc3+ opens the

b file for black rooks while it breaks white’s chain of pawns.

However, in case it is white’s turn, there is a striking path to draw. Indeed, starting with

1. Ba4+!! the black are forced to accept the white’s bishop sacrifice, otherwise, 1. … Kc4

6 Observe that the black king has no way to move behind the white’s pawns since the paired

white pawns at f3 and g3 form a wall. As far as the remaining black rook is concerned, it has two

open files to take advantage of, e and h. Nevertheless, both are within the white king’s reach –

the white needs exactly one tempo to move their king around g1, g2, f1 and f2 according to

where the black rook is located.

7 This position was suggested by International Master I. Kourkounakis, whom we sincerely

thank.

Figure 2: A draw position (black to move). After black’s move, 5. f3 constructs a fortress on
white's king's side which is impossible to penetrate for black.

9

2. Bb3+ Kb5 3. Ba4+ and white threaten with draw by triple repetition. However, the

following forced sequence of moves: 1. … Kxa4, 2. b3+ Kb5 3. c4+ Kc6 4. d5+ Kd7 5. e6+

leads to a clear draw, since, whatever may be black king’s fifth move, 6. f5 creates a

fortress around the white king – see Figure 4. So, in case white plays there is a single

move which leads to a totally closed position which allows white to escape with a draw,

in spite of finally being down in material by two rooks!

The key move for white in the above setting, 1. Ba4+!!, is relatively easily spotted by a

somewhat experienced amateur. However, it is not such an easy task for most chess

engines. Again, we provide Stockfish 10 with the initial position shown in Figure 3 and

ask for the best move for the white. Surprisingly, it gives 1. c4+ (-9.92 at 26 moves

depth) which naturally leads to 1. … Kxc4 and gradually to the destruction of white’s

position, since now the black have the possibility to clear a file with their two rooks.

Even more impressive is how Stockfish values white’s single chance to escape with a

draw. When requested to analyse 1. Ba4+ Stockfish returns five different variants, with

the best of them being evaluated at -12.69 at 32 moves depth. That is, it completely loses

a quite obvious move sequence for most human players and, on top of that, considers it a

very bad move.

Figure 3: White plays and draws!

10

The above positions, as well as some similar ones, indicate how several situations in

chess which are relatively easy to tackle for most amateur players, pose impossible

challenges to otherwise powerful chess engines. A reason that may account for this

absurd behaviour may be the way in which most chess engines “learn” chess, when

compared to humans. While a human player is capable of seeing both strategic as well as

tactical aspects of every position on the chessboard, most contemporary chess machines

have, as we have already discussed, access only to the game’s tactical aspects as well as

any domain specific metrics are hard-coded into them. Nevertheless, given the vastness

of training in terms of previous games “studied” by a chess engine, they appear to play

according to typical human strategic patterns. Borrowing some terms from biology, a

chess engine’s “phenotype” appears to be both strategically and tactically oriented – as

that of a human chess player – while its “genotype” is purely tactical.

1.2.2 Deeper in the weaknesses of contemporary chess engines

While in most cases, especially against human players, the aforementioned form of lack

of game understanding is overwhelmingly covered by such machines’ tactical

superiority, positions as the above two, which allow for far less tactical manipulations,

unveil some of their weaknesses. We consider it useful at this point to proceed to a

further analysis of the positions presented in subsection 1.2.1 in order to extract some

Figure 4: The white's fortress.

11

more abstract common features that could account for the failure of chess engines of

Stockfish’s calibre8.

As we have observed, both positions presented in 1.2.1 are more or less closed, pruning

tactical capabilities for both sides and also restricting the effect of any additional

material on the board to a minimum level – see especially Figure 3. Taking a closer look,

we will also observe that both of them rely on the same ideas that white exploits in

order to arrive to a drawing position. Indeed, at first, some material is sacrificed – in

both our cases, a bishop – while the next moves aim at restricting black’s lines of attack

and, consequently, building a more closed position.

We could now take another step towards a more abstract view on the two positions

presented above. The defending side’s sacrifice can be interpreted as sacrificing some

tactical feature – in both cases material but not necessarily restricted to it – in order to

gain enough time to bring the game to a position from which the opponent’s tactical

advantages cannot be utilised. Indeed, in both cases the white behaves in a way opposite

to that many chess machines would choose. Seeking a better position in terms of

strategic attributes, game tactics are sacrificed for the sake of destroying the opponent’s

tactical advantages as well. That is, instead of trying to improve their own position from

a tactical point of view – e.g. by saving their bishop at g2 in Figure 1 which leads to

taking the minimum possible tactical damage of losing one pawn (at f2) – the white play

so as to minimize black’s tactical possibilities to a level that they will be no threat to

their position.

Additionally, strategic attributes are the ones which explicitly lead white’s playing –

alongside with the goal of ruining black’s tactical game as we explained above – in the

sense that in both positions the white does not strive to improve their tactical game but

to take advantage of existing and create new strategic features that will lead to a “steady

state” on the board from which no side has something to win.

1.2.3 A possible solution to such cases

Should a chess coach use the above positions as study cases in a class, they would

possibly aim, among others, to demonstrate situations in which the concept of “fortress”

8 At this point we should mention that Leela Chess Zero, an open-source Deep Neural Network

chess engine based on Deepmind’s AlphaZero approach yielded similar results to the ones

reported by Stockfish 10, in terms of suggested moves, position evaluation and so on.

12

comes into play. Describing the notion of a fortress, one may say that, in short, it is a

position from which the attacking side, which typically has some advantage – be it of

tactical or strategic nature – cannot “capitalise” this superiority due to the position being

too restricting – either by itself, as in Figure 4, or by allowing one side to constantly

prohibit any further progress, as in Figure 2, or by other similar means. This is a

definition that can be easily captured in terms of natural language and can also be

relatively easily explained and discussed between people as well as be recognized on a

board whenever it occurs. Nevertheless, would it be possible to take advantage of this

piece of human knowledge by transferring it to a chess machine? Or, more broadly,

could we coach a chess machine in a way more or less similar to the one a chess coach

trains their students and provide to it such fragments of our knowledge directly and

explicitly?

Should the above be possible, we could take advantage of the already accumulated

knowledge of humans about chess and avoid the excessive amount of computational

power needed by Deep Learning or tree search algorithms in order to efficiently train a

chess machine. Moreover, by allowing for human chess players to coach a chess

machine, it comes as a natural consequence that the machine’s konwledge should be

extensible in the sense that, any time needed, the coach, would be able to alter the it

and, hence, its “view” of the game itself.

1.3 Structure of the Thesis

The rest of this thesis is structured in five chapters which address in various ways the

three posed questions (Q1, Q2 and Q3) presented in 1.1.

In chapter 2 we review previous approaches to computer chess as well as how they

relate to human chess – i.e. the extent to which they have been successful at competing

human players. We also present and discuss to more detail approaches several

approaches that have had a significant impact in the history of automated chess playing

as far as their design principles as well as their implementation are concerned.

In chapter 3 we discuss possible answers to questions Q1 and Q2 as presented in section

1.1. Namely, we present and explain through numerous examples a theoretical

framework of human-machine interaction (Machine Coaching) which will serve as our

foundation upon which the rest of our proposal will be based. Also, in this chapter we

13

introduce a (first order) language which is intended to be utilised as a means of

interaction between humans and machines in the context of Machine Coaching.

In chapter 4 we present our implementation of all the required functionality regarding

Machine Coaching as well as that of a chess Graphical User Interface (GUI). Altogether,

we have designed a chess bot which is capable of learning chess with the assistance of a

human coach. Namely, the designed chess bot starts with no actual knowledge about the

game of chess other than the game’s rules and, by receiving feedback from a human

coach in the form of arguments in favour or against moves given a board position, it

gradually refines its playing style, converging to its coach’s theory about the game of

chess under certain conditions.

In chapter 5 we present results regarding the designed system’s evaluation in two

orthogonal directions. At first, we assess the efficiency of our reasoning engine – mostly

in terms of execution time against several other system parameters i.e. the time in which

it constructs a representation of its theory given knowledge (in the form of prioritized if-

then rules) and contextual information. Next, we present and discuss opinions of several

professional chess players and coaches regarding the adopted methodology and to what

extent it seems applicable as well as what features should it additionally include in their

opinion.

Lastly, in chapter 6 we summarize all the work done so far towards the construction of a

chess bot capable of capturing a human coach’s high-level strategic guidelines as well as

the useful feedback we received by chess experts. Moreover, we also present possible

future directions towards which the current work could be extended, based, among

others, on experts’ feedback presented in chapter 5.

Part of the functionalities developed for the purposes of this thesis have been also utilised

for other purposes, among which is the WeNet project. For more information, see the

project’s official website: https://www.internetofus.eu/.

https://www.internetofus.eu/

14

Chapter 2
Literature Review

In this chapter we review works related to chess machines/engines and the approaches

adopted in their design. More precisely, this chapter’s structure is as follows: (i) in

section 2.1 we present a brief historical review of the most seminal attempts to

construct human-level playing chess machines until Northwestern University’s Chess 4.x

chess machines; (ii) in section 2.2 we present and discuss chess machines and chess

engines after Chess 4.x including the seminal Deep and Deep(er) Blue as well as

contemporary Deep Learning approaches.

2.1 The first attempts to automate chess playing

In this section, we will explore approaches to automate chess playing that date before

the emergence of highly competitive chess machines such as Northwestern University’s

Chess 4.x and the alike. As surprising it might be, humanity attempted to automate chess

playing long before computers had emerged in the middle of the twentieth century,

nevertheless with no significant success in beating human players in most cases.

2.1.1 Mechanical approaches

As we have already mentioned in chapter 1, probably the first attempt to construct a

non-human entity that could play chess dates back to 1770, when Wolfgang von

Kempelen constructed The Turk, a mechanical chess playing automaton (Standage,

2002: 18-23). The Turk appeared to be a highly skilled player since it managed several

victories against professional chess players of its time as well as Napoleon Bonaparte

and Benjamin Franklin (Standage, 2002: 18-23). As one may easily suspect, The Turk

was actually a fraud, however, this was unveiled no sooner than it was destroyed by a

fire in the Chinese Museum of C. W. Peale (Levitt, 2000: 40-41) in 1854. The game was

played by a human player who was hidden inside the machine, which was about the size

of a table – about 80cm tall, 60cm wide and 1.10m long (Standage, 2002: 22-23).

Remarkably, the human player inside the Turk was not seen even if all its four rear

doors were opened simultaneously, adding more to the mystery of its successes against

15

human players. Nowadays, The Turk has been reconstructed by J. Gaughan and is

periodically exhibited to several plays and conferences, mostly related to magic (Levitt,

2000: 243).

After Kempele’s Turk, there were also some other attempts based on the same idea – i.e.

a human playing inside a chess “automaton” on its behalf – such as Ajeeb or Memphisto

(Shaeffer, 1997: 90, Gumpel, 1889: 46) with the latter being more innovative compared

to the its predecessors since the human player was not hidden inside Memphisto but,

instead, controlled it from distance using an electromagnetic controller (Harding, 2012:

284).

It was no sooner than 1912 and Leonard Torres y Quevedo’s El Ajedrecista (The Chess

Player) that the first actual chess automaton was designed and presented in public. The

Ajedrecista was not capable of playing an entire game of chess but a specific end-game,

namely a king and rook versus king finale – the Ajedrecista played as white (king &

rook) while the human player had control of the black king. It was always successful at

mating the black king while it was also capable of recognizing any illegal moves of the

black king and alert the opponent (Atkinson, 1998: 20-22). The Ajedrecista’s

functionality was based on a chessboard on which pieces were plugged, forming a closed

electrical circuit which represented each position on the board (Montfort, 2003: 76).

Also, the machine was programed with a simple and complete – yet not optimal, in terms

of moves played – algorithm for mating a game using a king and a rook against a sole

king – this position is a quite easy endgame since the only thing the white has to be

careful of is to avoid stalemate9. Quevedo’s El Ajedrecista is still functional until today

and is kept at Madrid’s Universidad Politécnica.

2.1.2 Non-mechanical approaches

Apart from Quevedo’s El Ajedrecista there was no other significant mechanical chess

automaton throughout human history, at least not one matching the Ajedrecista’s level.

Also, it is no sooner than the 1940’s that another attempt to design a non-human chess

playing entity took place, but this time in a different setting. Konrad Zuse, a German

computer scientist, often referred to as the inventor of modern computers (Rojas, 1997:

5), started developing at 1942 what is thought to be the first chess engine in human

9 A stalemate is a position in which a player has no legal move to play while it is their turn and is

the basic draw position in chess.

16

history (Knuth, Pardo, 1976: 203). However, Zuse’s intention was not to design a chess

engine for the sake of it. Instead, his chess engine was more supposed to serve as a

complex example about a high level programming language that he had been designing

then, Plankalkül. As a result, we do not have much evidence about its performance

against other (human) players, however, it was known to fully support the game of

chess – a remarkable achievement for that time, given that Plankalkül supported only

one primitive data type (bits) (Bauer, Wössner, 1972: 679-681).

In the years after Zuse’s chess machine, several other attempts to design and implement

a chess engine were presented, however most of them failed to run on contemporary

computers. We shall at first focus in a remarkable paper by Shannon (Shannon, 1950: 1-

18), in which he introduces several of the ideas that would later be part of the design

most chess machines. In this direction, after discussing how calculating all possible

positions and then deciding which is the best move – either by some ad-hoc measure or

by consulting a “dictionary” (Shannon, 1950: 4) which assigns each position to the “best”

move, according to some expert – is not a feasible strategy to address the problem, he

introduces the notion of an evaluation function that, according to some predefined

attributes, assigns a utility value to each position10. Furthermore, he also describes some

algorithms according to which a chess playing machine could play against other players.

Delving into more details, Shannon first describes a greedy minimax algorithm that

allows a machine to choose the best move modulo a given depth of search 𝑛 (Shannon,

1950: 5-12). The algorithm’s key idea is that, assuming that an evaluation function

assigns positive values to positions that benefit the white and negative values to these

that are of black’s benefit, the white side in each turn seeks to find that move which

maximises the evaluation function given that the black side seeks to minimise it. So,

given a depth of search 𝑛 and assuming that the machine plays as white, the machine

seeks to find the move that the black would play after 𝑛 moves – i.e. the move that

minimises the evaluation function at the final position. Then, given that move, it returns

back to find which of the remaining white moves maximise the evaluation function given

that black will play the move found previously. Progressing in a similar manner, it

returns to the root of the possible positions’ tree – i.e. to the current position – and

returns the move that maximises the evaluation function given all the next moves that it

10 The very same idea has also been roughly described by Wiener in (Wiener, 1948: 48-50).

17

has calculated. Evidently, as Shannon himself observes, this is not an efficient method

for finding the next move to play for the machine, at least not for a sufficiently large

depth 𝑛 since it requires for the entire game tree to be computed (Shannon, 1950: 7-8).

Shannon concludes his work with considerations and projections about future

directions chess engine design could explore. What he is at most concerned (Shannon,

1950: 12-16) are ways in which the tree of all game positions could be pruned so as to

lower the computational complexity of the above algorithm, while he also discusses

ways in which excessive pruning could be avoided – so as to allow for seemingly short-

term bad moves to be explored in case they can lead to a long-term advantage – e.g.

pawn sacrifices or moves that lose a tempo11 and so on.

About a year after Shannon published the work discussed above, namely in 1951, A.

Turing and D. Champernowne publish what was considered to be the first chess

program that is capable of playing an entire game of chess. Turochamp, as was its name,

was designed to play chess against other players by calculating the “best” move

according to a position evaluation function – more or less as Shannon had already

described in (Shannon, 1950: 5-12) – performing a two-move depth search (Copeland,

2004: 563-564). However, in contrary to Shannon’s approach, position evaluation as

well as move selection do not follow a recursive minimax approach. Instead, Turochamp

assigns a certain value to each occurring position on the board and then proceeds in

selecting the move which has the highest average score (Copeland, 2004: 563-564). For

instance, should white’s 1. d4 lead to say 20 different possible responses by black with

the resulting positions evaluating at 𝑓(𝑝1), 𝑓(𝑝2), … , 𝑓(𝑝20), then Turochamp would

prefer 1. d4 on condition that the average evaluation of this move, i.e.
𝑓(𝑝1)+𝑓(𝑝2)+⋯+𝑓(𝑝20)

20

is the highest among the corresponding average scores of other moves. As with

Shannon’s approach on the game, the algorithm was extremely heavy for the time’s

machines resulting to it never being run during Turing’s lifetime. However, Turing and

Champernowne executed the algorithm at least once by hand, playing against

Champernowne’s wife (Champernowne’s Obituary, 2000: 262) – for the record, this

game was the first and only victory as well as match of Turochamp.

11 In chess, a tempo is a single move of one of the two players. In general, tempo in chess is a

significant strategic factor since oftentimes it determines whether a position is winning or not

for one side – we shall present and study such examples in next chapters of this thesis.

18

Following Turing and Champernoewne’s example, several other computer scientists

decided to explore the possibility of building a chess playing machine, with more or less

success. Namely, short after Turochamp, D. Prinz designed, in 1952, a computer

program that could be run on contemporary machines and solve any mate-in-two

problem (Bowden, 1957: 292-295) – i.e. in case in a position it was guaranteed to exist a

mate combination in two moves, then Prinz’s program was capable of finding it. Four

years later, in 1956, Los Alamos chess was designed by P. Stein and M. Wells in the Los

Alamos Laboratories (Anderson, 1986: 104-105). Los Alamos chess was a chess machine

that could play a full game of a simplified chess variant, named Los Alamos12 and which

is also the first actual chess machine that has recorded a victory against an amateur

chess player13 (Pritchard, 1994: 175).

Right after these partial solutions to the problem of designing a machine capable of

playing a whole game of chess against a human player, in the late 1950’s (namely, 1958)

Bernstein’s chess program was presented in public. It was a Shannon Type B program

(Shannon, 1950: 15-16) in the sense that it used a forward pruning methodology in

order to reduce the size of the search space while running a two double-move14 depth

minimax search – four half-moves in total – 2 for the playing side and two for the

opponent’s (Bernstein, Roberts, 1958: 5-6). As mentioned by the long-time world

champion Emmanuel Lasker, who had been invited to play against Bernstein’s chess

program, “It played a passable amateur game” (McCorduck, 2004: 185).

The decades of 1960’s and 1970’s were quite fruitful as far as computer chess is

concerned. In 1962, one of the first chess machines that played “convincingly well”

appeared; Kotok-McCarthy – named after its two designers, A. Kotok and J. McCarthy

(Kotok, 1962: 12). Kotok-McCarthy was based on a minimax alpha-beta searching

12 Los Alamos chess variant is played on a 6 × 6 board with no bishops for both sides as well as

the following restrictions: (i) no castling is allowed; (ii) no promotion of a pawn to a bishop is

allowed; (iii) pawns move strictly one square at a time and, consequently, there is no initial

pawn double move or en-passant capture (Pritchard, 1994: 174-176).

13 The machine won its third match of Los Alamos chess in 23 moves against one of the Los

Alamos Scientific Laboratory assistants who had been taught the game’s rules for the first time

some days prior to the game against the machine (Pritchard, 1994: 175).

14 In chess, a double-move is a pair of moves where the first is played by white and the second by

black

19

approach15 and, unlike previous approaches, it had variable search depth, in the sense

that it stopped either at eight (8) half-moves depth or at a “stable position” (Kotok,

1962: 8). Its evaluation function took under consideration material balance, king

protection, pawn structure, tempo advantage and development (Kotok, 1962: 2-6).

In middle 1960’s (namely, 1965-67), R. D. Greenblatt presented Mac Hack 6, another

chess machine that, compared to its predecessors, was highly successful. Indeed, Mac

Hack 6 was the first computer program that was allowed to compete in usual chess

tournaments against human players while it also was the first one to score a victory

against a human player in an official tournament game – namely, Game 3 in

Massachusetts State Championship, 1967, the second tournament it took part (Levy,

2013: 65). Sooner that year, it had also managed to draw a game16 against a human

player. Mac Hack 6, as its predecessors, made use of a minimax alpha-beta pruning tree

search algorithm accompanied by a position evaluation function to detect the best move

in a given board position. Its success compared to previous approaches was due to

several factors. To begin with, Greenblatt’s good understanding of the game seems to

have played some significant role – as per his own words “they were very weak players,

both Kotok and McCarthy … And I said, gee, I can do better than that” (Gardner, 2005:

13-14). Indeed, Greenblatt was a more knowledgeable chess player than most computer

scientists that had tried to develop chess machines/programs in the past, something

reflected in the about fifty different heuristics that were utilized in Mac Hack’s design in

order to efficiently narrow down the plausible moves list that was used to expand the

game tree in minimax search (Greenblatt, 1969: 804).

15 Alpha-beta tree search relies on the simple idea of pruning branches of the tree that are found

to lead to moves of lower utility for the playing player than some previously found move

sequence. For instance, if the white have found a move in some branch that evaluates, say, at

+1.5 (in favour of them) then any branch found to lead to some move of value 𝑣 < +1.5 is

rejected, given that the black will play so as to minimise white’s benefit – consequently,

maximizing their. As a result of the above, the alpha-beta algorithm is sensitive to the order in

which the moves are checked, since a better move encountered early in the search will lead to,

expectedly, more branches to be pruned (Mashey, 2005: 12-13).

16 Again, the first official draw of a computer against a human player – in the winter Amateur

Tournament of the Massachusetts State Chess Association, Game 3 (Levy, 2013: 64).

20

Another factor that can account for Mac Hack’s efficiency was that it was the first chess

program that included a hash table containing all previous positions played, something

that dramatically reduced search time. More precisely, when a position was found

during search, it was stored in a hash table alongside with the search results – i.e. the

value of the position as calculated by the evaluation function. Furthermore, the depth to

which this position was found was also stored among other information, so when the

very same position occurred on board and as a terminal position of some branch of the

game tree – i.e. leaf node –, the results were immediately recovered from the hash table,

saving significant computation time (Greenblatt, 1969: 806-807).

On top of the hash table as well as the refined heuristics regarding plausible move

suggestion, there were also other features that facilitated Mac Hack’s work. For instance,

a secondary search was deployed when a search yielded a new move as a possible

optimal choice. The search begun at the depth at which the analysis of the main variant

of the new move had stopped, typically for a single double-move, so as to “cheaply”

increase the search depth (Greenblatt, 1969: 807). Mac Hack 6 was also provided access

to an opening book designed especially for the purposes of the project. The main

objective was to reduce the chance that Mac Hack would fall for typical opening traps

often set up by human players.

Most of the approaches that appeared during the next years were mainly modifications

and extensions of Mac Hack’s design principles. The next major shift in computer chess

came with Northwestern University’s Chess program, designed by L. Atkin and D. Slate,

starting from 1968 (Jennings, 1978: 108-109). Chess 4.5 was the first computer program

to win in an official tournament against human players in 1976 while the year after, the

program’s improved version, Chess 4.6, won the 84th Minnesota Open against players

close to Master level (Hapgood, 1982: 827-830). The same year, 1977, Chess 4.6 also

managed to defeat the United States chess champion, W. Browne, who had himself

invited the program to a match after the latter had won the 84th Minnesota Open earlier

this year (Douglas, 1979: 111). The next version of Chess, Chess 4.7, while it lost a match

series against D. Levy by 4½ - 1½ (3 wins, 1 draw and 1 loss for Levy), became the first

computer chess program to ever defeat a Master level human player in a single game

(Douglas, 1978: 84).

Compared to almost a decade of no significant progress after Greenblatt’s chess

program, Chess’s consecutive wins against highly skilled human players came as a bolt

21

from the blue. As expected, various innovations were included in the program’s design.

Indeed, apart from maintaining known good practices such as alpha-beta pruning

introduced by McCarthy and Kotok (Kotok, 1962: 2-3) and transposition tables

introduced by Greenblatt (Greenblatt, 1969: 805-806), Chess also introduced

bitboards17 in computer chess, which facilitated parallel processing in several

circumstances. Apart from that, Chess also extended Greenblatt’s transposition hash

table idea as follows: apart from keeping encountered positions alongside their value, as

computed by the machine’s evaluation function, and the depth at which they were found,

they also allowed for moves that have previously led to a cut-off to be kept in it. As a

result, move prioritisation became more efficient, leading to better performance given

alpha-beta pruning algorithm’s sensitivity in the order by which the moves are

examined.

Chess 4.x series also introduced some other techniques which, while being of smaller

magnitude than the ones already mentioned, jointly contributed by a significant amount

to it being such a sufficient chess player compared to any other previous approach.

These include, but do not restrict to, the following ones: (i) instead of generating all

plausible moves and then expanding each one of them, Chess did generate one move at a

time and abandoned search should that move lead to a cut-off (Frey, Atkin, 1978: 189);

(ii) instead of re-calculating the evaluation function at each position, Chess kept it

gradually updated as it went through several adjacent positions leading to a significant

reduction in computation time (Frey, Atkin, 1978: 190); (iii) serialisation of the way the

evaluation function is computed, which means that decisive factors – such as material

balance – are computed first and, if needed, any other computations are made (Frey,

Atkin, 1978: 191); (iv) use of bitmaps encoding win/draw results in most typical

endgame categories, so as to compensate for humans’ intuitive play at this stage of the

game (Newborn, 1977: 119-129).

By the end of the 1970’s, chess machines had started making massive steps in

approximating human level of playing. While Chess 4.7 did not manage to finally beat

Levy in an official match, it was the first machine to record a win in a single game against

a chess master. The leaps done since the beginning of the 20th century and Quevedo’s

mechanical El Ajedrecista to Northwestern University’s Chess were gigantic and

17 Bitboards are data structures that encode board squares and/or game pieces using bits (Atkin,

Slate, 1983: 84).

22

astonishing, should one take into account that computer science was a relatively young

field. However, it yet remained for the best human chess players to be convincingly

defeated by machines.

2.2 Mastering the game

The rise of the 1980’s was accompanied by the announcement of the Fredkin Prize by

the Edward Fredkin Foundation of Cambridge, Massachusetts (Mittman, 1980: 5). The

prize was three-tiered, including: (i) a $5,000 prize for any chess machine that would

first achieve a Master status; (ii) a $10,000 prize for any chess machine that would be

the first to acquire an International Master status and; (iii) a $100,000 prize to any chess

machine that would manage to become World Chess Champion – i.e. beat a running

World Chess Champion.

The first tier prize, as Chess 4.7 had already shown, was closer than one would suspect.

Indeed, in 1981 Belle chess, a chess machine developed by K. Thompson and J. Condon at

Bell Laboratories was the first chess machine to get a Master level ranking. While

previous advances in computer chess were, mostly, due to a parallel work in creating

more efficient algorithms as well as more powerful machines, Belle was superior

compared to most chess machines of its time due to its hardware based approach. While

algorithmically it run an alpha-beta pruning algorithm as its predecessors – using some

new improvements which sped it up (Fishburn, 1980: 29) – it was the faster move

generation as well as move sorting and evaluation that made it successful. As per

Thompson’s words “It ran about 160,000 positions per second. Typical software ran

about 6,000 positions per second; that’s on a fast machine” (Mashey, 2005: 14).

Another computer machine that introduced several innovations in computer chess was

Cray-Blitz, developed by R. M. Hyatt, A. E. Gower and H. L. Nelson. While, as Belle did,

Cray-Blitz relied on state of the art hardware, it also utilised software that had not been

used in earlier chess machines (Hyatt et al., 1990: 111). As with all major chess

machines of its time, it relied on alpha-beta pruning as well as on most of the heuristics

and search space reduction techniques that had been introduced in the Chess 4.x series

of chess machines (Hyatt et al., 1990: 111-112). Its most significant contribution was

essentially its quiescence search methodology. To begin with, during search the search

tree was split into three regions with the first of them being a typical full-width search

23

utilising alpha-beta pruning (Hyatt et al., 1990: 112-115) as well as known heuristics –

e.g. null move, transposition tables and so on.

Once search in tree region one had come to its end, search to tree region two started

from certain tree nodes by expanding by two double moves – i.e. four plies – from the

point where search in region one had stopped. As stated in (Hyatt et al., 1990: 115-116),

the main purpose of this second (quiescence) search region was to further elaborate on

positions where a king seems to be in a difficult position – where difficulty is measured

in terms of the evaluation function – aiming to gain some advantage, usually in material.

Then, Cray-Blitz entered the third region of the tree, which at some occasions

overlapped with region two, and was dedicated to further exploring solely capture

moves.

Another remarkable feature of Cray-Blitz is the way in which position evaluation was

conducted. It is indeed one of the first machines that introduced quite sophisticated

strategic parameters into piece ranking which allowed for some kind of contextually

variable value of pieces – e.g. in certain positions, knights were considered better than

bishops while in others the opposite was true. Also, Cray-Blitz introduced a novelty

regarding tournament games – both against machines as well as against human players.

Namely, it took a flexible stance against time utilisation by entering a “deep think” mode

whenever it was in a difficult position – be it the game’s current position or some best

move in a main variation examined. During that “deep think” mode it allocated

additional time than the predetermined one in order to find a move/variation in which it

could restore balance in the game (if possible). That additional time allocation was

proportional to material loss that occurred in that position (Hyatt, 1990: 129-130).

Having achieved Master ranking, the next goal for computer chess was to beat a chess

Grand Master in an official game. This took place no sooner than 1988, when HiTech,

designed by H. Berliner and C. Ebeling, beat A. Denker, US grandmaster in a four game

match with a 3½ - ½ score (3 wins and one draw for HiTech). HiTech was quite

innovative in terms of algorithmic means it utilised, since, as claimed by the H. Berliner,

the machine advanced “from Master to Senior Master with no hardware change”

(Berliner, 1989: 12). While it remained close to the almost sacred alpha-beta pruning

algorithm as well as to most techniques that had been introduced by the Chess 4.x

machines, it also introduced some significant novelties.

24

At first, it built up on Cray-Blitz’s legacy and set time utilisation as one of its priorities in

terms of design. HiTech internally ranked moves to “obvious” and “hard” ones and

accordingly allocated time – the characterisation was at some extent hard-coded while

HiTech also had access to an oracle of knowledge in order to facilitate such assertions.

Thus, it could efficiently dedicate more time in searching moves that would lead it to

losing positions so as to find possibly better candidate moves. Also, HiTech developers

utilised the notion of Singular Extensions (Anantharaman et al., 1988: 2) in order to

easily detect moves that were considerably better than other sibling moves – i.e. moves

at the same depth in the search tree – and focus on path variations of these moves,

leading to deeper search when a sequence of strong moves was found (Berliner, 1989:

18-19).

Furthermore, HiTech deviated from previous approaches regarding another crucial

factor that allowed it to capture more complex relations on the chessboard and,

consequently, drastically improve its performance. Until its time, most known

approaches to computer chess made use of linear evaluation functions, resembling more

or less weighted means of all the factors taken into account. On top of that tradition,

HiTech introduced non-linear evaluation functions (Berliner, 1989: 16-17) which are, in

fact, arbitrary functions of the state of any square on the chessboard. Such functions are

not computed serially, since this was expected to lead in a blow-up in computation time,

but, instead, they are computed through a reduction process using a table look-up

method (Berliner, 1989: 17-18).

Following HiTech, there were several approaches to adopt and refine its methodologies

such as Deep Thought, an ancestor of Deep Blue. For reasons of completeness, we shall

refer to both of them. Deep Thought was the first chess machine to beat a human Grand

Master in a tournament game in 1989 (Hsu, et al., 1990: 44). It ran on a quite strong

machine for its time, allowing it to compute about 750,000 positions per second (Hsu, et

al., 1990: 45). Deep Thought, in parallel with HiTech, made use of the singular extension

algorithm which helped focus on particularly important positions, as in the case of

HiTech, and was, along with the latter, the first known chess machines to use selective

search – i.e. deviating from a typical alpha-beta pruning by temporarily looking only

towards one direction and much deeper than the rest branches of the search tree.

But, possibly the most important feature introduced by Deep Thought was the notion of

a “self-training” evaluation function (Hsu, et al., 1990: 45-46). Instead of hard-coding the

25

weights on a linear evaluation function as with most past approaches or introduce non-

linearity as HiTech did, Deep Thought used a hill climbing algorithm to find optimal

values for the evaluation function’s weights making use of a pool of 900 grandmaster

games (Hsu, et al., 1990: 47). However, since the above method was computationally

expensive, it was used in certain difficult cases, while in most cases a simpler approach

was adopted that sought to minimise mean square error of the estimated move against

the optimal move – which was either a move that was played by some grandmaster in a

sample game or a result returned from a deep search, in case of some known concept

(Hsu, et al., 1990: 48).

Building on the innovative approaches introduced by Deep Thought, its team proceeded

in building Deep Thought 2 – which was intended to be stepping stone towards the

construction of Deep Blue (Campbell, et. al., 2002: 58) – as well as Deep and Deep(er)

Blue. For the rest of this chapter, we will refer to both Deep and Deep(er) Blue as Deep

Blue, referring primarily to the latter version, which beat G. Kasparov in 1997.

Extending the work done in Deep Thought, Deep Blue adopted a somewhat different

stance on game tree search. Having at its disposal vast amounts of computational

resources and utilising strong parallel processing – resulting to searching capacity of 2-

2.5 million positions per second, the highest of its time – instead of typical alpha-beta

pruning techniques, Deep Blue adopted a highly selective search, avoiding pruning at

earlier stages in almost any case (Campbel, et al., 2002, 60-61) so as to efficiently

explore any variant to some minimum depth, in case it led to a better position later.

Furthermore, Deep Blue took advantage of both software search, utilising sophisticated

heuristics as Deep Thought, which modifying a set of about 8,000 parameters, as well as

enhanced hardware search – which was, nevertheless, non-alterable (Campbell, et al.,

2002: 64-72). Not restricting to the above, Deep Blue was also granted access to an

opening book as well as an “override” book which allowed for last minute changes prior

to some game so as to avoid typical and known opening traps. Once the opening of a

game had come to its end, rendering Deep Blue’s opening book useless, Deep Blue could

take advantage of an “extended” book which provided access to about 700,000 games

played by grandmasters. Using information from this book, Deep Blue was able to assess

moves not only with respect to its own evaluation function but also to enhance its

“judgement” by providing bonuses or penalties to its evaluations (Campbell, et al. 2002:

76-78). At last, Deep Blue could also access a series of endgame databases, mostly the

26

ones provided by K. Thompson (Mashey, 2005: 18-22) which contained endgame

positions and their outcome/winning move sequences encoded in bitboards and

obtained by a retrograde analysis starting from a final board position and proceeding

backwards.

The years that followed Deep Blue’s victory against G. Kasparov, the then-reigning

World Chess Champion, saw several chess engines, both open as well as closed-source

(e.g. Rybka). Probably the most successful of them all that also still uses an alpha-beta

pruning based methodology is Stockfish (Romstad, et al., 2008). Stockfish relies on most

of the aforementioned heuristics – e.g. the null move heuristic – as well as typical

representation methods – such as bit-boards and transposition tables – but amongst its

most significant attributes is its very aggressive pruning policy. However, since it has

repeatedly been empirically validated that over-pruning may lead to winning variants

being pruned, eventually leading to defeat, Stockfish also adopts a late move reduction

policy. That is, it does not prune branches of the game search tree immediately but

allows for a shallow search at first so as to verify, up to some certain level, that no good

move is being cut off.

Recently, approaches that deviate from the typical tree search methodologies presented

up to now have emerged. From these, Deepmind’s AlphaZero is undoubtedly the most

eminent. AlphaZero, in contrast with most chess computer programs, is not chess

specific, as stated in (Silver, 2017: 1). Instead, it relies on a tabula rasa reinforcement

learning methodology under which it can accumulate knowledge about the game by self-

playing and self-assessment. More precisely, when it comes to choosing a move, instead

of utilising a typical alpha-beta pruning variant, AlphaZero plays simulated games

against itself while in each simulation it picks up its next move by being one of high

probability and value according to its deep neural network. Once all simulations have

been completed, it returns the corresponding probability vector that occurs from the

above process – also known as Monte-Carlo Tree Search (MCTS). Given the above

probability vector, 𝜋, at a certain position AlphaZero picks moves according to it while,

once the game is over, it compares its evaluation (+1, 0 or −1 in the case of chess

corresponding to win, draw and loss respectively) with its neural network’s estimation

about the outcome of the game and it adjusts the parameters accordingly using gradient

descent so as to minimise the occurring mean square error. Simultaneously, it also seeks

27

to maximise the similarity of its network’s policy18 vector to the probability vector 𝜋

(Silver, 2017, 2-3). AlphaZero, in spite of being game independent, has successfully

managed to defeat Stockfish in recent experiments by an impressive score: 28 wins, 72

draws and 0 losses.

18 A policy in terms of reinforcement learning is a probability distribution defined over the set of

pairs of states and actions according to which the agent acts.

28

Chapter 3
Machine Coaching

In this chapter we will present and explain through examples of application the learning

methodology of Machine Coaching as well as the induced human-machine interaction

protocol. The structure of this chapter is as follows: (i) in section 3.1, Machine Coaching

is presented as a meeting point between typical Machine Learning methodologies and

Declarative Programming; (ii) in section 3.2, a first order language suitable for reasoning

in the context of Machine Coaching as well as its syntax are defined; (iii) in section 3.3,

the theoretical principles of a reasoning engine that conducts reasoning in the context of

Machine Coaching are presented.

3.1 High-level description of Machine Coaching

As we have already discussed in chapter 1, in order to utilise human chess players’

knowledge about the game in a chess machine’s training process as well as improve the

machine’s performance on several cases where it is easy for a human to adapt, we argue

that a more declarative approach is necessary. For these purposes, Machine Coaching

(Michael, 2019: 81-82) seems an appropriate choice, as it will be further explained in

this chapter.

At a higher level, Machine Coaching is a Machine Learning paradigm that allows a human

user to transfer knowledge, personal preferences and/or heuristics to a machine by

providing pieces of advice to it in the form of arguments in favour or against certain

actions/behaviours. Assuming for a while that we have at our hands a language through

which a machine and a human can interact in such way, a typical Machine Coaching

scenario would be the following one:

1. At first, a human user asks for some piece of advice – in our context, it could be

some move suggestion, for example – from the machine on a certain

circumstance – e.g. on a specific board position.

2. The machine, with any knowledge it currently has at its disposal – which, in the

beginning of the coaching process may include nothing – as well as any

29

contextual information available, returns a piece of advice as well as an argument

supporting that piece of advice which, at the same time, serves as an explanation

to the human user.

3. The user, on seeing the suggested action/behaviour as well as the corresponding

explanation, has two options19:

a. Either to accept the machine’s advice as well as the explanation it has

provided about it, when consequently nothing changes in the machine’s

knowledge and the user may ask for another piece of advice – return,

hence, to step 1;

b. Or to not accept the machine’s advice and/or the corresponding

explanation, in which case, the user is prompted to provide counter-

argumentation to the machine about why they did so. The machine

integrates the above counter argumentation to its knowledge base and is

again ready to accept any new advice request from the user – return,

hence, to step 1.

In order to clearly demonstrate the above human-machine interaction, we present a

simple example of the above in the context of chess. Again, we assume that there exists a

common language of communication between the human user and the machine in which

all the following arguments are being expressed. Also, let us assume that we have

already had some brief training session with our bot and have given it a single guideline:

to play its pieces towards the centre20 of the board when still in the opening phase of a

game21.

Assume that our chess bot plays as black and it is its turn to play in the position shown

in Figure 5, which has occurred from white’s 1. e4. Upon our request for its next move –

i.e. its advice/suggestion in the given context (position on the chessboard) – it responds

with the following passage:

19 The exact interaction protocol will be presented and discussed later on in this chapter.

20 We define as the board’s centre squares the squares e4, d4, d5 and e5.

21 We make this assumption for the purposes of our demonstration only.

30

“I would suggest making the move 1. … e5 since we are still in the game’s

opening phase and in such cases it is better to move pieces towards the board’s

centre.”

So far so good, since 1. … e5 is an acceptable response to 1. e4. Next, the white plays 2.

Nf3, threatening the black pawn at e5. We ask again what is on our bot’s “mind”, given

this situation on the board – shown in Figure 6 – and we receive the following response:

“I would suggest making the move 2. … d5 since we are still in the game’s opening

phase and in such cases it is better to move pieces towards the board’s centre.”

We should expect such advice since we have assumed that the only guideline our bot has

is to play its pieces in the centre of the chessboard when it is in the opening stage of a

game and the only move towards the board’s centre left is 2. … d5. However, since our

bot is still “inexperienced”, we would like to prohibit it from playing gambits22,

especially ones known to lead to inconvenient positions in the middle of the game for

22 A gambit in chess is an opening variant in which some material is sacrificed in order to gain

some strategic or tactical advantage as compensation for it – e.g. better control of the board’s

centre or the initiative against the opponent.

Figure 5: The position after 1.e4.

31

the black – this one, in particular, is known as the Elephant’s Gambit (de Firmian, 1999:

150-151). So, we decide to advice our bot to be more cautious by protecting its pieces

when they are under threat by providing the following counter-argument to its

(suggestion, explanation) tuple:

“When you are still in the opening phase of a game and some of your pieces is

threatened, prefer moves that defend this threat by supporting the piece under threat

rather than moves that simply bring your pieces to the centre.”

Given this counter-argument, we locally de-activate our previous advice of moving

pieces towards the board’s centre squares in situations where there is also another

feature on the board, other than the fact that we are currently on the opening stage of

the game – i.e. an opponent’s threat to win some material over us. The refined

knowledge base would lead the bot to choose between moves such as 2. … Nc6, 2. … d6,

2. … Qe7 and so on, which all defend the black pawn at e5. By continuing in a similar

manner, we provide further advice to the chess bot, gradually allowing it to capture

larger parts of our theory about playing chess.

As one may observe, Machine Coaching stands between Machine Learning and

Declarative Programming. On the one hand, it falls in the broader category of Machine

Figure 6: The position after 2. Nf3.

32

Learning since it allows for a machine to accumulate (domain specific) knowledge by

capturing a (human) user’s heuristics and preferences. On the other hand, in the

paradigm of Machine Coaching the machine is not instructed in an imperative way how

to search for or construct that knowledge. On the contrary, the user expresses

declaratively what they want the machine to behave like by providing advice and, in a

sense, the machine finds a way to follow these instructions, if possible.

However, apart from allowing a human to train a machine in a more declarative way,

Machine Coaching also allows for the learning process to be transparent with respect to

the system’s functionality. At each time, the machine informs the user about the

rationale on which it relied to reach its conclusion, so the user is always aware of the

way it operated. The above will allow us to consider Machine Coaching as an

interpretable learning methodology, as defined in (Arrieta, et al., 2020: 84) since at each

time the user is capable of understanding the entire process by which the model reasons

and learns based on their own advice. Moreover, Machine coaching may also be

considered a simulatable paradigm since each suggestion is based on rules that originate

from the user’s theory about some domain and, hence, the user, given all the information

available to the machine is expected to be capable of simulating its function23.

In the following sections we will thoroughly discuss Machine Coaching as presented in

(Michael, 2019: 83-85) providing chess-specific examples about each new notion

introduced. Thus we expect that more light will be shed on how interpretability and

transparency are achieved to a significant extent by adopting Machine Coaching as our

learning methodology.

3.2 A language for Machine Coaching

In this section we formalise a language that will support interaction between humans

and machines in the context of Machine Coaching while it will also allow for a further

23 This may need to be further studied since, even if the machine’s theory is at every time a

subset of that of the user, assuming the former had no previous knowledge, this may not

necessarily imply that a user can simulate the machine’s functionality within a reasonable time

frame. One factor that could account for this is that some fragments of the user’s theory may lead

to counter-intuitive inferences – from the user’s viewpoint – which may lead to spending more

time than expected to understand the machine’s rationale behind them.

33

formalisation of Machine Coaching’s theory. As with most parts referring to Machine

Coaching in this thesis, we mostly follow the presentation in (Michael, 2019: 83-85).

3.2.1 Describing the language of Machine Coaching

Until now, we have vaguely used the term knowledge base to refer to a data structure

where the machine’s knowledge, as provided by the user, is kept. However, as the

previous example clearly demonstrates, it does not suffice for the machine’s knowledge

base to be a typical list/array of rules. Indeed, in the above example, we may rewrite the

two arguments presented as follows – again, we use natural language to express these

arguments for reasons of simplicity:

Argument 1: [Rule 1]

 Rule 1: If a move brings a piece to the centre of the board then suggest that move.

 Argument 2: [Rule 2, Rule 3]

Rule 2: If a move brings a piece to the centre of the board but there exists a threat

to one of my pieces and another move that defends that threat then reject the

first move.

Rule 3: If a move brings a piece to the centre of the board but there exists a threat

to one of my pieces and another move that defends that threat then suggest the

second move.

As we see, in the context of Figure 6 all three rules are triggered which leads to a conflict

between rules 1 and 2. As a result, we need some mechanism in which such conflicts are

resolved, which cannot be accommodated by a typical knowledge base. Thus, as

described in (Michael, 2019: 83), the notion of a prioritised knowledge base is

introduced. In a prioritised knowledge base, apart from the rules themselves, a priority

relation is defined over all pairs of conflicting rules which facilitates conflict resolution,

in the sense that rules of higher priority are preferred when a conflict arises.

So, in our example, we would like Rule 2, which is conflicting with Rule 1, to be declared

of higher priority than Rule 1 so as to capture the exceptional character Rule 2 has over

Rule 1. Indeed, while Rule 1 expresses a general principle in chess opening theory – i.e.

that of moving one’s pieces towards the centre of the board in order to control it – Rule

2 describes a position on the board which demands a different manipulation due to an

34

additional feature – i.e. the opponent’s threat to take a piece of ours – and, hence, the

usual way of action should not be followed in this case.

Bearing these in mind, we now proceed on presenting and discussing the theoretic tools

we will need in order to strictly formulate the aforementioned notion of a prioritised

knowledge base as presented in (Michael, 2019: 83). At first, let us assume that we have

at our disposal a first order language 𝐿 which:

 Allows for countably many constant symbols (also called constants for short).

Constants are intended to be interpreted as our universe’s entities, so, in the

context of chess some typical constant symbols could be e4, a3 and d7 which all

represent squares or pawn, queen and rook which represent chess pieces or

even black and white which represent the colours of the two players.

 Allows for countably mane variable symbols (also called variables for short).

Variables are intended to serve as placeholders for constants in various

expressions.

 Allows for countably many predicate symbols of arity 𝑛, where 𝑛 ∈ ℤ>0 (also

called n-ary predicates or simply predicates for short). Predicates are intended to

be interpreted as relations among entities of our universe. In the context of chess,

a binary predicate could be starts_from(Move,Square) which is intended to

express the relation of a square (Square) being the starting square of a move

(Move). In the same way, a unary relation in the universe of chess could be

plays_as(white) which is intended to express the fact that the bot plays as

white.

 Contains a special binary predicate symbol, called the equality symbol, which is, a

priori interpreted in any case as the binary relation of congruence between two

entities of our universe24.

 Contains a universal quantifier symbol, which is intended to be interpreted as

for all entities in our universe.

24 This is not verbosely stated in (Michael, 2019: 83) however we considered useful to include an

equality symbol in our language since it was found to be necessary in several occasions – see

next chapter for more.

35

 Contains three logical connective symbols which are intended to be interpreted

as logical conjunction, material implication and logical (classical) negation

respectively.

At this point it would be useful to introduce some concrete notation for our language so

as to help clarify future expressions and definitions. More precisely:

 We will denote variables by any finite alphanumeric sequence – allowing also for

the text underscore symbol – which starts with a capital letter of the latin

alphabet. As a result, Piece_2 and Colour do denote variable symbols while

_Piece or colour or 2piece do not.

 We will denote constants by any finite alphanumeric sequence – again, allowing

for the text underscore symbol – which starts with a lowercase letter of the latin

alphabet. As a result, pawn and e2 do denote constant symbols while Pawn or

3queen are not.

 We will denote predicates by any finite alphanumeric sequence – again, allowing

for the text underscore symbol – which starts with a lowercase letter of the latin

alphabet and is preceded by a comma-separated list of its arguments enclosed in

parentheses.

 We will denote the special equality binary predicate by ?=(X,Y), where X and Y

are its two arguments.

 We will denote the logical connector of negation with the symbol - (the minus

symbol) while we will use the comma symbol (,) so as to denote logical

conjunction. So, if colour(pawn,white), is_at(pawn,e4) holds it means that

both colour(pawn,white) and is_at(pawn,e4) hold, while in the opposite

case in which -is_at(pawn,d4) holds then is_at(pawn,d4) does not hold.

 We will also denote the logical connector of material implication by the word

implies. For instance, is_at(Piece,e4) implies is_at_centre(Piece)

means that either is_at_centre(Piece) or -is_at(Piece,e4) holds.

 In all expressions, we will assume that any variables are within the scope of some

universal quantifier and, as a result, we will not introduce any special notation

for it.

Now, using the above, we define the following:

36

 A literal is either a predicate itself or its negation. Also, a literal is called negative

when it consists of a negated predicate and positive otherwise. Positive literals

are interpreted as predicates – i.e. they represent n-ary relations between

entities of our universe – while negative literals are interpreted as relations that

don’t hold in our universe. We also define conflicting literals to be two literals

such that one of the is the negation of the other. For instance, literals

 –colour(black) and colour(black) are conflicting.

 A rule is a triplet (name, body, head) were:

o name is any finite alphanumeric sequence – including text underscore, as

above – and denotes the rule’s name;

o body is a conjunction of literals, that is, given the notation defined above, a

comma-separated list of plain of negated predicates;

o head is a single literal.

Also, as far as rules are concerned, we define the following notation:

name :: body implies head;

where implies is the material implication connective, name, body and head correspond

to the rule’s name, body and head respectively, :: is a delimiter separating the rule’s

name from its main part and ; denotes the rule’s end. Lastly, we also say that two rules

are conflicting in case their heads are conflicting literals, as defined above.

Now, given the above, we also define a context to be a non-empty collection of pariwise

non-conflicting literals. Our intention is for a context to be interpreted as a set of facts

that describe a specific situation in a given setting. So, in our case (chess), a context

describing the initial position on the board may contain literals such as

is_at(pawn,white,a2) or is_at(queen,black,d8) and other similar ones, where

is_at(Piece,Colour,Square) is intended to be interpreted as “a piece of type Piece

and of colour Colour is at square Square”.

Now, we have now at our disposal all the needed means in order to define a prioritised

knowledge base. We will say that a tuple 𝑘 = (𝜌, ≺) is a prioritised knowledge base if:

1. 𝜌 is a set of rules as defined above;

37

2. ≺ is an irreflexive antisymmetric priority relation25 ≺ over all pairs of conflicting

rules in 𝜌 × 𝜌.

At a higher level, a prioritised knowledge base seems capable of capturing the subtleties

of the advice taking procedure described in 3.1. Indeed, as we have already argued, it is

mandatory that conflicting rules are included in the machine’s knowledge base since in

this way the refutable nature of human argumentation with respect to contextual

information can be efficiently captured.

It remains to provide a formal definition of an argument. However, we consider it useful

to first provide some examples of application of the language we have described above

in the context of chess. As a result, we will present and discuss the formal definition of

arguments as well as anything related to reasoning and learning in the context of

Machine Coaching at the end of the chapter, in section 3.3.

3.2.2 Examples of Machine Coaching in chess

Up to now we have defined a language through which all interaction between humans

and machines will take place in the context of Machine Coaching. In this subsection we

are going to present some examples specifically in the context of chess so as to

demonstrate the capabilities of Machine Coaching’s language as described in 3.2.1.

To begin with, we will first present the example discussed in section 3.1 in order to

make a direct comparison between natural language and the language we have designed

for Machine Coaching as well as for reasons of completeness. So, at first we would like to

describe the rule:

Rule 1: If a move brings a piece to the centre of the board then suggest that move.

To do so, we will at first assume that we have access to a binary predicate,

to_square(Move,Square) where Square is intended to be substituted by any square

constant, hence, meaningful substitutes for Square are:

 Square: a1, a2, ... , h7, h8.

while meaningful substitutes for variable Move could be:

25 In other words, ≺ satisfies the following: (i) there is no rule 𝑟 such that 𝑟 ≺ 𝑟 (irreflexivity);

(ii) if 𝑟 ≺ 𝑟′ for two conflicting rules 𝑟, 𝑟′ then 𝑟′ ≺ 𝑟 does not hold (antisymmetry).

38

 Move: e2e4, g2f3 and, in general, any legal move in a UCI format26.

Also, we will make use of a literal suggest(Move) which will denote that a move should

be suggested as an appropriate one. Using the above, we can at first express the meaning

of the phrase “a piece is moved at the centre of the board”, using the following five

rules27:

C_1 :: ?=(Square,e4) implies is_at_centre(Square);

C_2 :: ?=(Square,d4) implies is_at_centre(Square);

C_3 :: ?=(Square,e5) implies is_at_centre(Square);

C_4 :: ?=(Square,d5) implies is_at_centre(Square);

Occ :: to_square(Move,Square), is_at_centre(Square) implies

occupies_centre(Move);

Next, we need to define what the “opening phase” of a game of chess is. To do so, we will

need a predicate like current_move(Count) where Count is some integer valued

variable which corresponds to the current double-move count. Using this predicate, we

may define the game’s opening phase as follows28:

Op :: move_count(X), ?<(X,11) implies game_phase(opening);

In the above expression we also used a mathematical comparison predicate, ?<(X,Y)

which is intended to be interpreted29 as 𝑋 < 𝑌. In order to express Rule 1, we will also

26 A move in UCI format is a string of 4 or 5 characters where: (i) the first two characters denote

the rank and the file of the move’s starting square; (ii) the third and the fourth characters denote

the rank and file of the square to which the piece is moved and; (iii) the last (fifth) character

denotes the piece to which a pawn is promoted in case the move is a promotion move - equal to

the empty character if the move is not a promotion move.

27 The symbol ?=(·,·) that appears in the following rules denotes our language’s equality

symbol.

28 Note at this point that we could have also used a constant symbol opening as Op rule’s head -

indeed, our implementation of Machine Coaching’s language allows for constants to be

interpreted as predicate symbols of zero arity – see next chapter for more. So, it is more of a

matter of preference rather than anything else whether one chooses to define a new predicate

symbol or just a constant.

29 We will elaborate on the definition of mathematical relations and operations in the context of

our language in the next chapter, where we discuss issues regarding the language’s

39

need a predicate plays_as(Colour) so as to be able to distinguish between the colours

of each player as well as a moves(Move,Piece) predicate which is intended to be

interpreted as: move Move moves a piece of type Piece. Lastly, we will also assume that

we have access to another binary predicate30, move_played_by(Move,Colour) which

is interpreted as: move Move is played by player of colour Colour. Now, given the above

predicates as well as rules, we can express Rule 1 as indicated below:

Rule_1 :: plays_as(Colour), occupies_centre(Move),

move_played_by(Move,Colour), game_phase(opening) implies

suggest(Move);

Before proceeding to expressing Rules 2 and 3 in the language we have defined, it would

be useful to first make some remarks regarding the above. At first, we could have

avoided rules C_1 to C_4 as well as Occ by creating four “instances” of Rule_1 by using

to_square(Move,Square) in a similar fashion as in rules C_1 to C_4 and Occ.

However, we preferred to describe a new predicate, occupies_centre(Move)

primarily to demonstrate the possibility of “defining” our own predicates as well as

because doing so leads to more efficient coding – i.e. it is considered a good practice in

the context of our language. Indeed, in the above way we are introducing eventually less

rules in the machine’s knowledge base since, were rules C_1 to C_4 not used, we would

be obliged, to create four “instances” of Occ as well as of each rule that refers in some

way to central squares of the board.

Furthermore by “defining” new predicates, we are allowed to define any new higher-

level notion we need, provided that it is within the expressive limits of our language –

i.e. it is definable through first order if-then rules as defined in 3.2.1 as well as any built-

in predicates provided. Moreover, by having concretely defined the notion of central

squares once, should it occur that this definition needs to be changed at some time in the

future – e.g. extended to include more squares – it suffices to overwrite rules C_1 to C_4

implementation. In general, the implementation allows for all typical mathematical operations

and functions to be computed, even if such function symbols are not allowed in our language, in

principle.

30 This predicate is needed since even if exactly one player moves at a time in a game of chess, it

is useful for each context describing a certain position to also include the opponent’s moves in

case a null move is played by us.

40

with new ones – in case we had not used such rules, we would have to override any rule

referring to the notion of “centre”.

Now, we proceed to expressing Rule 2 in our language. Rule 2 is expressed in natural

language as follows:

Rule 2: If a move brings a piece to the centre of the board but there exists a threat

to one of my pieces and another move that defends that threat then reject the

first move.

So, as with Rule 1, we will first describe what primitive information is required – which

will be encoded in some built-in predicates – as well as define any new higher level

information needed. To begin with, we will suppose that we have access to a ternary

predicate, is_at(Piece,Colour,Square) which is intended to encode the fact that a

piece Piece of colour Colour is located at square Square. As a result, meaningful

constants that could be substituted in place of each variable are:

 Piece: pawn, knight, bishop, rook, queen, king.

 Colour: black, white.

 Square: a1, a2, ... , h7, h8.

Furthermore, we also need access to a predicate attacked_by(Colour,Square)

which is intended to represent the fact that the player of colour Colour attacks square

Square with at least one of their pieces31. Using the above, we could describe a threat as

follows:

Threat :: plays_as(Colour1), -plays_as(Colour2),

is_at(Piece,Colour1,Square), attacked_by(Colour2,Square)

implies threatened(Square);

31 Note that atttacked_by cannot be expressed in terms of to_square since pawn capture and

non-capture moves are not the same – in contrast with what happens with any other piece.

41

Having defined what a threat32 is, it remains to express the notion of defending a square.

To do so, we will make use of a new predicate we assume we have access to:

controls(Square1,Piece,Colour,Square2) which we intend to be interpreted as: a

piece of type Piece and colour33 Colour form square Square1 controls34 square

Square2.

Using the above predicates we can define the notion of a move defending a square as

indicated below:

Def :: plays_as(Colour1), -plays_as(Colour2),

attacked_by(Colour2,Square1), to_square(Move,Square2),

moves(Move,Piece), move_played_by(Move,Colour1),

controls(Square2,Piece,Colour1,Square1) implies

defends(Move,Square1);

Observe how we do not demand for a piece to occupy a square we defend, since we take

care of that in the definition of a threat. Now, we proceed in expressing Rule 2 using all

the above, as follows35:

Rule_2 :: occupies_centre(Move1), to_square(Move1,Square),

threatened(Square), defends(Move2,Square) implies

-suggest(Move1);

In a similar fashion, we can express Rule 3 as indicated below:

32 Threat defines threat only for the bot, in the sense that we could not use the same rule to

express the fact that we are threatening an opponent’s piece at some square. Nevertheless, this

suffices for the purposes of our demonstration here.

33 We need to know the piece’s colour since legal capture moves – as well as legal pawn moves in

general – are depended on the pawn’s colour and not only on its type – i.e being a pawn.

34 We say that a piece controls a square if it can make a capture move towards that square on

condition that a piece of opposite colour is located there. So, control moves coincide with

pseudo-legal moves of any piece but for pawns which move restricted to their file but can

capture pieces only on adjacent files.

35 We could well have avoided being so explicit in the declaration of Threat which would have

led to including is_at in the declaration of Rule 2, however we decided to keep Rule 2 as simple

as possible, using higher level predicates, so as to bear more resemblance to its natural language

representation.

42

Rule_3 :: occupies_centre(Move1), to_square(Move1,Square),

threatened(Square), defends(Move2,Square) implies

suggest(Move2);

Observe that we have not demanded in none of Rules 2 and 3 that the two moves under

consideration are different. So, it could happen that a move that both moves a piece

towards the centre of the board as well as defends an opponent’s threat exists, which

would trigger both Rule 2 as well as Rule 3, leading thus to a conflict. Depending on how

we have set priorities among Rules 2 and 3, this move will be suggested – in case Rule 3

is of higher priority than Rule 2 – or not – in the opposite case. We will delve into more

details about rule prioritisation in section 2.3 as well as in chapter 4, where we discuss

the chess specific user interface we have designed.

3.3 Argumentation and Learning in the context of

Machine Coaching

In this section we will discuss the way in which reasoning is conducted in the context of

Machine Coaching. To do so, we first need a notion of arguments. In general, as we will

see in this section, arguments appear in several occasions throughout Machine Coaching.

Namely:

 The machine uses arguments internally in order to reach to a conclusion about

which action(s), behaviour(s) or item(s) should be suggested to the user.

 The machine user arguments as a means of interaction with the user. More

precisely, when the machine returns a piece of advice, it also returns, as we have

already discussed, an explanation about it. The explanation is, actually, the very

same internal argument that led the machine to this conclusion. As a result, one

may claim that the machine is being by its definition transparent as well as

interpretable – in the way defined in (Arrieta, 2020: 85-89) – since it provides

access to its internal mechanisms to the user.

 The machine accepts any user feedback in the form of an argument. Should a user

disagree with the machine’s suggestion and/or explanation, as we have already

discussed in 3.1, the user expresses their disagreement by providing counter-

argumentation of some kind to the machine.

43

3.3.1 Arguments in the language of Machine Coaching

We will now proceed to defining an argument, as presented in (Michael, 2019: 83). Let 𝑔

be some literal, 𝑘 = (𝜌, ≺) be a prioritised knowledge base, 𝑥 be some context – i.e. a set

of pairwise non-conflicting literals – and 𝐴 a subset of 𝜌 ∪ 𝑥. We say that 𝐴 is an

argument for 𝑔 in 𝑥 under 𝑘 if the following hold:

1. 𝐴 ≠ ∅,

2. starting form literals in 𝐴 ∩ 𝑥 and by repeatedly applying modus ponens using

rules in 𝐴 ∩ 𝜌 we can infer 𝑔,

3. 𝑔 cannot be inferred by any proper subset of 𝐴, i.e. if ∅ ≠ 𝐵 ⊂ 𝐴 then we cannot

infer 𝑔 as described in 2 by substituting 𝐵 in place of 𝐴.

Also, we will refer to the (unique) rule 𝑟 ∈ 𝐴 that has 𝑔 as its head as the argument’s

crown rule36.

Before we present some examples of arguments, we will first discuss the conditions that

appear in the above definition. The first condition demands that an argument is a non-

empty set, i.e. it contains at least one literal from 𝑥 or at least one rule from37 𝜌. As far as

the second condition is concerned, it demands that our argument is actually an

argument for 𝜌, in the sense that we can infer it from our hypothesis. Note at this point

that it is possible that an argument does not contain any rule at all, in which case it

should contain 𝑔. One could interpret such detrimental arguments as restating some

already known fact – since we assume that literals belonging to a context are by default

interpreted as facts that are true in a certain situation within our setting.

The third condition is a more technical, yet quite important one. It demands for

arguments to be minimal in the sense that nothing else other than what is needed is

included in an argument for 𝑔. This allows us to avoid trivial cases of making a

distinction between arguments for a certain goal literal 𝑔 that differ by, say, a rule or a

literal that does not lead to further implications regarding 𝑔.

36 Observe that such a rule may not always exist – e.g. in case 𝐴 = {𝑔} – while its uniqueness,

whenever it exists, is guaranteed by condition 3.

37 In case an argument 𝐴 is a singleton it can either be {𝑔} or {𝑟} where 𝑟 is a rule that has 𝑔 as its

head.

44

We now proceed in some examples, so as to clarify the above. To begin with, let us

revisit the example we have presented in 3.1. Consider the following fraction of the

example’s knowledge base, let 𝑘, where we have simplified Rule_1 to Rule_1b by

dropping the dependency on the game’s phase for reasons of simplicity:

Rule_1b :: occupies_centre(Move), move_played_by(Move,Colour),

plays_as(Colour) implies suggest(Move);

Occ :: to_square(Move,Square), is_at_centre(Square) implies

occupies_centre(Move);

C_1 :: ?=(Square,e4) implies is_at_centre(Square);

C_2 :: ?=(Square,d4) implies is_at_centre(Square);

C_3 :: ?=(Square,e5) implies is_at_centre(Square);

C_4 :: ?=(Square,d5) implies is_at_centre(Square);

Also, let us consider the following context, let 𝑥 – again, we assume there are no other

predicates available, so as to keep this first example minimal – which describes the

position shown in Figure 7 (white to move).

Figure 7: White to move

45

to_square(a1a2,a2);

to_square(a1b1,b1);

to_square(a1b2,b2);

to_square(d3d4,d4);

to_square(h8h7,h7);

to_square(h8g8,g8);

to_square(h8g7,g7);

Let us now assume that we want to examine whether there is an argument for

suggest(d3d4) in context 𝑥 under the above knowledge base 𝑘. At first, we observe

that by considering 𝐴 = 𝑥 ∪ 𝑘 ≠ ∅ we can infer suggest(d3d4) using rules and literals

in 𝐴. So, the first two conditions are satisfied. However, the third condition regarding

the argument’s minimality is not satisfied by any means, since we could, for instance,

remove to_square(h8g7,g7) or rule C_3 and we could still infer suggest(d3d4)

from the new reduced set.

As one may easily observe, the only choice for 𝐴 that also conforms with the third

condition in the definition of an argument is the following one38:

A = {to_square(d3d4,d4), C_2, Occ, Rule_1b};

Indeed, removing any of the above from 𝐴 would lead to suggest(d3d4) not to be

inferred from 𝐴 – e.g. removing rule C_2 would result in Rule_1b not being triggered

and, as a result, its head would not be inferred.

Note that, given a context 𝑥, a prioritised knowledge base 𝑘 and a goal literal 𝑔, should

there exist an argument 𝐴 for 𝑔 in 𝑥 under 𝑘 it is by no means guaranteed to be unique.

In order to demonstrate this, let us add the following rules to 𝑘, with priority higher than

any other rule:

38 Note at this point that ?=(e4,e4) is not included in our context, however rule C_2 is included

in our argument. As we shall see in chapter 4, ?=(X,Y) is treated in a broader sense than a

congruence relation. More specifically it is treated in the more general context of unification. In

our case, this means that ?=(Square,e4), given that Square is unassigned, leads to the

substitution Square/e4 which triggers rule C_2. In general we will not explicitly include such

literals in the representation of a context, however we will assume that they are included

whenever needed, as in this example.

46

Rule_5 :: controls_centre(Move) implies suggest(Move);

Rule_4 :: plays_as(Colour), move_played_by(Move,Colour),

to_square(Move,Square1), moves(Move,Piece),

controls(Square1,Piece,Colour,Square2), is_at_centre(Square2)

implies controls_centre(Move);

Also, let us extend the previous context with the following literals – we will not refer

verbosely to any literals that would be typically included but are not useful in this

example:

 plays_as(white);

 moves(d3d4,pawn);

 move_played_by(d3d4,white);

 controls(d4,pawn,white,e5);

Using the above knowledge base and context, we can also see that there is a second

argument 𝐵 for suggest(d3d4), namely:

B = {plays_as(white), moves(d3d4,pawn), to_square(d3d4,d4),

move_played_by(d3d4,white), C_3, Rule_4, Rule_5};

Furthermore, it is also possible that arguments both in favour as well as against the

same literal may be constructed given a context 𝑥 and a prioritised knowledge base 𝑘.

Indeed, consider the following knowledge base, where the predicate symbol

is_checkmate(Move) indicates that move Move is a checkmate move:

Rule_7 :: plays_as(Colour), move_played_by(Move,Colour),

is_checkmate(Move) implies suggest(Move);

Rule_6 :: plays_as(Colour), game_phase(opening),

moves(Move,queen), move_played_by(Move,Colour)

implies –suggest(Move);

Op :: move_count(X), ?<(X,11) implies game_phase(opening);

Also, consider the following significant fragment of a context which describes the

position shown in Figure 8 (black to move):

plays_as(black);

move_played_by(d8h4,black);

47

moves(d8h4,queen);

move_count(2);

is_checkmate(d8h4);

Based on the above, we can construct the following argument supporting

suggest(d8h4):

A = {is_checkmate(d8h4), move_played_by(d8h4,black),

plays_as(black), Rule_7};

But, again based on the above context and knowledge base, we can also construct an

argument for –suggest(d8h4):

B = {move_played_by(d8h4,black), plays_as(black),

move_count(2), moves(d8h4,queen), Op, Rule_6};

3.3.2 Defining an Argumentation Framework

Having defined and thoroughly presented the notion of argument in the context of

Machine Coaching, we will now proceed in defining an argumentation framework as

declared in (Dung, 1995: 325-334). To do so we need to define an ordered pair

(𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) where 𝐴𝑟𝑔𝑠 is a set of arguments and 𝐴𝑡𝑡 is a binary attack relation on 𝐴𝑟𝑔𝑠,

Figure 8: Black to move and win.

48

i.e. 𝐴𝑡𝑡 ⊆ 𝐴𝑟𝑔𝑠 × 𝐴𝑟𝑔𝑠 (Dung, 1995: 326). For the rest of this subsection, let 𝑥 be a

context and 𝑘 = (𝜌, ≺) prioritised knowledge base.

As far as the set of all arguments, 𝐴𝑟𝑔𝑠, is concerned, we let 𝐴𝑟𝑔𝑠 be the set of all

arguments in 𝑥 under 𝑘 (Michael, 2019: 83). As far as the 𝐴𝑡𝑡 relation of attacks between

arguments is concerned, following (Michael, 2019: 83) we will make the following

choices under the ASPIC+ framework (Prakken, 2010: 96-114):

 We choose the context 𝑥 as an axiom set (Prakken, 2010: 98) – i.e. as a set of

premises against which it is not possible to argue. This means that arguments

cannot be attacked on their premises, so, contextual information is considered to

be always true. Intuitively, this expresses the idea that facts that describe a

certain situation cannot be disputed – e.g., in our context, a board position

cannot be disputed by any of the players, as well as the same applies to the

game’s rules.

 We choose all of the rules in our knowledge base to be defeasible, that is, given

that the assumptions of a rule all hold then the rule’s head may hold (Prakken,

2010: 97). This, defeasibility is one of the factors that is intended to capture the

refutable character of human reasoning, since, in most everyday situations – as

well as in chess – little are the chances that a rule holds absolutely, on every

occasion. Instead, most rules are dependent on the wider context into which

they are applied.

 We choose rebutting attacks between arguments (Prakken, 2010: 101). In more

detail, an argument 𝐵 rebuts another argument 𝐴 when argument 𝐵 leads,

possibly among others, to a conclusion that contradicts some of the conclusions

of 𝐴. In a sense, allowing for rebutting attacks means that for an argument 𝐴 to

hold, no other counter-argument may be triggered by a given context, so each

single conclusion of 𝐴 is accepted in that given context.

 We also order arguments according to the last-link principle (Prakken, 2010:

109). That is, we say that an argument 𝐴 is preferred over another argument 𝐵 if

the last rule of 𝐴 is preferred over the last rule of 𝐵 according to the priority

relation ≺.

49

As a result, we could say that an argument 𝐴 supporting 𝑔 attacks another argument

𝐵 which contains a rule 𝑟 with head −𝑔 (i.e. (𝐴, 𝐵) ∈ 𝐴𝑡𝑡) in a context 𝑥 under a

knowledge base 𝑘 = (𝜌, ≺) if one of the following conditions is true:

1. 𝑔 ∈ 𝑥 – i.e. the conclusion of argument 𝐴, 𝑔, is an indisputable fact;

2. 𝑡 ⊀ 𝑟, where 𝑡 is the crown rule of argument 𝐴 – i.e. argument 𝐴 is not less

preferred than the sub-argument 𝐵′ of 𝐵 which has 𝑟 as its crown rule.

We will now present some examples so as to clarify the above notions. To begin with,

consider the two last arguments 𝐴 and 𝐵 presented in the previous subsection (3.3.1),

namely:

A = {is_checkmate(d8h4), move_played_by(d8h4,black),

plays_as(black), Rule_7};

B = {move_played_by(d8h4,black), plays_as(black),

move_count(2), moves(d8h4,queen), Op, Rule_6};

As we can see, 𝐴 attacks 𝐵 but not the other way around. Indeed, Rule_7 of argument 𝐴

attacks argument 𝐵 on Rule_6. However, the same does not hold for 𝐵, as it may contain

a rule that leads to a conflict with 𝐴, nevertheless Rule_7 is preferred over Rule_6 –

since Rule_7 appears above Rule_6 in the knowledge base.

As another example, consider the following knowledge base39 which contains Op, –

where, as we have previously declared, rules are listed by descending priority:

Sac :: plays_as(Colour1), -plays_as(Colour2),

move_played_by(Move,Coulour1), to_square(Move,Square1),

controls(Square2,Piece,Colour2,Square1) implies –suggest(Move);

Cap :: plays_as(Colour), move_played_by(Move,Colour),

is_capture(Move) implies suggest(Move);

Noq :: plays_as(Colour), move_played_by(Move,Colour),

game_phase(opening), moves(Move,queen) implies –suggest(Move);

Op :: move_count(X), ?<(X,11) implies game_phase(opening);

39 Any predicates that have not been presented yet, are intended to be interpreted as indicated

by their names – e.g. is_capture(Move) is intended to be interpreted a: move Move is a

capture move.

50

Also, consider the following fragment of a context which describes the position shown in

Figure 9:

plays_as(black);

-plays_as(white);

move_played_by(d8h4,black);

to_square(d8h4,h4);

is_capture(d8h4);

move_count(2);

moves(d8h4,queen);

controls(h1,rook,white,h4);

In the above context we can detect three interesting arguments, let 𝐴, 𝐵, 𝐶:

A = {move_count(2), move_played_by(d8h4,black),

plays_as(black), moves(d8h4,queen), Op, Noq};

B = {move_played_by(d8h4,black), plays_as(black),

is_capture(d8h4), Cap};

C = {plays_as(black), move_played_by(d8h4,black),

-plays_as(white), to_square(d8h4,h4),

controls(h1,rook,white,h4), Sac};

Figure 9: A not so difficult choice.

51

Among the three arguments described above, given that 𝑁𝑜𝑞 ≺ 𝐶𝑎𝑝 ≺ 𝑆𝑎𝑐, we have an

attack from argument 𝐵 to argument 𝐴 – since 𝑁𝑜𝑞 ≺ 𝐶𝑎𝑝 – as well as another attack

from argument 𝐶 to argument 𝐴 – since 𝐶𝑎𝑝 ≺ 𝑆𝑎𝑐.

3.3.3 Grounded Extension of an Argumentation Framework

As our next step, we would like to investigate what one could safely deduce given a

prioritised knowledge base 𝑘 and a context 𝑥 as well as whether there is an efficient

algorithm that computes the set of inferred literals. A possible answer to this question, is

to adopt, as in (Michael, 2019: 83-84), Dung’s Grounded extension of an argumentation

framework which expresses the grounded (skeptical) semantics as declared in (Dung,

1995: 329).

We will need some definitions before we proceed to the definition of an argumentation

framework’s grounded extension. Given an argument 𝐴 and a set of arguments, 𝑆, we

will say that 𝐴 is acceptable with respect to 𝑆 if and only if for any other argument 𝐵

that attacks 𝐴 there exists another argument 𝐶 ∈ 𝑆 such that 𝐶 attacks 𝐵 (Dung, 1995:

326). That is, 𝑆 provides enough arguments so as to defend all attacks against40 𝐴.

Let now 𝒜 = (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) be an argumentation framework. Then, the characteristic

function of 𝒜 is a function 𝐹𝒜: 𝑃(𝒜) → 𝑃(𝒜), where by 𝑃(𝑋) we denote the powerset of

a set 𝑋, such that 𝐹𝒜(𝑆) = {𝐴 ∈ 𝐴𝑟𝑔𝑠 ∶ 𝐴 is acceptable with respect to 𝑆} (Dung, 1995:

328-329). Using 𝐹𝒜 the grounded extension 𝐺𝒜 of 𝒜 is defined as the first, with respect

to set inclusion, fixed point of 𝐹𝒜 (Dung, 1995: 329).

Let us clarify the above definition by describing a process in which one may find the

grounded extension of an argumentation framework. Let, as above, 𝒜 = (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡)

denote an argumentation framework and also let 𝐹 be its characteristic function. We

start from the empty set, ∅, and proceeds as follows:

1. If 𝐹(∅) = ∅ we have found the first fixed point of 𝐹 so 𝐺𝒜 = ∅ and we are done.

2. If 𝐹(∅) ≠ ∅ then we proceed to finding 𝐹2(∅) ≔ 𝐹(𝐹(∅)). Again, in case

𝐹2(∅) = 𝐹(∅) then 𝐺𝒜 = 𝐹(∅) and we are done.

3. If 𝐹2(∅) ≠ 𝐹(∅) then we proceed to computing 𝐹3(∅) and so on.

40 Intuitively, this corresponds in some way to having a view 𝐴 on some certain topic as well as

sufficient evidence and/or knowledge – enclosed in 𝑆 – so as effectively argue against any

attempt to dispute that view.

52

Given that 𝐹 preserves set inclusion41, so at each step we either stop to some fixed point

or proceed with a larger set of arguments, it is guaranteed that we can compute the

grounded extension42, 𝐺𝒜 , of 𝒜.

Let us now discuss the intuition behind grounded semantics, as defined above43. At first,

we compute 𝐹(∅) which corresponds to the set of arguments 𝐴 ∈ 𝐴𝑟𝑔𝑠 that are

acceptable by ∅. This intuitively describes inferences that need no further support to

defend against attacks from any other arguments – i.e. there is no argument 𝐵 that

attacks any argument 𝐴 in 𝐹(∅). Should 𝐹(∅) = ∅ then we cannot proceed any further

since ∅ = 𝐹(∅) = 𝐹(𝐹(∅)) = ⋯ = 𝐹𝑛(∅) = ⋯ and, consequently, there is no argument

included in 𝐺𝒜 .

However, in case 𝐹(∅) ≠ ∅ we proceed by computing 𝐹(𝐹(∅)), that is, the set of

arguments that, even if attacked by some other arguments, can be defended by

arguments that, themselves, are not attacked by any other argument. Hence, we can also

guarantee that such inferences can be convincingly trusted. In the same fashion as

above, if 𝐹(𝐹(∅)) = 𝐹(∅) then we have constructed tour argumentations framework’s

grounded extension while, in case the above does not hold, we proceed by computing

𝐹 (𝐹(𝐹(∅))) = 𝐹3(∅). As with the previous case of 𝐹2(∅), we make a step forward

towards arguments that, apart from the previous two cases, may be attacked by

arguments that are themselves attacked by other arguments in 𝐹(∅). We continue in the

same way until we reach 𝐹’s first fixed point.

41 Indeed, let 𝑆 ⊆ 𝑇 and 𝐴 ∈ 𝐹(𝑆). Then, since any attack against 𝐴 is defended by an argument

from 𝑆 the same applies for 𝑇, with leads to 𝐴 ∈ 𝐹(𝑇) and, consequently, to 𝐹(𝑆) ⊆ 𝐹(𝑇).

42 Indeed, to prove this, it suffices to prove that 𝐹 has always at least one fixed point. To prove

this, let 𝐶 ≔ {𝑆 ⊆ 𝐴𝑟𝑔𝑠: 𝑆 ⊆ 𝐹(𝑆)}. Observe that 𝐶 ≠ ∅ since ∅ ∈ 𝐶 and let 𝑇 ≔ ⋃ 𝑆𝑆∈𝐶 – which is

well defined, since 𝐶 ≠ ∅. At first, we will prove that 𝑇 ⊆ 𝐹(𝑇). Indeed, since 𝑆 ⊆ 𝑇 for any 𝑆 ∈ 𝐶,

since 𝐹 preserves set inclusion we get 𝐹(𝑆) ⊆ 𝐹(𝑇) for any 𝑆 ∈ 𝐶. As a result, 𝑇 = ⋃ 𝑆 ⊆ 𝐹(𝑇)𝑆∈𝐶

and, since 𝑇 = sup 𝐶 – this is easy to prove – we obtain 𝑇 ⊆ 𝐹(𝑇). For the inverse inclusion,

observe that, since 𝑇 ⊆ 𝐹(𝑇), since 𝐹 preserves set inclusion, we also have 𝐹(𝑇) ⊆ 𝐹(𝐹(𝑇)).

Hence, by 𝐶’s definition, we obtain 𝐹(𝑇) ∈ 𝐶 so, since 𝑇 = sup 𝐶 we also have 𝐹(𝑇) ⊆ 𝑇. So,

𝑇 = 𝐹(𝑇) and, as a result, 𝑇 is a fixed point of 𝐹.

43 They are also referred to as skeptical semantics in (Dung, 1995: 329), which unveils that the

intention is, as we will explain, to capture a set of inferences that can be safely proved under a

knowledge base 𝑘 in context 𝑥.

53

At a higher level, we could describe the above process of constructing the grounded

extension of an argumentation framework as an iterative process in which we start by

arguments that need not be defended by other arguments and then gradually add

arguments such that they (i.e. the new arguments) can be supported against other

attacks by arguments that we have already accepted – by counter-attacking those

attacking arguments. In the above context, the terms grounded and skeptical seem

plausible.

The above property of “groundedness” of grounded semantics is evidently a desired

property when it comes to argumentation, in the sense that it allows for inferences to be

“safely” conducted. Furthermore, skeptical semantics have been chosen for two more

reasons: (i) they lead to a single model44 which conforms to results from other fields

about the emergence of a single model in human reasoning (Stenning, Lambalgen, 2012:

125-128); (ii) the grounded extension of an argumentation framework can be efficiently

computed (Michael, 2019: 83-84).

Having explained at an abstract level the motivating ideas behind the definition of an

argumentation framework’s grounded extension as well as our own motivation for

choosing it in our setting, we shall present an example of a grounded extension in our

context – i.e. chess. Consider again the following arguments 𝐴𝑟𝑔𝑠 ≔ {𝐴, 𝐵, 𝐶} where:

A = {move_count(2), move_played_by(d8h4,black),

plays_as(black), moves(d8h4,queen), Op, Noq};

B = {move_count(2), move_played_by(d8h4,black),

plays_as(black), is_capture(d8h4), Cap};

C = {plays_as(black), move_played_by(d8h4,black),

-plays_as(white), to_square(d8h4,h4),

controls(h1,rook,white,h4), Sac};

Also, let the attack relation be defined as follows: 𝐴𝑡𝑡 ≔ {(𝐶, 𝐵), (𝐵, 𝐴)}. Then we

compute the grounded extension of the argumentation framework (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) as

indicated below:

44 Indeed, given that the grounded extension of an argumentation framework 𝒜 is defined as the

least fixed point of its characteristic function 𝐹𝒜 , it is by its definition, unique.

54

 At first, we compute 𝐹𝒜(∅). Evidently, given our attack relation, the only

argument that can stand unsupported by other arguments is argument 𝐶 so

𝐹𝒜(∅) = {𝐶}. Since 𝐹𝒜(∅) ≠ ∅ we need to proceed further.

 Next, we compute 𝐹𝒜
2(∅) = 𝐹𝒜(𝐹𝒜(∅)). Since 𝐶 ∈ 𝐹𝒜(∅) and 𝐹𝒜 preserves set

inclusion, we also have 𝐶 ∈ 𝐹𝒜
2(∅). Moreover, since 𝐵’s attack on 𝐴 is defended

by 𝐶 ∈ 𝐹𝒜(∅) we obtain that 𝐴 ∈ 𝐹𝒜
2(∅). Also, observe that 𝐵 ∉ 𝐹𝒜

2(∅) since it is

being attacked by 𝐶.

 Next, we compute 𝐹𝒜
3(∅) = 𝐹𝒜(𝐹𝒜

2(∅)). Observe that 𝐵, the only argument not

already included in the framework’s grounded extension cannot be included

since 𝐵 is being attacked by 𝐶. Given the fact that 𝐹𝒜 preserves set inclusion, we

obtain that 𝐹𝒜
3(∅) = 𝐹𝒜

2(∅), hence, 𝐹𝒜 ’s first fixed point is {𝐴, 𝐶}.

As a result, the corresponding grounded extension of the given argumentation

framework (𝐴𝑟𝑔𝑠, 𝐴𝑡𝑡) is {𝐴, 𝐶} which reflects also our intuition that, given the above

three arguments as well as their attack relation, we cannot convincingly argue in favour

of 𝐵 while, as shown above, we can when it comes to𝐴 and/or 𝐶.

3.3.4 Efficient Computation of an Argumentation Framework’s Grounded

Extension

While the computation of the grounded extension of an argumentation framework is

efficient in terms of the number of arguments included in it, this does not hold when it

comes to the sizes of the knowledge base 𝑘 = (𝜌, ≺) and the context 𝑥 from which the

argumentation framework has been constructed (Michael, 2019: 84). Indeed,

computation time may well be exponential in terms of the number 𝑛 = |𝜌| of rules

included in 𝑘 as well as in the number of literals, 𝜆 = |𝑥|. To demonstrate this, consider

the following knowledge base:

R_1 :: a1(X1) implies a2(X1);

R_2 :: a2(X1), b(X2) implies a3(X1,X2);

R_3 :: a3(X1,X2), b(X3) implies a4(X1,X2,X3);

…

R_n :: an(X1,X2,…,Xn-1) b(Xn) implies an+1(X1,X2,…,Xn);

Also, consider the following context:

a1(1); a1(0); b(1); b(0);

55

Given the above, we can construct the following arguments, possibly among others –

where, by 𝐴 → 𝑔 we denote that argument 𝐴 supports some literal 𝑔:

A0 = {a1(0), R_1} -> a2(0);

A1 = {a1(1), R_1} -> a2(1);

A00 = {a1(0), b(0), R_1, R_2} -> a3(0,0);

A01 = {a1(0), b(1), R_1, R_2} -> a3(0,1);

A10 = {a1(1), b(0), R_1, R_2} -> a3(1,0);

A11 = {a1(1), b(1), R_1, R_2} -> a3(1,1);

A000 = {a1(0), b(0), R_1, R_2, R_3} -> a4(0,0,0);

…

A111…1 = {a1(1), b(1), R_1, R_2, …, R_n} -> an(1,1,…,1);

Evidently, the above arguments are 2 + 22 + 23 + ⋯ + 2𝑛−1 = 2(2𝑛−1 − 1) = 2𝑛 − 2, so,

indeed, the corresponding grounded extension needs time at least exponential in 𝑛 to be

computed. Observe in the above how the size of the context, 𝜆, did not play any role in

the exponential blowup of the representation of the argumentation framework – the

same context containing four (4) literals suits for any value of 𝑛 ∈ ℤ>0. As a result, we

shall look for a better representation for a grounded extension since using arguments

may lead to exponentially large computations.

A way to efficiently compute the grounded extension of an argumentation framework

𝒜𝑘(𝑥) induced by a prioritised knowledge base 𝑘 and a context 𝑥 is presented in

(Michael, 2019: 84). To do so, we introduce at first the dual representation of a

grounded extension being the tuple (𝑥, 𝜌𝑘(𝑥)) where 𝜌𝑘(𝑥) is the set of rules included in

the arguments of the grounded extension of an argumentation framework 𝒜𝑘(𝑥). As

demonstrated in (Michael, 2019: 84), dual representations are to a one-to-one

correspondence with grounded extensions in the sense that any argument contained in

𝒜𝑘(𝑥) can be reconstructed using the context 𝑥 as well as the set of rules 𝜌𝑘(𝑥) and,

conversely, any argument in 𝑥 under 𝜌𝑘(𝑥) is an argument included in the grounded

extension of 𝒜𝑘(𝑥).

Next, we present an algorithm which efficiently computes the dual representation of a

grounded extension of an argumentation framework 𝒜𝑘(𝑥) with respect to the number

of rules included in 𝜌𝑘(𝑥) as well as the context’s 𝑥 size.

The algorithm is the following one:

56

1. At first, given 𝑘 and 𝑥, construct the inference graph 𝐺 of 𝑘 – i.e. the graph that

includes anything that may be inferred from 𝑥 and 𝑘 using modus ponens.

2. Then, construct a list, 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠, which initially contains all the literals

included in the given context 𝑥, as well as a 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 list which is initially

empty.

3. Loop through the following steps until no new literal is added in the

𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 list:

a. Remove from the inference graph any literals that conflict with literals in

𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠.

b. For each argument that has remained in the inference graph 𝐺 keep only

its crown rule45.

c. Add any rule whose body literals are all included in 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 and

which also is preferred against to any other conflicting rule with respect to

𝑘’s priority relation, ≺, to the 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 list.

d. For each rule in 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 add its head to 𝑚𝑎𝑟𝑘𝑒𝑑𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠.

We shall now, as with previously introduced notions, explain the above algorithm by

providing an example. Let us consider again the three arguments 𝐴, 𝐵, 𝐶 of our previous

example as well as the corresponding attack relation. Given the set of all rules contained

in them, 𝜌, as well as the literals of context 𝑥 we can construct the corresponding

inference graph 𝐺 as shown in Figure 10. Also, let 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 and 𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑢𝑙𝑒𝑠 be

the two lists of marked literals and marked rules accordingly. Then:

1. At first, we initialise 𝑚𝑎𝑟𝑘𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 by adding all context literals to it. Thus:

markedLiterals = {plays_as(black), -plays_as(white),

move_played_by(d8h4,black), to_square(d8h4,h4),

is_capture(d8h4), move_count(2), moves(d8h4,queen),

controls(h1,rook,white,h4)};

2. Next, we proceed to step 3b – since no literals conflict with marked ones at the

moment. For the time being, all rules are maintained since all may be crown rules

for a suitably selected argument46.

45 Remember that and for an argument 𝐴 for 𝑔, the argument’s crown rule has been defined to be

the (single) rule that has 𝑔 as its head, provided that such a rule exists.

57

3. Now, as we see in Figure 10, given our list of marked literals, rules Op as well as

Cap and Sac have all their body literals marked, so we add them to markedRules

– there are no conflicts to resolve here. We also add the rules’ heads

 -suggest(d8h4) and game_phase(opening) to markedLiterals.

4. We remove suggest(d8h4) from 𝐺 since it conflicts with some marked literal.

5. Now, we see that the only remaining rule, Noq, has all its body literals marked

and there is no other rule left in 𝐺 conflicting with Noq and is also preferred

against it, so we shall not include Noq in markedRules and, consequently, we add

no new literals to markedLiterals.

6. Since no new literals were added during the previous iteration, the process

terminates.

So, we see that indeed, we can reconstruct using literals in markedLiterals and rules

in markedRules all arguments found in the grounded model of our argumentation

framework.

Figure 10: The inference graph of our example. The blue ellipse includes all context literals
while the red polygon all marked ones.

3.3.5 Learning in the context of Machine Coaching

Up to now, we have defined how argumentation is conducted within the scope of

Machine Coaching, as well as a language within which argumentation is conducted. It

remains to describe the learning process. In general, learning in the context of Machine

Coaching is defined (Michael, 2019: 84) using Probably Approximately Correct (PAC)

46 As far as rules Noq, Cap and Sac are concerned, they are evidently included since they are

crown rules for the arguments 𝐴, 𝐵 and 𝐶 respectively. As for rule Op, we can construct an

argument with it as crown rule, namely D = {move_count(2), Op}.

58

semantics, as described in (Valiant, 1984: 1136-1137). Namely, we say that an algorithm

is a probably approximately conformant learner of some feedback class47

𝐹 = 𝐹(𝐼, 𝑂, 𝐴) using a hypothesis class48 𝐻 if for every 𝛿, 휀 ∈ (0,1], every probability

distribution 𝐷 over inputs in 𝐼 of size 𝑛 and every 𝑓 ∈ 𝐹 of size 𝑠 it can, given access to

𝛿, 휀, 𝐹, iteratively invoke the following process:

1. Get an input 𝑥 ∈ 𝐼 either randomly under 𝐷 or by actively choosing it.

2. Select an output from 𝑦 ∈ 𝑂.

3. Ask for some advice 𝑓(𝑥, 𝑦).

After time at most 𝑔 (
1

𝛿
,

1
, 𝑛, 𝑠) the algorithm terminates and returns, except with

probability 𝛿, a hypothesis ℎ ∈ 𝐻 such that 𝑓(𝑥, ℎ(𝑥)) = 𝑛𝑜𝐴𝑑𝑣𝑖𝑐𝑒 except with

probability 휀 (Michael, 2019: 84). We will also say that the algorithm is an efficient

conformant learner if 𝑔 is of polynomial complexity with respect to its parameters.

Explaining the above definition, we could roughly say that, given any desired probability

of failure 𝛿 ∈ (0,1] as well as any desired probability of accuracy 휀 ∈ (0,1] we can say

that there exists an algorithm capable of capturing a theory about something – e.g. chess

– by a process during which the algorithm makes predictions about examples it

encounters and receives pieces of advice about them (i.e. its predictions). Then, given

that the algorithm terminates at some time – dependent on the two given probabilities

as well as the size of each example and the corresponding pieces of advice – by

providing a model of our theory which is accurate allowing for errors to occur with

probability 휀. Additionally, the algorithm may not yield the above model of our theory

with probability at most 𝛿.

47 A feedback class is defined to be a set of feedback functions 𝐹 ≔ {𝑓: 𝐼 × 𝑂 → 𝐴}, where 𝐼, 𝑂, 𝐴

are the input, output and advice sets respectively. That is, 𝐹 contains functions which, given an

input – i.e a learning example – and an output – i.e. the machine’s prediction – return an advice.

We also demand, as in (Michael, 2019: 84) that for each input 𝑥 ∈ 𝐼 there exists at least one

𝑦 ∈ 𝑂 such that 𝑓(𝑥, 𝑦) = 𝑛𝑜𝐴𝑑𝑣𝑖𝑐𝑒 – i.e. there exists at least one acceptable output for any

input.

48 A hypothesis class is defined as a set of functions 𝐻 ≔ {ℎ: 𝐼 → 𝑂} which, given an input 𝑥 ∈ 𝐼

returns an output ℎ(𝑥) ∈ 𝑂 – in other words, given a learning example it returns a prediction

about it.

59

The above is a quite general definition of learnability, however, we shall restrict

ourselves to discussing a certain algorithm presented in (Michael, 2019: 84-85) which

describes a learning protocol under which learning is guaranteed to be efficient49. Under

this protocol, we choose a specific feedback class 𝐹 described as follows – let 𝑘 denote a

knowledge base which describes the theory we aim to learn as well as 𝑥 denote some

arbitrary context:

 A predicted rule will be considered unrecognised if it is not encountered in 𝑘 – i.e.

if it is not some rule in our theory.

 A predicted rule will be considered superfluous if it does not contribute to any

argument in 𝑥 under 𝑘.

 A rule will be considered incomplete if it does not appear in a prediction while it

is included in 𝑘 and its inclusion would lead to some additional argument from

the machine.

 An argument will be considered indefensible if there exists no other argument in

𝑥 under 𝑘 that attacks it while it attacks some argument in the machine’s

prediction.

 No response, if none of the above holds.

Given the above feedback class as well as the condition that conflicting rules in 𝑘 are

linearly order with respect to ≺, then, as proved in (Michael, 2019: 85) the following

algorithm is a probably approximately conformant learner:

1. Let 𝑘 = ∅ be the machine’s initial knowledge base.

2. For each randomly chosen input 𝑥:

a. Predict the corresponding dual representation 𝑦.

b. Receive the user’s advice 𝑓(𝑥, 𝑦) according to the above protocol.

c. Delete any rules considered superfluous or unrecognised, add rules that

are labeled as incomplete or lead to counter-arguments by the user with

higher priority than any existing rule in the knowledge base, 𝑘.

3. Repeat the above until the user provides no response for 𝑚 consecutive cycles,

where 𝑚 is polynomial with respect to the aforementioned parameters – see the

definition of a probably approximately conformant learner above.

49 By efficient, we mean that learning is conducted in polynomial time with respect to various

PAC related parameters.

60

Observe how the above learning protocol accommodates all the desired functionality as

described in chapter 3, section 3.1, where we demanded for the capability of a user to

provide the machine with counter-argumentation with respect to suggestions and

explanations provided by the machine.

61

Chapter 4
Implementation

In this chapter, the implementation of the chess coach is presented. The structure of the

chapter is as follows: (i) in section 4.1, we present the implementation of our first order

language as well as make some crucial remarks regarding several features; (ii) in section

4.2, we present the implementation of the reasoning engine; (iii) in section 4.3, we

present some chess-specific features regarding our final chess bot and; (iv) in section

4.4, we present the designed Graphical User Interface (GUI) that accommodates all the

above functionalities as well as our implementation of the interaction protocol

presented in chapter 3.

4.1 Implementing a First Order Language

As we have seen in the previous chapter, both human-machine interaction as well as

reasoning in the context of Machine coaching do rely on a first order language that

efficiently captures the semantics of the domain of application. As a result, the way in

which the aforementioned language will be implemented is expected to affect our work

at a significant extent, as far as its technical aspects are concerned.

We aimed towards a generic implementation, that is, our language is not domain-

specific and can accommodate any other task that would require a similar functionality.

Moreover, as one may see throughout the rest of this section, the language could be

extended to allow for general first order reasoning by also implementing function

symbols as well as altering the way unification is conducted in our context – i.e. without

taking into account function symbols. In the rest of this section we will discuss not only

the way the language presented in chapter 3, section 3.2 has been implemented but also

discuss some subtle points of our implementation.

4.1.1 Basic implementation of the language

In this subsection we will discuss the way in which the language described above has

been implemented in java. The implementation is, as we will see, quite generic in the

sense that by additionally implementing function symbols, any algorithm that needs a

62

typical first order language could utilise its structures. Also, this language will be used,

as presented in chapter 3, section 3.2, as a base upon which any Machine Coaching

related algorithm, as presented in (Michael, 2019: 83), will be implemented – also in

java.

Given the structure of the language of Machine Coaching as described above - as well as,

in general, the structure of any first order language - an object-oriented approach

seemed to be the most appropriate for our task. Under such a view, each entity of our

language - i.e. each class of symbols - would be considered a separate object, allowing for

it to have any functions related to its object specific functionalities, which would

naturally lead into more efficient and intuitive coding, among others. Below, we present

how each of the components of a first order language, as defined in chapter 3, section

3.2, has been implemented:

1. First order predicates are described by a Predicate class which includes the

following fields: (i) an integer field, arity, which corresponds to the predicate’s

arity; (ii) a String field, name, which corresponds to the predicate’s name; (iii) a

list of variables field, variableList, which corresponds to the predicate’s list of

variables/arguments.

2. Constants are considered as predicates of zero arity (arity=0). Hence, each

constant is an instance of Predicate class with arity=0 and its variable list

equal to the null object50.

3. Variables are described by a Variable class which has as fields: (i) a string field,

name, which corresponds to the variable’s name; (ii) a Predicate field, value,

which corresponds to the variable’s value, in case it is assigned (null otherwise).

Evidently, since our target is to implement a first order language, the value field

is not intended to take any other values other than zero arity predicates – i.e.

constants, as explained above51.

50 While this contradicts a usual practice in first order logic of thinking of constants as function

symbols of zero arity – e.g. (Enderton, 2012: 80-81). Our intention is to also allow for

propositional knowledge bases and contexts to be expressed in our language, even if this is not

relevant to our specific domain of application – i.e. chess.

51 Actually, there is no restriction when it comes to the implementation of the Variable class,

that prohibits assigning a predicate of positive arity to a variable as its value. However, the way

63

4. Literals are described by a Literal class which has as fields: (i) a Predicate field,

atom, which corresponds to the literal’s predicate; (ii) a Boolean field, sign,

which corresponds to the literal’s sign – i.e. sign=false means that the literal is

negative while sign=true means that the literal is positive.

5. Rules are described by a Rule class which has as fields: (i) a String field, name,

which corresponds to the rule’s name; (ii) a list of literals field, body, which

corresponds to the rule’s body; (iii) a literal field, head, which corresponds to the

rule’s head.

6. Knowledge bases are described by a KnowledgeBase class which has as fields: (i)

a list of rules field, rules, which contains the knowledge base’s rules; (ii) a

CHECK DATA STRUCTURE field, priorities, which corresponds to the priority

relation defined between conflicting rules of the knowledge base.

7. Contexts are described by a Context class which has a single list of literals field,

CHECK literals, which corresponds to the context’s literals. This class was

included mostly in order to facilitate the design of certain context-related java

methods – since, as one may observe, a list of literals itself need not be a separate

class, should no other additional functionality be introduced in it52.

4.1.2 Remarks about the language’s implementation

We shall discuss now some remarkable features of the designed language. To begin with,

negation in the context of our language is treated as classical negation, in contrast to

other approaches were negation is treated in the context of some sort of close world

assumption – i.e., negation as failure.

Next, our implementation takes into account the fact that the language is intended to

have an equality symbol, that is, a binary predicate symbol denoted by ?=(X,Y) which is

always interpreted as the congruence relation in any universe. As a result, for any

constant c in our universe, we have that ?=(c,c) while no other instances53 of this

in which variables are treated in the rest of the code ensures that only zero arity predicates – i.e.

constants – are used as values for variables.

52 As one may observe, apart from the absence of a separate constant class, the rest of our

implementation reflects the structure of a typical first order language with no function symbols,

as described in chapter 3, section 3.2.

53 By saying “instances of some predicate” we refer to any literal built from that predicate, either

positive or negative

64

predicate are true. Note that, even if the above holds for any constant of our universe, it

is not explicitly included in any context generated. Instead, we have adopted a different

methodology so as to avoid adding numerous trivial instances of ?=(·,·) in all contexts

and, as a result, leading to an unnecessary increment of the reasoning algorithm’s

execution time.

The desired behaviour, as described above, has been achieved in the following way:

 In case both arguments of ?=(·,·) are constants of our universe, let a and b

respectively, then the ?=(a,b) holds exactly when constants a and b coincide –

i.e. they refer to the same entity in our universe. In terms of our implementation,

it means that all fields of the two predicate objects that correspond to a and b are

equal.

 In case exactly one of the two arguments of ?=(·,·) is a constant, let a, while the

other is an unassigned variable, let X, then we one of the following takes place:

o If ?=(X,a) – or ?=(a,X) – is the only literal in the rule’s body54 then X is

unified with a, yielding the substitution {X -> a}.

o If ?=(X,a) – or ?=(a,X) – is not the only literal in the rule’s body then,

given a substitution S that includes all variables in any other (non-

numerical) literal55 in the rule’s body, should the substitution contain an

assignment for X, then X is assigned with the corresponding value, let b,

and ?=(b,a) is evaluated as in the first case. However, should X do not

appear in S, X is unified with a and {X -> a} is added to S.

 In case none of the arguments of ?=(·,·) is a constant, hence both are

unassigned variables, let X and Y, similarly to the previous case, one of the

following takes place:

o If ?=(X,Y) is the only literal in the rule’s body, then X is unified with Y –

see next section about more details on how this would affect inference56.

54 It is not allowed to use ?=(·,·) in a rule’s head, given that ?=(·,·) is defined to express the

congruence relation between entities of any specified universe and, as a result, it cannot be

overridden.

55 See the next remark for more details about numerical literals and the way they have been

implemented in our language.

56 Under normal conditions, given that all literals are variable-free in our setting, such an

occasion is not expected to occur.

65

o If ?=(X,Y) is not the only literal in the rule’s body, then, given a

substitution S that includes all variables in any other (non-numerical)

literal in the rule’s body, we have three further cases: (i) if S does not

include X nor Y then X is unified with Y as above; (ii) if S includes one of

the two but not the other, then the unassigned variable, without loss of

generality, let X, is assigned with the same value as Y and {X -> c} is

added to S, where c is the value of Y; (iii) if both variables are included in

S then, as in the first case, ?=(X,Y) holds if and only if both variables are

substituted by the same constant symbol in S.

We will refer again to the way ?=(·,·) has been defined as well as to how it affects the

implementation of the reasoning algorithm described in chapter 3, section 3.3, in the

next section.

Our next remark is related to the execution of usual numerical operations, the

introduction of several mathematical functions as well as the definition of the less than

relation between numbers (<) in our language. While addition, multiplication and the

usual order relation between numbers may be defined in terms of our (first order)

language, we preferred to allow for such expressions to be computed externally, using

built-in functions provided by java, so as to avoid unnecessary long arguments57 where a

large part of them would be dedicated to proving e.g. that 3 + 7 < 98 − 5.

At this point we should also note that equality between numerical expressions in the

context of our language is also captured by the already defined ?=(·,·) predicate. As

far as equality between numerical constants is concerned, there was no need to make

any changes in the algorithm we have presented above, since each number is considered

57 Indeed, in order to do so, one way would be to include two ternary predicates +(X,Y,Z) and

·(X,Y,Z) with the intended interpretation being that Z is the sum/product of X and Y

respectively, as well as a binary predicate <(X,Y) denoting the usual order relation between

numbers. Moreover, we would need to provide all axioms describing a totally ordered field as

well sufficiently many constant symbols describing “enough” numbers, which is evidently

insufficient. Even restricting ourselves to natural numbers, it would still be required to allow for

a function symbol succ(X) denoting the successor of X – or, equivalently, a predicate symbol

succ(X,Y) denoting that Y is the successor of X – as well as include <(0,S(0)) in every context

– so as to allow for any comparison to be computed by the rest of the order axioms.

66

a constant of our universe58. However, in the case non-constant numerical expressions,

several changes were needed to be made. We will describe in full detail this part of our

implementation in section 4.2, after having presented our implementation of the

reasoning algorithm described in chapter 3, section 3.3.

We should also note that in the context of our language, any mathematical expression

should be written in usual infix notation, using parentheses were needed to determine

priority among mathematical operators and functions. So, for example, an expression

such as the following one:

√𝑥2 + 3𝑥 + 11 − sin 𝑥

is written as follows, using infix notation59:

sqrt(X^2 + 3*X + 11) - sin(X)

At last, all mathematical operations and functions60 that are allowed in our language as

of the time this thesis was written are presented in Table 1.

Name Symbol Example

Addition + 32+5

Multiplication * 4*6

Subtraction - 4-56

Division / 7/8

Integer division (remainder) mod 14 mod 3

58 This is achieved during parsing, following our language’s syntax, as defined in chapter 3,

section 3.2. Namely, during parsing a predicate’s arguments, any string starting with a capital

letter of the latin alphabet is considered to denote a variable, while any other string sequence

that starts either with a lowercase letter or a numerical digit (including the minus symbol, −) is

considered as a constant symbol.

59 Space characters between symbols indicating nothing and were inserted only to facilitate

reading.

60 As far as mathematical constants are concerned, the only constant recognised during parsing,

apart from real numbers represented in usual decimal notation, is 𝜋, as of the time this thesis

was written. Euler’s number 𝑒 was not considered necessary to be included since it could be

accessed by using the exponential function – exp(1).

67

Integer division (quotient) div 5 div 2

Exponentiation ^ 5^3

Sine function sin sin(4)

Cosine function cos cos(pi)

Tangent function tan tan(2*pi)

Cotangent function cot cot(-6)

Exponential function exp exp(2*6)

Natural logarithm function log log(pi)

Base-2 logarithm function log2 log2(8)

Table 1: Mathematical operations and functions recognised by the language.

4.2 Reasoning and Argumentation

In this subsection we will discuss how the algorithm presented in chapter 3, section 3.3,

for the construction of the dual representation of the grounded extension of a

contextualised argumentation framework 𝒜𝑘(𝑥) has been implemented, utilising all the

above structures of our first order language.

4.2.1 Implementation

In order to implement the algorithm as described in chapter 3, section 3.3 as well as in

(Michael, 2019: 84), we introduce the following classes:

1. A Substitution class which represents a substitution of variables. It consists of

a java Hash Map field, substitutions, which maps variables to constants61 – i.e.

instances of the Variable class to instances of the Predicate class with zero

arity (arity=0). Apart from that, it also accommodates several substitution-

specific methods that are useful when it comes to First Order Forward Chaining –

e.g. applying a substitution to a given literal, which is utilized mostly in the

unification algorithm.

2. An InferenceGraph class which has the following fields: (i) a list of literals field,

nodes, which corresponds to the graph’s nodes – which, in the current setting,

are literals that are either included in a given context or that can be inferred from

the given context and rules; (ii) a square Boolean array field, edges, which

61 It also contains another Hash Map field, tiedVariables, which maps unassigned variables to

other unassigned variables. However, this field is not utilised in our work.

68

corresponds to the (directed) edges of the inference graph - with true at position

(i,j) implying that there exists an edge starting from node i and ending to node

j, as they indexed in the nodes list; (iii) a Hash Map field, originRules, which

maps each graph node - i.e. each literal - to a non-empty list of rules which led

that literal to be included in the graph as a node during some stage of its

construction loop – see below. The class also accommodates methods for

properly adding and removing nodes from and to the graph as well as returning

the crown rules of arguments in the graph.

3. A DualRepresentation class which describes the dual representation of a

grounded model. It contains as fields: (i) a KnowledgeBase field, kb, which

corresponds to the given knowledge base; (ii) a Context field, context, which

corresponds to some given context; (iii) an InferenceGraph field, graph, which

corresponds to the inference graph constructed by kb and context – see below

for more details; (iv) a list of literals field, markedLiterals, which corresponds

to the list of marked literals in the dual representation – see (Michael, 2019: 84)

as well as below for more; (v) a list of rules field, markedRules, which

corresponds to the list of marked rules constructed during the construction of the

dual representation – for more, see below, as well. Also, the class accommodates

methods for finding arguments in the grounded model in favour of a certain

literal, in case such an argument exists.

As far as the dual representation of a grounded model is concerned, the construction

algorithm described in (Michael, 2019: 84) is implemented as follows, given access to a

context 𝑥 and a prioritised knowledge base 𝑘 = (𝜌, ≺):

1. At first, using the context’s literals as well as the rules contained in the

knowledge base, the inference graph, graph, describing all the possible

inferences in 𝑥 under 𝑘 is constructed in the following way:

a. Given all the literals in the given context and an initially empty list of

literals, inferred, for each rule in the given knowledge base:

i. A list of substitutions, Subs, of all the substitutions that unify all

literals in the rule’s body given the context’s literals is constructed.

ii. For each substitution in Subs apply that substitution to the rule’s

head and, if it has not been included in inferred, then add it.

69

b. Terminate when no new literals is added in inferred for an entire loop

over all rules.

2. Next, a list of literals, markedLiterals, is constructed, initially populated by the

context’s literals, as well as an initially empty list of rules, markedRules.

3. Any literal in graph that conflicts with some literal in markedLiterals is

removed from graph.

4. All rules in 𝑘 whose body literals are all included in markedLiterals and which,

at the same time, are preferred over any other conflicting rule whose body

literals are also all in markedLiterals are added to the markedRules list.

5. Next, the head of each rule in markedRules is added to markedLiterals.

6. Steps 3 to 5 are repeated until convergence – i.e. until no more literals are added

in markedLiterals.

4.2.2 Remarks about the above implementation

As we have mentioned in section 4.1, a subtle point which should be further clarified is

how numerical expressions are evaluated in the setting presented above. To begin with,

we will refer to any “numerical” instance of ?=(·,·) as well as any instance of ?<(·,·)

as numerical literals while we will refer to any other literals as typical literals or simply

as literals if this introduces no ambiguity. So, ?=(·,·) may be both a numerical as well

as a typical literal, depending on whether at least one of its arguments is a numerical

constant or expression using mathematical functions and/or operators62.

The crucial point here is to describe how unification is conducted so as to allow for

numerical literals to be externally evaluated using built-in java functions and operators.

So, let some rule, rule, and also let body denote its body – i.e. body is a list of literals

that serve as the rule’s antecedents. Also, let context denote a context. Then in order to

find all substitutions of body according to context:

1. All typical literals apart from instances of ?=(·,·) are unified with respect to

context. Let subs denote the set of substitutions that occurs from this step.

62 One may say that ?=(·,·) is overloaded however this is not exactly true, given that the actual

deviation from the formal definition of our language is that we introduce certain function

symbols – i.e. mathematical functions. Apart from that, ?=(·,·) “behaves” as it should – i.e. as

our language’s equality symbol.

70

2. For each substitution, sub, in subs and for each typical instance inst of ?=(·,·)

in body apply sub to inst and:

a. If both arguments of inst are constants but they are not unifiable then

remove sub from subs.

b. If both arguments are unassigned variables then remove sub from subs.

c. If one of them, let X, is an unassigned variable and the other is some

constant, let c, then extend sub by adding {X -> c} to it.

3. For each substitution sub in subs and any numerical instance inst of ?=(·,·) in

body apply sub to inst, evaluate externally any mathematical expressions and

unify as in step 2.

4. For each substitution sub in subs and any numerical literal num that has

remained unchecked apply sub to num and evaluate externally all the occurring

mathematical expressions. Since num is necessarily an instance of ?<(·,·), act as

indicated below:

a. If at least one of its arguments is an unassigned variable, then remove sub

from subs.

b. Otherwise, let a and b be the values of the literal’s left and right argument

respectively. If 𝑎 < 𝑏 then proceed to the next literal or terminate in case

there is no literal to proceed while if not then remove sub from subs.

So, for instance, should we have a rule with body [p(A), ?<(A-4,3)] and a context

containing only the literal p(5), then, according to the above algorithm, we have:

1. At first, A is unified with 5, giving the only possible substitution: {A -> 5}.

2. Then, the aforementioned substitution is applied to the left argument of

?<(A-4,3) resulting to the mathematical expression 5 − 3 < 3 which is true,

hence {A -> 5} is accepted.

4.3 Chess related features

In this section we will discuss the domain specific features of the designed application,

as well as the rationale behind them in cases where it is considered necessary to do so.

To begin with, any chess related function is eventually based on python’s chess module

which, in short, gives access to:

71

 An object-oriented implementation of the game of chess accommodating all

typical chess functionalities as well as all current FIDE regulations – updated with

each new version of the module.

 A Scalable Vector Graphics (SVG) representation of a chessboard including last

move highlighting, check highlighting as well as several other attributes that

facilitate the game’s graphical representation.

 Built-in functions providing access to several game-related information. For

instance, using the module’s built functions one may have access to squares

attacked by a certain player (in terms of colour) or by a specific piece on the

chessboard in a given position. Moreover, access to higher level information such

as pins in a given position on the board is also provided.

The latter are utilised during context construction as we shall present next. In order to

construct a context describing a certain position on the chessboard, we need first to

define which built-in predicates other than the ones included in the already

implemented generic language of Machine Coaching63 we consider necessary. Our

choices will, at a significant extent, determine the expressiveness of our language since

the available predicates determine the relations which we can utilise in our rules. In

general we could split built-in predicates in the following classes:

 Predicates regarding static features of each position such as possible moves and

pieces of data about them – i.e., which side makes the move, what piece is moved,

from which and towards which square it that piece moved, whether that move is

a capture one and so on – or the absolute location of each piece on the board and

so on.

 Predicates regarding features related to game history as well as each position,

such as castling rights for each player and side – i.e. kingside/queenside castling

– en passant captures and so on.

 Predicates regarding static features of the game and which are independent of

the current position, such as whether the bot plays as black or white and so on.

A comprehensive list of the built-in predicates as of the time this thesis is being written

may be found in Appendix A.

63 As a reminder, these literals are ?=(X,Y), and ?<(X,Y).

72

Using built-in predicates, each time that it is the bot’s turn to play, a context describing

the current position on the board as well as other necessary facts about the game is

constructed and provided as an input to the reasoning algorithm – which is invoked by

the application as a separate java sub-process. Before we proceed, it is important to

make a remark about the context describing each position. As one may have already

realised, in each situation both players’ legal moves are provided within the context. As

it has also been explained before, it is useful to have information about what the

opponent is capable of doing in a given position, should one forfeit their own turn64.

However, since this leads to not all moves in a given context to be legal for the side to

play, it is possible that a user may provide rules that allow for illegal moves to be

considered adequate by the bot. To avoid such an absurd behaviour, a posterior check is

performed once a move has been suggested by the bot, so as to ensure that it is legal

and, in case it isn’t, an alternative move is chosen randomly from the set of available

legal moves65.

4.4 Graphical User Interface

Chess coach’s GUI has been designed using python’s PyQt5 module – actually, a python

binding of the Qt toolkit. While java offers plenty of native GUI development options,

such as Java Swing, PyQt5 was preferred due to python’s chess module which provides

access to a plethora of utilities related to chess – see previous section for more details.

Thus, using PyQt5 alongside with python’s chess module, while invoking PRUDENS’s

64 This may happen in several occasions. At first, some certain moves of the opponent, like a

checkmate move, are necessary so to avoid defeat in the next move. Secondly, it has been

reported by several professional players – for more, see chapter 5, section 5.2 – as well as by

most of the contemporary computer chess works that forfeiting one’s move and exploring the

opponent’s moves on that position provides wider insight on the opponent’s plan – see also the

discussion about the null move heuristic in (Greenblatt, 1969: 808).

65 There is also another path to ensure that always legal moves are suggested by the bot which

was not preferred due to leading to a modification of the bot’s knowledge base from entities

other than the coach. Namely, a rule off the form Rule :: –plays_as(Colour),

move_played_by(Move,Colour) implies –suggest(Move); could be introduced with

higher priority than any other conflicting rule in the knowledge base, so as to provide an

argument against the inclusion of illegal moves attacking any other argument for them.

73

reasoning engine as a service facilitated a more concrete and efficient implementation

not only of the chess coach’s GUI but also of the application as a whole.

In the rest of this section we present, in short, the designed GUI as well as the

functionalities it accommodates as far as human-machine interaction and Machine

Coaching in general are concerned.

4.4.1 Starting screen: choosing a mode of coaching

The application’s first screen is shown in Figure 11. As one may observe there, the

screen consists of the following parts – starting from top left and proceeding right and

down towards the opposite bottom right corner:

 An “Import” button. This button, once pressed, redirects the user to a file opening

dialog, where they are prompted to load a previous game. As we shall see later

on, this facilitates an asynchronous model of coaching, in the sense that the coach

provides advice based on a game that the bot has already played - e.g. against

another bot or human player.

 An “Approve” button. This button, once pressed, declares that a move played by

the bot as well as the corresponding explanation for that move have been

approved by the coach – i.e no counter-argument needs to be provided by the

user.

 A “Delete rule” button. This button, once pressed, redirects the user to a rule

deletion dialog from which they can delete any rule they wish from the bot’s

knowledge base - for more details consult subsection 4.4.2.

 An “Add rule” button. This button, once pressed, redirects the user to a rule

addition dialog from which they can add any rule they wish to the bot’s

knowledge base - for more details, consult subsection 4.4.2.

 A “Play as” button box which contains two buttons: “White” and “Black”. Once one

of these buttons is pressed, the button box is replaced by a chessboard and the

user is set to play accordingly to their choice - i.e. as white, on condition they

have pressed “White” and as black otherwise.

 A “Game” text field, where the game’s moves appear. The moves are displayed in

typical UCI format - so as to match the format in which they appear in the

“Explanation” section, see next for details.

74

 A “Knowledge Base” text field, where the prioritised knowledge base used by the

bot in the current game - whether it is a loaded previous game or a game the user

is playing against/with the bot in live mode.

 An “Explanation” text field, where the explanation regarding a move made by the

bot is presented. The explanation for a move is, by its definition, the argument

that has internally led to its suggestion – for more details, consult 4.4.2.

Figure 11: The application's starting screen.

We now proceed by describing the two available modes of coaching.

4.4.2 Live coaching

Should the user choose to play a game against/with the bot, they are redirected to the

screen66 shown in Figure 12. The only actual difference between this and the starting

66 When playing in live mode, there are two reasonable scenarios: (i) the coach is playing against

the bot; (ii) the coach is playing alongside the bot by inspecting its moves during a game against

75

screen is that now a chess board appears in place of the “Play as” button box - we have

assumed that the user has chosen to play as white for the purposes of our

demonstration.

Figure 12: Playing against/alognside our bot.

As far as moves from the side of the user are concerned, they are executed by clicking

first on the desired move’s starting square and right after on its destination square.

Provided that the move is legal, it is executed, otherwise no change takes place and the

application waits for the user’s next click. Regarding the bot’s moves, they are executed

automatically, under the following protocol:

1. A list of all legal moves alongside any other meaningful information about the

position are properly encoded in the first order language presented in chapter 3,

another player. For more details about the plausibility of these scenarios related to actual chess

coaching, consult chapter 5, section 5.2.

76

section 3.2. This list constitutes the context describing the current position on the

board.

2. Next, the corresponding dual representation of the grounded extension of the

emerging argumentation framework is being constructed – for more details, see

chapter 4, section 4.2.

3. Given the moves that have been suggested in step 2, the bot chooses randomly -

i.e. with equal probability - one of them and plays it. In case no move was

suggested, the bot, by default, chooses randomly a move from the set of all legal

moves in the current board position.

After the bot makes a move, the “Explanation” text field is updated with the

corresponding explanation that has led the bot to that specific suggestion or nothing, in

case no move was eventually suggested and the played move was merely randomly

selected.

After a move has been played by the bot and the user has checked the provided

explanation, there are three options provided to the user, represented by the three

buttons provided on the top right corner of the application’s window. Namely, the user

is allowed to:

1. Approve a move as well as the corresponding explanation for it.

2. Delete a rule or a set of rules from the bot’s knowledge base.

3. Add a rule or a set of rules to the bot’s knowledge base alongside their priority

level with respect to other conflicting rules.

In order to approve a played move as well as the corresponding explanation, the user

can press the “Approve” button right over the “Game” and “Knowledge Base” fields or

simply play their next move, without providing any counter-argumentation.

In order to delete some rule(s) form the bot’s knowledge base, upon seeing the bot’s

move as well as the corresponding explanation, the user can open the Rule deletion

dialog by pressing the “Delete rule” button – see Figure 13. From there, they are allowed

to delete any rules they wish as well as choose whether the changes should apply from

the current game or once this game is over.

As far as adding a rule – or more – to the bot’s knowledge base, this can be done by

pressing the “Add rule” button – see Figure 12 – which redirects the user to the

77

corresponding dialog – see Figure 14. In this dialog, there are several options as far as

rule construction is concerned. To begin with, the user is allowed to edit the Rule’s

name, body and head fields on the left part of the window by hand. Alternatively, there is

also the possibility of adding literals to the rule’s body and/or head by clicking on the

desired built-in predicate in the “Built-in predicates” list and then pressing the “Add to

body” or “Add to head” button accordingly67. Also, observe that at the rightmost part of

the window, there is a text box in which a description about the currently clicked built-

in predicate is presented. This description includes the intended interpretation of that

predicate in our context, a small example of some positions on the board described by it

as well as a list of all meaningful constants for each of its variables – for a full list of all

the built-in predicates as of the time this thesis was written, consult Appendix A.

Figure 13: Rule deletion dialog.

Observe that the user is also allowed to determine the new rule’s priority, by providing

the rule right above which they wish their new rule to be included – on condition this

field is left blank, the new rule is assumed to be preferred over any other conflicting rule

already included in the bot’s knowledge base. While, at most cases, any new rules

inserted in the bot’s knowledge base are expected to be considered of higher priority

than the rest conflicting rules – since they are expected to constitute

refinements/exceptions to already existing ones – there are certain occasions in which

67 The only built-in predicate that makes sense to be on a rule’s head is suggest(Move) which is

by default used to indicate that a move should – or should not, in case it appears negated – be

suggested as an adequate move.

78

we would prefer to keep a rule always on top of all the others. For instance, consider the

following rule:

Mate_1 :: plays_as(Colour), move_played_by(Move,Colour),

is_checkmate(Move) implies suggest(Move);

This rule, being of ground importance, is expected to be provided to the bot at some

early stage of the learning process. In case Mate_1 was overridden by another rule, say

for instance Noq, then in positions like the one presented in Figure 8, the bot would lose

a mate in one move, which is, evidently, an undesired behaviour.

Figure 14: Rule addition dialog

Even if no conflicting rule of higher priority than Mate_1 exists in the bot’s knowledge

base, it is expected that a checkmate move will not be the only one suggested in most

positions – e.g. the position shown in Figure 8 – and, given that, the chance that it is

finally played by the bot is narrowed down. To avoid such cases, one may also introduce

the following rule, so as to override any other suggestion on condition that a checkmate

move exists:

Mate_2 :: plays_as(Colour), move_played_by(Move1,Colour),

is_checkmate(Move1), move_played_by(Move2,Colour),

-?=(Move1,Move2) implies -suggest(Move2);

Examples as the above one indicate that it is of crucial importance to allow for rules to

be maintained on top of others constantly. Under the semantics of Machine Coaching, as

declared in (Michael, 2019: 85) and described in detail in chapter 3, section 3.3, we can

achieve this by allowing the user to decide at each time whether a rule should be

79

preferred over any other conflicting ones or be set at a certain place among other

conflicting rules68.

Given the above three actions, the user may provide feedback in all five (5) ways

declared in the Machine Coaching interaction protocol that is presented in (Michael,

2019: 85). Namely:

1. Unrecognised rules are deleted, as described in (Michael, 2019: 85), in the proof

sketch of Theorem 4.3.

2. Superfluous rules are deleted as well, again as described in (Michael, 2019: 85).

3. Incomplete rules, i.e. rules in the user’s grounded model that do exist in the

returned argument/explanation and whose inclusion in the machine’s knowledge

base would have led to an argument conformant to the user’s theory (Michael,

2019: 85), are added to the machine’s knowledge base.

4. Indefensible arguments, i.e. arguments in the user’s grounded model that attack

an argument of the machine’s theory but are not attacked by any other argument

in the user’s model (Michael, 2019: 85), are provided rule by rule setting

priorities accordingly.

5. Approved explanations are treated by actually performing no operation on the

machine’s knowledge base.

Given the above implementation of the interaction protocol described in (Michael, 2019:

85) and the additional assumption that rules in a user’s knowledge base 𝑘 = (𝜌, ≺) in

our domain of application – i.e. chess – can be linearly ordered with respect to ≺, then

Theorem 4.3 (Michael, 2019: 85) ensures that learning is conducted efficiently in the

sense defined in chapter 3, section 3.3.

68 There are also options other than this that facilitate the aforementioned desired behaviour.

For instance, on could also allow for strict rules (Prakken, 2010: 97) which cannot be disputed

by any other contextual counter-argument. Moreover, one could also restrict randomness in the

sense of specifying a (possibly non-uniform) probability distribution over suggested moves –

this could also be manipulated by the user themselves e.g. by introduce a built-in predicate

suggest(Move,Weight) where Move is some legal move and Weight is a number indicating

how highly should Move be ranked during random selection. All these are addressed in more

detail in chapter 6.

80

Summarising, during live coaching, the user is allowed to play a game against the bot –

or, equivalently, spectate a game played by the bot against another (human or machine)

player – and provide feedback to it either in the form of counter-argumentation or by

approving its decisions, leading, under certain assumptions, to the bot converging to the

user’s theory under the semantics defined in chapter 3, section 3.3.

4.4.3 Study mode

Apart from live coaching, the designed application also allows for an asynchronous

coaching option, in the following sense:

 The bot plays a game at some time against another (human or machine) player

and records the game itself alongside with any arguments for the moves it has

played.

 At a later time, a (human) coach asks the machine to load the game so as to study

it together.

 At each of the machine’s move, the coach, viewing the argument that led to that

move, provides feedback in one of the five ways declared in chapter 3, section 3.3.

The above is implemented by the “Import” button in our design – consult Figure 11. By

pressing it, the user is redirected to an “Open file” dialog where they can choose the

specific game file to load69. Then, a hidden button, namely “Next move”, appears next to

the “Import” button, above the chessboard – top left corner of the application’s window.

Using this button, the user can proceed to the next move of the loaded game.

As with live coaching, the same interaction options are provided to the (human) coach.

More precisely, the coach may:

1. Approve a move played in the loaded game as well as the corresponding

explanation by pressing the “Approve” button – see Figure 11.

2. Delete a set of rules included in the bot’s knowledge base by pressing the

corresponding “Delete rule” button and making their choices from within the

“Rule deletion” dialog.

69 Games are stored in JSON files loaded as python dictionaries with game moves as keys and the

corresponding explanations, should they exist, as values, or None otherwise.

81

3. Add rules or entire arguments in the bot’s knowledge base by pressing the

corresponding “Add rule” button and making their choices from within the “Rule

addition” dialog accordingly.

Note that in either case – i.e. live of study mode – the user is allowed to choose one way

of interaction at a time, conforming to the interaction protocol presented in (Michael,

2019: 85). That is, should a user choose e.g. to delete some rules from the bot’s

knowledge base then they are not allowed to add any new rules to it no sooner than the

next move has been played by the bot – the same applies to adding rules70. In a sense,

this corresponds to the view that a user may consider machine’s explanations erroneous

based on one criterion at a time.

4.4.4 Game over dialog

Once a game has come to its end, the user is prompted to make some decisions

according to their next actions. More precisely:

1. They are asked whether they wish to save the game played or not – this applies

only to games played in live mode since games loaded in study mode are already

saved.

2. The user is asked whether they wish to play another game against the bot or not

– this applies to both live as well as study modes – and, in case they wish to, they

are prompted to pick a colour to play with.

Also, once a game is over and the user has specified their preferences with respect to the

above, any (temporary) files related to the previous game are deleted – consequently, an

unsaved game cannot be restored.

70 In any case, this is implemented by temporarily deactivating the three interaction buttons on

the top right corner of the application’s window once one of them has been pressed.

82

Chapter 5
Evaluation

In this chapter we will present several results regarding the evaluation of our work. We

decided to assess our work in two orthogonal directions. On the one hand, we measured

the efficiency of our implementation in terms of computation time with respect to

several parametres. Doing so, we intended – apart from assessing the implementation

itself – to empirically verify the theoretical results that are reported in (Michael, 2019:

84) regarding the efficiency of the dual representation of a grounded model. On the

other hand, given that our intention is to capture human knowledge and heuristics

regarding chess and transfer them to a machine, we also interviewed domain experts in

order to receive meaningful domain specific feedback.

The structure of this chapter is as follows: (i) in section 5.1 we describe the

methodologies used so as to assess the efficiency of our implementation, while we also

present and discuss the results we obtained; (ii) in section 5.2 we present and discuss

the feedback we received from professional players and chess coaches regarding our

work.

5.1 Evaluation of the implementation

In this section we shall present several results regarding the assessment of the efficiency

of our implementation as a whole as presented in chapter 4, sections 4.1 and 4.2. To do

so, we will rely on synthetic data, given that no satisfactory sets of real data were found

that could allow us to systematically modify and control all the major parameters we

would like to.

5.1.1 Generation of synthetic knowledge bases and contexts

In this subsection we will describe the way in which our synthetic data – namely, pairs

of knowledge bases and contexts – were generated. Before we describe our random

knowledge base/context generation protocol in full detail we shall first mention that the

parameters against which we decided to measure the build time of a grounded model’s

dual representation are:

83

 Negation ratio, i.e. the ratio of negative literals over the total literals count

included in a knowledge base – namely, in the rules’ bodies – as well as in a

context. For the rest of this section, we will refer to the former as negation ratio

unless it is differently indicated.

 Predicate arity, i.e. the number of arguments a predicate includes, as defined in

chapter 3, section 3.2.

 (Rule) Body size, i.e. the number of literals a rule contains in its body. We will also

refer to this parameter simply as rule size.

 Knowledge base size, i.e. the number of rules a knowledge base contains.

Proceeding now to the description of our random knowledge base/context generation

protocol to begin with, in order to randomly generate a knowledge base, we need to

decide upon a protocol by which we will randomly generate rules – we set aside the

knowledge base’s priority relation between these rules for now. Furthermore, in order

to generate a rule, we have to decide how literals are randomly generated and,

consequently, predicates, variables and constants.

Starting with the lowest levels of our language, the number of variables was not

considered important since variables serve mostly as placeholders. So, in all the

following experiments we take care to include enough variables from a combinatorial

perspective so as to allow for all other parameters to be properly set. Similarly, since it

was not among our intentions to explicitly measure the effect of context complexity - e.g.

in terms of its size - we simply allowed for each variable to take values from an

constants array of size five (5).

Proceeding to predicates, given a fixed arity 𝑛 as well as a list of variables 𝑣𝑎𝑟𝑠 with

length at least 𝑛, we randomly select a random sample of size 𝑛 from 𝑣𝑎𝑟𝑠 without

repetition and assign it as the predicate’s list of arguments. We also randomly assign

each predicate a name of the form pX, where X is some randomly generated integer,

unique for each predicate71.

Next, given a list of predicates 𝑝𝑟𝑒𝑑 as well as a negation ratio 𝑝 ∈ [0,1] we generate a

literal by randomly choosing the literal’s sign with probability 𝑝 being negative and

71 In general, we avoided lengthy numbers in all generated instances. While this led to some

difficulties in proof-checking that knowledge bases as well as contexts were properly generated,

it also drastically reduced the generated files’ size.

84

positive otherwise. Given a list of literals, 𝑙𝑖𝑠𝑡, a rule is generated by selecting body

literals from 𝑙𝑖𝑠𝑡 such that no repetitions occur as well as no conflicting literals are

included in the occurring sample. As far as the rule’s head is concerned, it is selected

from 𝑙𝑖𝑠𝑡 similarly.

In order to generate a random knowledge base, we work as follows, given a desired size

𝑛 as well as a list of rules, 𝑟𝑢𝑙𝑒𝑠:

1. For each rule, 𝑟𝑢𝑙𝑒, in 𝑟𝑢𝑙𝑒𝑠:

a. We randomly select an integer 𝑑𝑒𝑝𝑡ℎ from {1,2,3,4,5}.

b. Let 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 be an empty list as well as denote 𝑟𝑢𝑙𝑒 by 𝑟𝑢𝑙𝑒0

c. For 𝑖 from to 𝑑𝑒𝑝𝑡ℎ repeat:

i. If 𝑏𝑜𝑑𝑦𝑖−1 is the list of body literals of 𝑟𝑢𝑙𝑒𝑖−1 then let 𝑏𝑜𝑑𝑦𝑖 =

𝑏𝑜𝑑𝑦𝑖−1 ∪ {𝑙𝑖𝑡} where 𝑙𝑖𝑡 is some literal that neither itself nor its

opposite appear in 𝑏𝑜𝑑𝑦.

ii. Let ℎ𝑒𝑎𝑑𝑖 be the opposite of ℎ𝑒𝑎𝑑𝑖−1, where ℎ𝑒𝑎𝑑𝑖−1 is the head of

𝑟𝑢𝑙𝑒𝑖−1.

iii. Define rule 𝑟𝑢𝑙𝑒𝑖 to have 𝑏𝑜𝑑𝑦𝑖 as its body as well as ℎ𝑒𝑎𝑑𝑖 as its

head and add it to72 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠.

d. If by adding 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 the desired size of the knowledge base 𝑘𝑏 is not

exceeded, then add them to the knowledge base by ascending priority

with respect to their indices as well as with higher priority than any

previous rules, otherwise add as many randomly generated rules are

needed so as to reach the desired knowledge base size.

At last, given a knowledge base 𝑘 as well as a list 𝑝𝑟𝑒𝑑𝑠 of all the predicates included in

rules in 𝑘, we construct a context by randomly selecting a number of predicates from

{1,2, … ,10} and then substitute all its variables with corresponding constants as well as

deciding upon their sign given a negation ratio 𝑝 ∈ [0,1]. After variable instantiation has

72 We preferred this approach instead of simply adding rules that have not yet been included in

our knowledge base so as to ensure that any knowledge base would contain some structure that

could lead to conflicts and hence substantially assess our reasoning mechanism. However, since

exception depth was not further manipulated in this series of experiments, no further results

will be reported about it.

85

been completed, we add them to the context, so as to avoid duplicates as well as conflicts

with already included literals.

At this point we should observe that, given a negation ratio 𝑝 ∈ [0,1], a randomly

selected literal 𝑙𝑖𝑡 is negative with probability 𝑝 should it be selected from the pool of all

literals present within a knowledge base while the same is not necessarily true for a

rule’s body. That is, there is a significant probability that given any non-trivial negation

ratio 𝑝 ∈ (0,1) there exist rules in a randomly generated knowledge base whose body

literals do not follow the distribution of the rest knowledge base as far as

negative/positive literals are concerned.

5.1.2 Build time against negation ratio

One of the first variables we would like to investigate is negation ratio – i.e the fraction

of negative literals among all literals appearing in rules as well as in contexts. Intuitively,

we expect that the effect of negation ratio will be insignificant as far as build time of a

grounded model’s dual representation is concerned. Indeed, consider two values of

negation ratio, let 𝑝1, 𝑝2 ∈ [0,1] such that 𝑝1 ≠ 𝑝2 and let 𝑡 = 𝑡(𝑝) be the dual

representation’s build time with respect to negation ratio, 𝑝. Let also (𝑘1, 𝑥1) and (𝑘2, 𝑥2)

denote two (knowledge base, context) pairs with negation rations 𝑝1 and 𝑝2

respectively. Should 𝑡(𝑝1) > 𝑡(𝑝2) then we can rename73 enough predicates in 𝑘1 so as

to change its negation ratio to 𝑝2 or approximately 𝑝2 as well as analogously modify the

corresponding context 𝑥1. In the same way, we can also change the negation ratio of the

(𝑘2, 𝑥2) pair from 𝑝2 to 𝑝1.

Given that build time is not expected to be sensitive to predicates’ renaming74, we

should expect that pre- and post-renaming built times should be the same – or, at least,

similar –, which would lead to 𝑡(𝑝2) > 𝑡(𝑝1) which contradicts our hypothesis. So, we

expect 𝑡(𝑝1) = 𝑡(𝑝2) or at least 𝑡(𝑝1) ≈ 𝑡(𝑝2) for any negation ratios 𝑝1, 𝑝2 ∈ [0,1].

73 By that we mean changing the name of a predicate from –p to p and accordingly for its

opposite predicate in any occasion they appear in a given knowledge base as well as context.

74 This is expected since in any occasion where two predicates are compared – e.g. during

unification – whether a predicate appears negated or not in a literal is always taken into account

in a symmetric way – i.e., there is not structurally different action taken when a literal is or is not

negative.

86

Evidently, since our data have been randomly generated, we expect that some error may

be introduce in the final result, however, this is not expected to be of much significance.

Let us now proceed to presenting some related results so as to examine the validity of

our thoughts. In Figure 15 one may observe average build time plotted against negation

ratio. It appears that average build time and negation ratio are slightly positively

correlated, however, both Pearson’s correlation 𝜌𝑝 = 0.509 as well as Spearman’s

correlation 𝜌𝑠 = 0.5 are statistically insignificant (p-values 0.381 and 0.45 respectively),

suggesting that build time seems to be independent of negation ratio, as we expected.

Figure 15: Build time against negation ratio. No significant correlation between the two appears
to exist.

Note that in the above setting, negation ratio is manipulated in both each knowledge

base as well as each corresponding context. That is, apart from manipulating the

percentage of negative versus positive literals in a knowledge base’s rules’ bodies, we

also manipulated accordingly the negation ratio within the context used alongside each

knowledge base. In case we had left negation ratio constant throughout the above

experiments we would expect build time to vary depending on knowledge base negation

ratio since this would implicitly affect the number of rules triggered by a context and,

consequently, the complexity of the emerging argumentation framework as well as its

87

dual representation. For instance, should we demand that context negation ratio is fixed,

say, to 0.2 - that is, 20% of literals are expected to be negative within each context - then

we would expect that build time should be decreasing as negation ratio in knowledge

bases increases75. Indeed, in Figure 16 we see how build time varies as a function of

knowledge base negation ratio given that negation ratio in corresponding contexts is

fixed to 0.2.

Figure 16: Build time against negation ratio given a relatively "positive" context.

Calculating Spearman’s correlation76 for the above data, we take 𝜌𝑠 = −0.9 with the

corresponding p-value being 0.083, modestly supporting our assertion that build time

would be decreasing as negation ratio within knowledge bases increases.

75 This is expected since as negation ratio increases, more rules are expected to contain negative

literals in their bodies and, consequently, less rules are expected to be triggered from the

knowledge base’s corresponding context of which a little fraction consists of negative literals.

76 Spearman’s correlation, in contrast to Pearson’s correlation, is robust to noise in data and is in

general used to examine whether there exists a monotonic dependency between two variables –

not necessarily linear, as with Spearman’s correlation. The closer Spearman’s correlation is to 1

the better is the dependency between two variables described by an increasing function while

the closer it is to -1 the better it is described by a decreasing function.

88

5.1.3 Build time against predicate arity

We shall now explore the way in which build time is affected by manipulating predicate

arity within the knowledge base’s rules. As a first estimate, we would expect that by

increasing predicate arity within rules of a knowledge base, build time would also be

increased, since the overall complexity of the knowledge base would be higher than in

cases with less complex predicates77. We now proceed in analysing data we have

obtained from the above series of experiments.

As we see in Figure 17, build time, averaged over all the other parametres we are

manipulating, seems to be, as expected, an increasing function of predicate arity. This

also conforms to our intuition that more complex concepts require more processing

time so as to make conclusions about them.

Figure 17: Build time against predicate arity

As one may observe in Figure 17, build time for predicates of arity equal to 1 is higher

than build time for predicates of arity 3 or even 5. This behaviour is attributed to

caching, which leads to reduced time loss in recalling cached data, explaining this

77 More intuitively, the more arguments a predicate has, the more complex dependencies it

expresses amongst our universe’s entities

89

seemingly unexpected phenomenon. Supporting to our view will be findings about other

parametres of our experiments which will also follow the very same pattern – i.e. build

time will be slower in the beginning of an experimental cycle than right after due to the

latter benefiting from caching.

The above results regarding build time being increasing with respect to predicate arity

are also modestly supported by the value of the Spearman correlation coefficient for the

above data, namely 𝜌𝑠 = 1, with a corresponding p-value of 0.083.

5.1.4 Build time against rule body size

Apart from predicate arity, the size of rules contained in a knowledge base also capture

the emerging argumentation framework’s complexity. Indeed, rules with larger bodies78

may be interpreted as expressing more complex relations on top of other simpler ones.

So, with this interpretation, the longer a rule’s list of antecedent the more complex its

conclusion – or, more precisely, the relation its conclusion describes – is.

Figure 18: Build time against rule complexity.

78 Since a rule by definition has exactly one head literals, its size is fully determined by the size of

its body.

90

Bearing in mind the above, we see that Figure 18 supports our assertion, since rule body

seems to be an increasing function of rule size. To verify it, we calculate Spearman’s

correlation on the above data – after, as above, discarding the first point in our dataset

due to the caching effect –, which yields a value of 𝜌𝑠 = 0.8 with the corresponding p-

value being 0.133, which again, modestly supports our intuition.

5.1.5 Build time against knowledge base size

A factor that is expected to drastically determine the efficiency of our implementation is

the extent to which knowledge base size affects build time. As indicated in (Michael,

2019: 84), build time increases polynomially with respect to knowledge base size and it

is this assertion that we would like to empirically evaluate. To begin with, in Figure 19

we see how build time, averaged over any other parametre other than knowledge base

size, grows in terms of knowledge base size. As expected, this dependency is increasing –

Spearman’s correlation coefficient, 𝜌𝑠 = 0.987, p-value equal to 2.2 ⋅ 10−16. It remains

now to examine whether it is also polynomial with respect to knowledge base size.

Figure 19: Build time against knowledge base size

To do so, we will at first plot our data in log-log scale, as shown in Figure 20. This is done

since, if 𝑥, 𝑦 are two variables with 𝑦 depending on 𝑥 based on a power rule, i.e. 𝑦 = 𝐴𝑥𝑘

for some 𝐴 ∈ ℝ , 𝑘 ∈ ℕ, then, letting 𝑢 = log 𝑥 and 𝑣 = log 𝑦, we obtain:

91

𝑦 = 𝐴𝑥𝑘 ⇔ log 𝑦 = log 𝐴𝑥𝑘 ⇔ log 𝑦 = log 𝐴 + 𝑘 log 𝑥 ⇔ 𝑣 = log 𝐴 + 𝑘𝑢 .

Figure 20: Build time against knowledge base size plotted on log-log scale so as to examine any
polynomial asymptotic behaviour.

So, on the log-log plane each monomial and, eventually, as 𝑥 approaches infinity, each

polynomial, is represented by a straight line with slope equal to the degree of the

monomial. Observe that the above is independent of the logarithm’s base as well as that

we can, given a straight line 𝑣 = 𝑏 + 𝑚𝑢 on the 𝑢 − 𝑣 plane, get back to the 𝑥 − 𝑦 plane

as follows:

𝑣 = 𝑏 + 𝑚𝑢 ⇔ 𝑐𝑣 = 𝑐𝑏+𝑚𝑢 ⇔ 𝑐log 𝑦 = 𝑐𝑏(𝑐𝑢)𝑚 ⇔ 𝑦 = 𝑐𝑏𝑥𝑚,

where 𝑐 is the chosen logarithm’s base.

Based on the above, we conducted a linear regression over the our dataset as

represented on the log-log plane, omitting however the very first entry – i.e. the case of

knowledge base size being 1. The latter was done for two reasons. To begin with, by

omitting the first point in our dataset we minimise the effect of caching, which is

irrelevant to the asymptotic behaviour of our algorithm we are aiming to measure.

Secondly, distances between points on the log-log plane are distorted since only the

92

upper right quartile of the Cartesian plane is mapped with 𝑢 and 𝑣 axis corresponding to

the straight lines 𝑥 = 1 and 𝑦 = 1 on the Cartesian plane79.

The resulting straight line may be seen in Figure 20 – p-value for both constants is less

than 2 ⋅ 10−6. So, we may safely conclude that computation time as far as the

construction of the dual representation of a grounded model is concerned is indeed

polynomial in terms of the size of the knowledge base. For completeness, the

corresponding polynomial curve as well as the aforementioned dataset plotted on the

Cartesian plane are shown in Figure 21.

Figure 21: The polynomially growing fitting curve describing build time against knowledge base
size.

5.2 Experts’ feedback

In this section we will present and discuss the feedback we received form professional

chess players as well as chess coaches regarding our work. Our aim was to gather useful

information about how chess is viewed by them and, most importantly, how chess

79 More precisely, as one may observe, while distances between points lying on the (1, +∞) ×

(1, +∞) part of the Cartesian plane are brought together while the rest of the Cartesian plane is

magnified – e.g. (0,1 × (0,1) is mapped to (−∞, 0) × (−∞, 0) on the log-log plane.

93

coaching takes place in practice, as well as the implications of the above to our work so

far. Moreover, we also sought to get domain expertise regarding chess itself as a game as

well as how they would think of our approach in terms of efficiency, plausibility and so

on.

5.2.1 The interviewing process

In this subsection we will present the way in which interviews with chess

players/coaches were conducted for the purposes of this thesis.

At first, chess players and coaches from local chess clubs in Athens and its suburbs were

contacted so as to start building up a network of people related to chess. Next, so as to

diversify our sample of chess coaches and players as well as to receive more extensive

feedback from the community, we contacted chess clubs from all over Greece. In total,

more than 60 chess clubs were reached, however 17 chess players and coaches

responded to our call for an interview while as of the time this thesis is written, 16 of

them have been interviewed.

Our initial call for chess players and coaches consisted of a brief description of the

purpose of our work as well as the why we needed their assistance to it. Furthermore, a

fifteen (15) page demo of our application was included so as to facilitate a better

understanding of our aims as well as our work.

After the first round of calls for chess players and coaches had been completed, we

arranged online meetings with them which had, in general, the following structure:

1. At first, we presented to them our work live by starting a live coaching session

with our bot – see chapter 4, section 4.4 – so as to elaborate on what had been

presented in the already sent demo. Apart from live coaching, we also

demonstrated all other capabilities of our app, including study mode for the

purposes of which we utilised games we have previously played against a trained

bot80.

2. After our presentation had been completed, we asked for further questions

regarding the functionality of our application and/or the interaction protocol or

anything that was unclear during the presentation.

80 The bot had been trained with game opening mostly in mind using rules based on principles

found in (Lasker, 1946: 1-8).

94

3. Having clarified all points raised at the previous stage, we proceeded by asking:

(i) for their views on the topic; (ii) whether and at what extent they considered it

feasible that a bot could be trained in the presented way so as to play chess

adequately in the first place; (iii) which analogies could they see between our

interaction protocol and human player coaching; (iv) any other question that had

occurred throughout the interview.

4. Having completed the above discussion part, we concluded by summarising what

had been discussed so as to verify that there were no misconceptions as well as

asked anything we intended to but was not brought up during our

conversation81.

At this point we should mention that we did not focus in the means by which interaction

is conducted - i.e. the language of Machine Coaching - but merely on interaction as a

process by which knowledge is transferred from a human coach to a machine trainee

and backwards, in the form of explanations about the machine’s actions.

5.2.2 Feedback from the chess community

In this subsection we will discuss the feedback we received from the chess community

regarding our work. During the interviewing process we have had several discussions

and received feedback regarding various aspects of chess not only as a game but also

about chess coaching. The latter helped us a lot in making analogies with human-to-

human interaction in this context and led us to many thoughts about possible directions

towards which we could conduct further research in the future – for more, see chapter 6,

section 6.2.

To begin with, our overall methodology was in general considered to be plausible and

applicable to the game of chess, since it resembles that of human-to-human coaching

and interaction between a trainer and their trainees. Indeed, as we were told by all

experts we contacted, there are, as per their words, “no absolute rules in chess”. On the

contrary, rules are only contextually superior to others, given certain characteristics of

the position on the board as well as the player’s experience. For instance, while it is

81 In general, during the interviews, it was preferred from some point and after to let the expert,

be it a player or a coach, to lead to conversation to any points they wished to – always regarding

chess and within our purposes – so as to minimise the effect of our own views on the game and,

hence, our own bias, as well as to broaden our view of the game and its strategic features.

95

generally not advised to move one’s king during the early or middle stages of the game,

the king’s role is of an increasing importance as material for both sides becomes less and

the game approaches its end.

Additionally, the coaching modes allowed by our application - i.e. live and asynchronous

coaching - were both considered as necessary during coaching since, as described

thoroughly, the coaching process may contain both sessions where the trainee plays

against their coach in order to receive live feedback on their moves as well as sessions,

e.g. after official games, where played games are reviewed so as to find strong and weak

moves as well as any other feature that may be relevant.

We shall now continue by discussing a possible issue which was unanimously

considered to be the most important by all the experts we came into contact and which

we should overcome in order to build an efficiently playing chess bot. That is, the

distinction made between strategy and tactics in the game of chess and how this could

be effectively captured by our current approach. Actually, the aforementioned

distinction proved to be more complicated than we had initially expected, so we shall

present one by one all the remarks made by the experts82.

To begin with, as per the words of one of the experts we have contacted, “the best

strategic player would not be able to win should they not be capable of recognising a

mate in two”. To elaborate more on this, all experts agreed that a language as the one we

have defined seems capable to capture most if not all the strategic that may arise in any

chess position – hence, our bot could potentially be a good “strategic player”.

Nevertheless, it was by all of them considered dubious whether features regarding

combinatorial aspects of the game, such as move counting, could be captured by if-then

rules based on positional features – i.e. strategic attributes as well as purely positional

ones – see chapter 3, section 3.2 as well as Appendix A for more details on what

information regarding a position can be accessed as of the time this thesis is being

written83.

82 For possible solutions on the issues which the expert’s comments and thoughts are unveiling,

see chapter 6, section 6.2.

83 At this point, it would be useful to remind that the only predicates of our language which

directly facilitated move counting – up to one move depth – are controls and

is_checkmate.

96

An example of counting which would, almost surely, not be captured by a completely

strategic player is shown in Figure84 22. There, even if it seems improbable, the white

plays and has a forced mate in 290 moves! Indeed, the sequence of white’s moves begins

as follows:

1. Rd1+ Bd4 2. c4+ Kd6 3. Rxg1 Bc3 4. Rd1 Bd4 5. Ka5 Bb7 6. Ka4 Ba8 7. Ka3 Bb7

8. Ka2 Ba8 9. Kb1 Bb7 10. Kc2 Ba8 11. Kd3 Bb7 12. Re1 Ba8 13. Rf1 Bb7

14. Rd1 Ba8 15. Kc2 Bb7 16. Kb1 Ba8 17. Ka2 Bb7 18. Ka3 Ba8 19. Ka4 Bb7

20. Ka5 Ba8 21. Kb6

This position, as one may observe – see Figure 23 –, is the same as right before white’s

move 5. Ka5 with one subtle difference: it is now the black’s turn to play and not white’s.

This was exactly the reason behind the white king’s “trip” from a5 to d3 and back to a5,

i.e. to return to the same position but this time not having to play. In this case, the black

have only one plausible move that postpones their mate, which is 21. … h4. Then, the

white king starts again in a similar way his trip to d3 and, by repeatedly doing the same

84 This position is attributed to O. Bláthy (possibly, 1929).

Figure 22: White to play and mate in 290.

97

“trick”, the black will be gradually forced to push all their pawns on the h file down to

rank 1, were the white rook will capture them. So, we arrive at a position where the

white play 282. Kb6 and now the black have no pawn to move other than b2, which

would be either way sacrificed sooner or later, while their next best option is 282. …

Bb7. Regardless of which of the two moves the black prefer to play first, the white has

now a mate in 8 as follows:

282. … Bb7 283. Kxb7 b1=Q 284. Rxb1 Be5 285. Rd1+ Bd4 286. Rxd4 cxd4

287. Kb6 d3 288. a8=Q Rxb8 289. Qxb8 dxe2 290. Qxd8#

As one may observe, the major strategic feature that appears in the above position is

that of zugzwang, i.e. a position in which one side is to move, however, any move it has

at its disposal will make its position weaker85. Nevertheless, as one also may observe, it

is only by means of move counting – i.e. game tactics – that one finds the right move

85 As per the words of one coach with whom we discussed about zugzwang, “it is the fact that

tempo in chess may also be of negative value - i.e. it would be better not to play in your turn –

that makes the game so complicated”.

Figure 23: Towards a zugzwang position.

98

sequence so as to properly take advantage of this strategic feature that appears

(potentially) on the board after 17 accurate moves have been played.

One may object that the above position is not a legal one86 and that, either way, it is an

extreme case which should not affect our methodology in general – this is at least what

we did in several conversations. However, we were provided with a plethora of

positions in which tactics should come in the first place in a different way, each time. We

decided to present three of them, the ones that seem to be the most accurate

representatives of most cases in which tactics come to the foreground, overriding the

importance of strategy.

At first, consider the position shown in Figure 24 – white to move (Seirawan, 1999: 66).

In contrast to the previous one, this is quite minimalistic. While, at a first glance, this

position seems to be a draw – the white does not seem to be capable of taking advantage

of their pawn at c7 since they are seemingly vulnerable to black rook’s checks while the

black rook needs to be capable at any time to either check the white king or control the

86 Indeed, observe that the white has two same-coloured bishops which could happen only if

some white pawn had been promoted to one of the two bishops. However, all eight white pawns

are on the board.

Figure 24: Fewer pieces, yet the same ideas.

99

white pawns threat to promote to c8. However, there exists a winning sequence for

white, namely:

 1. Kb5! Rd5+ 2. Kb4! Rd4+ 3. Kb3! Rd3+ 4. Kc2!

At this point, see Figure 25, the white seems to have won since the black rook can give

no more check nor threaten with a fork or so. However, black has 4. … Rd4!! which, in

case of 5. c8=Q gives the black the possibility to play 4. … Rc4!! which forces the white to

capture the black rook and leads to stalemate. However, white can tackle this threat as

follows: 5. c8=R!! which avoids stalemate in case of 5. … Rc4+? and leads to a forced win

for white.

Again, in the above position we see how the path to victory for the white was not

dependent on the strategic attributes of their position – i.e. the fact that they had a pawn

ready to be promoted on the seventh line – but on move counting.

Our next position comes from an actual game, where, quoting again one of our

interviewees, “strategy can lead you to a winning position but it is up to move counting

and tactics to make a win out of it”. As shown in Figure 26 (Vuković, 1993: 240), the

white has a clear strategic feature they would like to take advantage of, which is the

Figure 25: An almost winning position for white.

100

pressure on black’s pawn at h7. As one may also observe, in order to further increase

pressure on this pawn, the white has several options – strategically equivalent as far as

that specific feature is concerned. Namely, 1. Nf6, 1. Neg5 and 1. Nfg5 all lead to some

piece of the white putting more pressure on h7. However, as we shall see next, it is the

white bishop at g2 that will be the right choice. Namely, the game went as follows:

 1. Nfg5! fxg5 2. Nf6! Bxf6 3. Be4 1-0,

Since, in any case, the white mates at h7.

What is of high importance here is the move sequence itself. Starting with 1. Nf6 would

not work since then, trying to mimic the above, we would have 1. … Bxf6 2. Ng5 Bxf5 and

now the black can defend white’s 3. Be4 with f5. Also, even which of the two knights

moves to g5 initially matters, since, should the white play 1. Neg5 then they would not

be capable of playing 2. Nf6.

As for now, we have examined positions at which strategic superiority by itself does not

suffice so as to ensure victory and precise move counting is needed. Our last example

Figure 26: Capablanca - Nimzowich, 1928, white to move and
win.

101

will present the previous idea in an extreme case, showing how a strategically sound

move leads to defeat due ignoring the position’s tactics. So, let us consider the position

shown in Figure 27 - black to move (Seirawan, 2003: 246). There, according to the coach

that proposed us this position as well as Seirawan himself, the black’s strategic plan

should involve blocking white’s game on the queen’s side so as to shift the game towards

the king’s side and the centre, where the black seem to be well-positioned. Under this

perspective, black’s move in the game, 1. … a5 is sound and actually blocks white pawns

in the queen’s side87.

However, black’s move ignore the position’s special tactical features, which allow for the

following move sequence:

 2. b5 Nd8 3. exf5! Bxf5 4. g4! hxg4 5. fxg4 Nxg4 6. Nxb6 cxb6 7. Bxa8 Qc8 8. Bf3

Now, the white have managed to get an advantage in material which proved enough to

lead them to victory.

87 In case the white play 2. bxa5 then the black can create substantial counter-play on the

queen’s side by 2. … Nxa5 which leaves the white with a useless semi-open b rank and a hanging

pawn at a3.

Figure 27: Seirawan - van Wely, 1992, black to move.

102

While black’s move was not mistaken in terms of strategy, it was highly erroneous with

respect to the position’s tactical attributes. The white, taking advantage of their white

bishop on the h1-a8 diagonal – i.e., a strategic feature on the board - found an

appropriate move sequence so as to capture the black’s rook at a8 by offering their

knight.

As explained by many experts we contacted, such positions are characteristic of the

interplay between strategic and tactical playing in chess. As a conclusion, strategy is

viewed as a high level heuristic while it remains for tactical game and move counting to

actually make any strategic advantage an actual advantage capable of leading to win or

draw - depending on the side playing.

As we have mentioned above, since our learning methodology strongly relies on

defeasible rules to draw inferences given a certain position on the chessboard, we

expected that, by continuous coaching and interaction with a human chess coach, the bot

would eventually capture a significant part of its coach’s theory or, at least, a reasonably

sufficient part that would allow it to play at an acceptable level.

Discussing the above idea with various experts one of them raised an interesting point.

As we were told, a casual part of chess training involves studying hundreds of other

games - either with or without a coach, depending on the player’s level - so as to get

accustomed to as many positions on the board as possible and, thus, be capable of

recognising appropriate conditions under which certain (strategic) features are prior to

other. While this actually coincides with core ideas of our methodology, it also implicitly

poses a question of high significance to the efficiency of our work: Is it plausible to

expect that a human coach will be capable - in terms of time as well as cognitive

resources - of describing enough positions so as to allow the trained bot to play at an

acceptable level?

The view of most of the experts was this does not seem to be possible, at least not in an

efficient way. For instance, a formerly International Master and now chess coach of the

Greek Coach Federation informed us that, when it comes to human players that start

having little or no knowledge about strategic chess, it takes them about two (2) years in

order to study enough positions with their trainees so as to demonstrate efficiently the

most usual strategic patterns of the game.

103

One may argue that when it comes to human coaching the process is more time

demanding since a human may be prone to errors a machine is not - e.g. omitting a rule

during the evaluation of a position. Indeed, should two positions 𝑃1 and 𝑃2 be equivalent

with respect to our theory, in the sense that they trigger the same rules, then a machine

would not need to be exposed to both of them during its coaching, while a human player

might need to be repeatedly exposed to strategically equivalent positions so as to

minimise the chance that in a future equivalent position rule omission or similar errors

will be avoided.

Bearing in mind the above, the question posed above could be reformulated as follows:

How many, in terms of order of magnitude, are the estimated positions a bot following

the above learning methodology should be exposed to in order to play at an acceptable

level? To this question, the answers we received varied, with the general line being,

however, that the absence of explicit move counting in our design would imply that the

final number of positions our bot should study with a coach would be insufficiently

many.

All in all, we could say that, while our approach as designed and presented to chess

experts seemed plausible up to some certain extent, what troubled them most was the

absence of an explicit move counting mechanism as well as whether it is possible, under

the current methodology, to capture all, or at least the majority of, the tactical aspects of

the game88.

88 We also received some feedback from one chess coach about transparency and how this could

facilitate human-to-human chess coaching. Since it is a suggestion for a future extension of our

work we will discuss it in the next chapter, in section 6.1, were possible future steps are

presented.

104

Chapter 6
Conclusion

In this chapter we will discuss how the results we obtained from our scalability

experiments as well as the feedback we received from the chess community will

determine any future work. Additionally, we present a synopsis of our work as well as a

brief summary of its evaluation as a whole. More precisely, this chapter is structured as

follows: (i) in section 6.1 possible future steps that could be taken based on the results

and views presented in chapter 5 are discussed; (ii) in section 6.2 we conclude.

6.1 Future Steps

Based on what was presented in chapter 5, in this section we shall discuss several

directions towards which we could extend our current work.

6.1.1 Technical aspects and scalability

In terms of the technical part of our work, as it is presented in chapter 4, sections 4.1

and 4.2, we intend to thoroughly re-examine build time against all the already examined

parameters as well as exception depth and any other parameter that may be considered

reasonable to examine. On the one hand, we are aiming in generating more realistic

synthetic datasets since the ones used for the purposes of this thesis, while reasonably

diverse, also had several weak points. For instance, each knowledge base contained only

rules of a certain body length, which is quite unrealistic to occur in knowledge bases

generated by human users.

On the other hand, we also aim to examine the consistency of any results we have

already found as well as any that will be found using synthetic data with respect to data

generated by users in the context of chess. As our discussions with domain experts have

revealed, chess is of such complexity that allows for quite diverse knowledge bases to

emerge, given that one’s goal is to express high strategic concepts - e.g. zugzwang. As a

result, we expect that the emerging knowledge bases will allow for us to manipulate

effectively any parameter of the game we wish to.

105

6.1.2 Extensions of the current methodology

Based on the feedback we have received from the chess community, several directions

towards which we could search for extensions of the current Machine Coaching

interaction protocol have emerged. To begin with, as shown in (Michael, 2019: 85),

learning is guaranteed to be efficient under certain conditions which, among other, also

require for the rules contained in a knowledge base 𝑘 = (𝜌, ≺) to be linearly ordered

with respect to the knowledge base’s priority relation. However, with chess this may not

be the case. So, it would be interesting as well as useful to explore whether more relaxed

conditions regarding ≺ ceteris paribus would also lead to efficient learning as well as, in

case linearity is needed, what other changes, e.g. in the complexity of the current

interaction protocol would lead to efficient learning using non-linear priority relations

under the current learning semantics.

Another direction would be that of examining in which ways could our current choices

from the ASPIC+ semantics be extended and/or altered as well what the effects of such

changes are to the efficiency of reasoning and argumentation within them. For instance,

in the domain of chess we may need, as indicated in chapter 3, section 3.3, some rules to

be declared as strict. In this case, we would need to examine how this introduction of

rules of different structure would lead to deviations from the already declared

semantics. Moreover, it would also be necessary to examine up to what extent this

affects the efficiency of argumentation and, consequently, that of learning.

6.1.3 User Interface and Interaction

As far as the existing user interface is concerned, it serves more as a way to demonstrate

our work rather than an application that could be used by chess players and coaches

directly, without at first providing some sort of training. On the one hand, we could

enrich the existing GUI with more functionalities related to chess based on suggestions

we received about how our GUI could be improved e.g. by including more graphic

features when it comes to moving a piece - such as arrows indicating possible moves and

so on.

On the other hand, we should also focus on how explanations are presented to human

users, given that, among others, explainability and interpretability are among our work’s

core goals. As for now, as one may see in chapter 4, section 4.4, the user has access to the

entire argument that has led to the execution of a move, however it is presented as a list

106

of rules expressed in the first order language we have defined in chapter 3, section 3.2.

Evidently, this format affects the quality of interaction since it increases the cognitive

load of the user, who has to first “translate” the machine’s output to natural language

and then proceed in understanding its actual meaning. As a result, it seems mandatory

to seek for ways in which arguments could be presented in a more user-friendly way,

allowing for the users to allocate their cognitive resources in the coaching process itself

and not its technical aspects.

However, even if an argument is presented in natural language, in a user-friendly way, it

may still provide unnecessary cognitive load to a user. Imagine, for instance, an

argument with a crown rule of the form:

“Since this is a move that leads the opponent to a zugzwang, I preferred it”.

The same argument is also expected to include very “primitive” rules, expressing low-

level relations between entities, such as:

“If I play with white and a move moves a white piece then tag this move as mine”.

Evidently, chess experts coaching a bot, having themselves defined notions such as my

move or zugzwang would not need to constantly be informed about how they are

defined in each of the machine’s explanations. As a result, in later versions of our

application we may allow for arguments to be presented gradually, as per the user’s

request. Namely, we may adopt the following methodology:

1. Once a move is played by the bot, it provides as an explanation only the crown

rule of the argument that led to that move being suggested.

2. On condition that the user requests some further explanation about some of the

crown rule’s antecedents, they are presented with the rules that led to them. In

other words, they are presented with the crown rules of each sub-argument that

supports the antecedents they requested further explanation for.

3. Repeat step 2 while the user requests explanations at a deeper level and until the

premises of an argument are returned.

In the above context, the user is allowed to manipulate the amount of information they

wish to include in an explanation, exploring the full argument from higher to lower level

rules.

107

6.1.4 Introducing tactics

The aspect of move counting as well as general tactical manipulations throughout a

game was, as mentioned in chapter 5, section 5.2, the major concern regarding the

efficiency of our methodology. However, given that the designed system has not yet been

systematically evaluated in terms of being coached by experts and then playing games

against human or even bot players, we cannot but be modest in any assertion we make

about how tactical features are treated. What we can say, for sure, is that, indeed, there

do exist cases in which our approach is expected to fail but for the case the user had

previously instructed the bot to play in some specific way in that position89. And, as the

feedback we received from the chess community unveiled, such positions are not

uncommon. Even if we do not have clear evidence about our system’s behaviour with

respect to tactical aspects of chess, we can still consider extensions of our current

methodology that could allow for tactics to be introduced more actively.

At first, we could substitute random selection of moves among the ones suggested by the

bot by a more sophisticated selection process, e.g. based on alpha-beta pruning or any

other known methodology for adversarial AI agents that we consider suitable for our

purposes. Thus, we would also remove any randomness from our agent’s behaviour

which could also result in hybrid explanations consisting of two parts were:

1. The first part will be an argument that led to the suggestion of a set of moves 𝑀

to be played by the bot.

2. The second part will consist of the evaluation function’s score or any other metric

we consider appropriate, given the methodology we have selected.

However, even if the above approach is proved to lead to some improvements in our

system’s performance as far as its chess playing level is concerned, it also reduces our

model’s transparency and interpretability – as defined in (Arrieta et al., 2020: 84) –,

given the fact that some component of its algorithm is neither known to the end user nor

efficiently describable.

Another way to introduce move counting explicitly in our system while at the same time

we do not deviate from our initial aim of designing an interpretable system would be, at

89 For instance, one way to achieve this is by describing a specific position on the chessboard

through a rule and then, using a more imperative approach, overriding any previous knowledge

given that position appears on the board and explicitly asking for certain moves to be played.

108

first, to extend the built-in predicates our language gives access to so as to include more

tactical attributes of the board. These attributes could include, but not restrict to forks,

pins, x-ray attacks and, in general any tactical feature of the game chess experts may

suggest us. By doing so, we provide the chance to the user to also explicitly introduce

chess tactics in rules, thus allowing for a wider set of behaviours as well as game

positions to be described.

Moreover, we could also allow for the machine to count moves in the way described

above but also further extend our language with the necessary predicates so as to build

rules that could modify and control the extent to which the machine utilises its move

counting. Namely, as a chess coach may instruct a player to count up to three main

variants in any position while not exceeding the depth of 5 double moves during the

opening stage of a game, in the same way we could introduce two new built-in

predicates, let search_depth(·) and variants_count(·) which would capture the above

parameters of move search. Similarly, we could allow for any other predicate which

seems plausible to chess experts and which also resonates with common instructions a

coach would provide to their trainees about move counting.

Should we adopt the above or any similar methodology, it would be interesting to

measure whether and, if so, by what extent is that “hybrid” bot superior in terms of

chess playing against our current approach as well as at what level does its behaviour

resemble that of a human trainee.

6.1.5 Utilising our work in chess education and human coaching

During the interviewing process one expert came up with a suggestion – in the form of a

query of whether such a thing could be possible – about utilising our system, possibly

after making its GUI more user-friendly, as discussed above, in human chess coaching.

More precisely, what was suggested was to use the developed system as a cognitive

coaching assistant in the following way:

1. At first, a human coach trains the bot up to some desired level – possibly not

equivalent to the coach’s one.

2. Then, the bot is used in coaching human players by letting them play either

against it or other players and on each move played by a human player, it also

provides in the form of a suggestion the move that it would have played in that

position alongside with the explanation.

109

The rationale behind the above proposal was that, should a bot be capable of capturing a

coach’s theory about the game, even up to some certain extent, then this would allow for

it to substitute the coach in simple tasks within a chess classroom or outside the it, as an

assistant for students with whim they could study along and who (i.e. the assistant)

would have a theory about the game which resonates with that of the human coach.

6.2 Conclusions

In this thesis we presented a complete methodology as well as its implementation that

accommodate a transparent and interpretable way of coaching a computer to play chess.

Our motivation was the fact that most of the current as well as past approaches on

computer chess were designed with performance as their main principle while at the

same time they did not allow for almost no fragment of human knowledge and expertise

on the game to assist the machine’s effort. Furthermore, most contemporary approaches

have adopted black-box machine learning methodologies which, consequently, lead to

the behaviour of the bot being almost impossible to be interpreted by humans, at least

without introducing any external tools.

In order to address these issues appearing in black-box approaches, we adopted the

Machine Coaching paradigm (Michael, 2019: 82-85). Under that, a machine is learning

taking advantage of human knowledge about some certain domain of application by

learning from it. Namely, the human coach, according to the machine’s actions as well as

the corresponding explanations it returns about them, provides contextual advice based

on their own knowledge which are accordingly stored in the machine’s knowledge base

and alter accordingly its behaviour.

The above learning paradigm was implemented in java by first implementing a generic

first order language through which a user can interact with the machine. After that, all

the necessary algorithms were implemented utilising the above language as well as

extending it up to some point so as to allow for several desirable additional

functionalities. The implementation of all the necessary learning functionalities was

followed by the development of a domain specific user interface which allowed for a

machine to be trained to play chess using the Machine Coaching methodology.

Having implemented all the above, we assessed them on two orthogonal directions. At

first, as far as the learning mechanism is concerned, we measured its efficiency with

respect to several parameters and found results conformant with the corresponding

110

predictions of the theory of Machine Coaching. Secondly, we came into contact with

numerous chess experts – either professional players or chess coaches – in order to

explore how plausible and applicable our approach was as far as the specific domain of

chess is concerned. The feedback we received from chess experts on the one hand

indicated that, indeed, our approach was applicable to the game of chess while, on the

other hand, it also provided material upon which we should reflect so as to further

improve our designed system as well as possibly extend the currently used learning

semantics accordingly.

111

Appendix A
Built-in Predicates

In this Appendix we present all built in predicates as of the time this thesis was written.

is_at(Piece,Colour,Square)

It means that a piece of type Piece and of colour Colour lies on square Square.

For instance, in the initial board position, is_at(king,white,e1) describes the initial

position of the white King.

Meaningful constants for each variable are:

 Piece: pawn, knight, bishop, rook, queen, king.

 Colour: black, white.

 Square: a1, a2,..., h7, h8.

from_square(Move,Square)

It means that a move Move starts from square Square.

For instance, in the initial board position, move_starts_from(e2e4,e2) describes that

move e2e4 starts from e2.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

 Square: a1, a2,..., h7, h8.

to_square(Move,Square)

It means that a move Move ends to square Square.

For instance, in the initial board position, move_ends_to(e2e4,e4) describes that

move e2e4 ends to e4.

Meaningful constants for each variable are:

112

 Move: any move in uci form (e.g. g1f3).

 Square: a1, a2,..., h7, h8.

move_played_by(Move,Colour)

It means that a move Move is played by a player with colour Colour.

For instance, in the initial board position white's move e4 is described by

move_played_by(e2e4,white).

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3)

 Colour: black, white.

moves(Move,Piece)

It means that a move Move moves piece of type Piece.

For instance, in the initial board position, moves(g1f3,knight) describes the fact that

move g1f3 moves a knight.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

 Piece: pawn, knight, bishop, rook, queen, king.

plays_as(Colour)

It means that the bot plays with colour Colour.

For instance, the fact that the bot plays as black is described by plays_as(black).

Meaningful constants for each variable are:

 Colour: black, white.",

has_kingside_castling_rights(Colour)

It means that player of colour Colour has kingside castling rights.

For instance, after: 1. e4 e5 2. Nf3 Nc6 3. Bc4 white has kingside castling rights, which is

described by has_kingside_castling_rights(white)

113

Meaningful constants for each variable are:

 Colour: black, white.

has_queenside_castling_rights(Colour)

It means that player of colour Colour has queenside castling rights.

For instance, after: 1. d4 d5 2. c4 e6 3. Nc3 Nf6 4. Bg5 Bb4 5. Qc2 white has queenside

castling rights, which is described by has_queenside_castling_rights(white).

Meaningful constants for each variable are:

 Colour: black, white.

is_kingside_castling(Move)

It means that move Move is a kingside castling.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

is_queenside_castling(Move)

It means that move Move is a queenside castling.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

move_count(Integer)

It means that the current move count (i.e. the number of pairs of white-black moves)

equals Integer.

Meaningful constants for each variable are:

 Integer: 1,2,3,…

114

is_capture(Move)

It means that move Move is a capture move (en passant capture included).

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

pinned(Square,Colour)

It means that the square Square is pinned to its king of colour Colour.

For instance, after 1. e4 e5 2. Nf3 Nc6 3. Bb5 d6 the black knight at c6 is pinned by the

white bishop at b5.

Meaningful constants for each variable are:

 Square: a1, a2,..., h7, h8.

 Colour: black, white.

is_promotion_to(Move,Piece)

It means that move Move is a promotion to Piece.

For instance, is_promotion_to(c7c8,queen) denotes the promotion of a pawn to a

queen by moving from c7 to c8.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

 Piece: pawn, knight, bishop, rook, queen, king.

is_attacked_by(Colour,Square,Piece)

It means that a square Square is attacked by a piece of type Piece and colour Colour.

Meaningful constants for each variable are:

 Piece: pawn, knight, bishop, rook, queen, king.

 Square: a1, a2,..., h7, h8.

 Colour: black, white.

115

is_check(Move)

It means that move Move is a check move.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

is_checker(Piece,Square)

It means that piece Piece at square Square is currently giving a check.

For instance, after: 1. e4 d5 2. Bb5+ it holds that is_checker(bishop,b5).

Meaningful constants for each variable are:

 Piece: pawn, knight, bishop, rook, queen, king.

 Square: a1, a2,..., h7, h8.

square_file(Square,File)

It means that square Square lies on file File.

For instance, square_file(e4,e) describes the fact that square e4 lies on file e.

Meaningful constants for each variable are:

 Square: a1, a2,..., h7, h8.

 File: a, b,..., h.

square_rank(Square,Rank)

It means that square Square lies on rank Rank.

For instance, square_rank(e4,4) describes the fact that square e4 lies on rank 4.

Meaningful constants for each variable are:

 Square: a1, a2,..., h7, h8.

 Rank: 1, 2,..., 8.

116

is_en_passant(Move)

It means that move Move is an en passant capture.

Meaningful constants for each variable are:

 Move: any move in uci form (e.g. g1f3).

?<(X,Y)

Built-in predicate that is interpreted as 𝑋 < 𝑌.

For instance, ?<(3,4).

Meaningful constants for both X and Y are any integers or double precision numbers.

?=(X,Y)

Built-in predicate that is interpreted as 𝑋 = 𝑌.

For instance, ?=(5,5).

Meaningful constants for both 𝑋 and 𝑌 are any integers or double precision numbers.

suggest(Move)

Built-in predicate that informs the system that move Move should be suggested (or

should not be suggested, in case it appears negated). Typically, this predicate is used in a

rule's head.

117

References

Anantharaman, T., Campbell, M., Hsu, F. (1988), Singular Extensions: Adding Selectivity

to Brute Force Searching, AAAI Spring Symposium on Computer Game Playing.

Anderson, H., L. (1986), Metropolis, Monte Carlo, and the MANIAC, Los Alamos Science

(14).

Arrieta, A., B., et al. (2020), Explainable Artificial Intelligence (XAI): Concepts,

Taxonomies, Opportunities and Challenges toward responsible AI, Information Fusion

(58), 82-115.

Atkin, L., R., Slate, D., J. (1983), Chess 4.5: the Northwestern University Chess Program,

Chess Skill in Man and Machine, (2nd edition), 82-118.

Atkinson, G., W. (1998), Chess and machine intuition, Intellect Books.

Bauer, F., L., Wössner, H. (1972), The “Plankalkül” of Konrad Zuse: a Forerunner of

Today’s Programming Languages, Communications of the ACM 15 (7), 678-685.

Berliner, H. (1989), Hitech Chess: From Master to Senior Master with no Hardware

Change, International Workshop on Industrial Applications of Machine Intelligence and

Vision, 12-21.

Bernstein, A., Roberts, M., de V. (1958), Computer vs. Chess-Player, Scientific American

26 (7).

Bowden, B., V. (1957), Faster Than Thought, Pitman, Virginia.

Campbell, M., Joseph Hoane Jr., A., Hsu, F. (2002), Deep Blue, Atrificial Intelligence 134,

57-83.

Champernowne, D., Obituary (2000), “David Champernowne (1912-2000), ICGA Journal

23 (4), 262.

Copeland, B., J. (2004), The Essential Turing: Seminal Writings in Computing, Logic,

Philosophy, Artificial Intelligence and Artificial Life plus the Secrets of Enigma, Oxford

University Press, Oxford.

118

Douglas, J., R. (1978), Chess 4.7 versus David Levy, BYTE Magazine 3 (12), 84-91.

Douglas, J., R. (1979), Grandmaster Walter Browne versus Chess 4.6, BYTE Magazine 4

(1), 110-115.

Dung, P., M. (1995), On the Acceptability of Arguments and its Fundamental Role in

Nonmonotonic Reasoning, Logic Programming and 𝑛-Person Games, Artificial

Intelligence 77, 321-357.

Enderton, H., B. (2012), A Mathematical Introduction to Logic, 2nd edition, Cretan

University Press, translation, Papadoggonas, I., editors, Kyrousis, E., Pheidas A.

Fishburn, J., P. (1980), An Optimization of Alpha-Beta Search, ACM SIGART Bulletin, 29-

30.

Frey, P., W. Atkin, L., R. (1978), Creating a Chess Player, BYTE Magazine 3 (10), 182-191.

Gardnder, H. (2005), Oral History of Richard Greenblatt, Interview, Recorded: January 12,

2005. Boston, MA.

Greenblatt, R., Eastlake III, D., E., Crocker, S., D. (1969), The Greenblatt Chess Program,

Artificial Intelligence 174, Massachusetts Institute of Technology, Cambridge,

Massachusetts, 801-810.

Gumpel, C., G. (1889), “Memphisto”, the Marvelous Automaton, Exhibited at the

International Theatre, Exposition Universelle, Paris, 1889, T. Pettit & Co.

Harding, T. (2012), Eminent Victorian Chess Players: Ten Biographies, McFarland &

Company, Inc. London.

Hapgood, F. (1982), Computer chess bad – human chess worse, New Scientist 23 (30),

827-830.

Hsu, F., Anantharaman, T., Campbell, M., Nowatzyk, A. (1990), A Grandmaster Chess

Machine, The Scientific American, 44-50.

Jennings, P., R. (1978), The Second World Computer Chess Championships, BYTE

Magazine 3 (1), 108-119.

Klein, M. (2014), Stockfish Outlasts “Rybkamura”, retrieved at 16/09/2020:

https://www.chess.com/news/view/stockfish-outlasts-nakamura-3634

https://www.chess.com/news/view/stockfish-outlasts-nakamura-3634

119

Knuth, D., E., Pardo, L., T. (1976), The Early Development of Programming Languages,

Encyclopedia of Computer Science and Technology.

Kotok, A. (1962), A Chess Playing Program for the IBM 7090 Computer, Thesis (B.Sc.)

Massachusetts Institute of Technology, Dept. of Electrical Engineering.

Lasker, E. (1946), Common Sense in Chess, David McKay Company Inc, New York.

Levitt, G., M. (2000), The Turk, Chess Automaton, Jefferson, N.C.: McFarland.

Levy, D., N., L. (2013), Computer Chess Compendium, Springer Science and Business

Media.

Lipton, Z., C. (2018), The Mythos of Model Interpretability, ACM Queue 16, 31-57.

Mashey, J., (2005), Oral History of Ken Thompson, Interview, Recorded: February 8, 2005,

Mountain View, California.

McCorduck, P. (2004), Machines Who Think: A Personal Inquiry into the Historry and

Prospects of Artificial Intelligence, A. K. Peters.

Michael, L. (2019), Machine Coaching, IJCAI 2019 Workshop on Explainable Artificial

Intelligence (XAI @ IJCAI 2019), 80-86.

Mittman, B. (1980), ICCA Newsletter, ICCA Journal 3 (1), 1-12.

Montavon, G., Samek, W., Müller, K., R., (2018), Methods for Interpreting and

Understanding Deep Neural Networks, Digital Signal Processing 73, 1-15.

Montfort, N. (2003), Twisty Little Passages: An approach to interactive friction, MIT

Press.

Newborn, M. (1977), PEASANT: An Endgame Program for Kings and Pawns, Chess Skill

and Man and Machine, Springer-Verlag, New York, 119-129.

Prakken, H. (2010), An Abstract Framework for Argumentation with Structured

Arguments, Argument & Computation, 1:2, 93-124.

Pritchard, D., B. (1994), The Encyclopedia of Chess Variants, Games and Puzzles

Publications.

120

Rojas, R. (1997), Konrad Zuse’s Legacy: The Architecture of the Z1 and Z3, IEEE Annals of

the History of Computing 19 (2).

Romstad, T., Costalba, M., Kiiski, J. (2008), Stockfish, retrieved on 22/09/2020:

https://github.com/ddugovic/Stockfish

Schaeffer, J. (1997), One Jump Ahead. Springer.

Seirawan, J. (1999), Winning Chess Endings, Glouchester Publishers plc, London.

Seirawan, J. (2003), Winning Chess Strategies, Glouchester Publishers plc, London.

Shannon, C. (1950), Programming a Computer for Playing Chess, Philosophical Magazine

41 (314).

Silver, D., et al. (2017), Mastering Chess and Shogi by Self-Play with a General

Reinforcement Learning Algorithm, arXiv:1712.01815v1.

Standage, T. (2002), The Turk: The Life and Times of the Famous Eighteenth-Century

Chess Playing Machine, Walker, New York.

Valiant, L., G. (1984), A Theory of the Learnable, Communications of the ACM 27 (11),

1134-1142.

Vuković, V. (1993), Art of Attack in Chess, Cadogan Books plc, London.

Wiener, N. (1948), Cybernetics, Wiley John.

https://github.com/ddugovic/Stockfish

