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Abstract 

The dissertation aimed to expand the effort of utilizing the largest collection of texts on the 

Internet. The purpose of this work was to critically approach the methods of analysis and 

classification of web data and the creation of the deliverable system (Katigoriopoiitis) that utilizes 

linguistic norms, content and genre of websites in order to facilitate the way in which this data is 

presented. A bibliographical research on Web Data Mining aimed to describe the techniques of 

collecting information from the web. A presentation and cross comparison of machine learning 

algorithms (Naïve Bays, Decision Trees, K-Nearest neighbors and Support Vector machines) 

aimed to find the best fit for general purpose content classification for the implementation of the 

classifier. Accuracies of different classification models were tested on the same dataset. The 

outcome of the dissertation was that there are efficient techniques that can be applied in order to 

sufficiently use Internet information. Internet technologies and standards are getting richer and 

this maximizes the options for data mining. Content classification can be easily achieved by using 

simple model implementations. More sophisticated models are needed in order to achieve high 

accuracy in sentiment analysis, or classification based on linguistic norms. 

 

Keywords: Machine Learning, Natural Language Processing, NLP, Web Data Mining, Text 

Classification, Internet, World Wide Web 
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Chapter 1 
1. Introduction 

The information that can be found scattered on the Internet is impossible to be measured 

accurately, while the quality of its utilization is becoming more and more difficult. Considering the 

amounts of unstructured data on the Internet and their rapid growth, inventing automated tools 

that can effectively organize these texts becomes more than a necessity. This dissertation is 

focusing on finding efficient techniques and algorithms in order to create a tool (Katigoriopoiitis) 

which will be able to classify web texts based on their linguistic norms, content and genre. 

As Bowerman noted in 2006, “traditionally, a language is thought to be structured along a set of 

rules, or ‘norms,’ that prevail over all aspects of the language: phonology, morphology, syntax, and 

semantics. These norms serve to make the language distinctive, intelligible within a wide speech 

community, and learnable. However, the precise definition of a norm is controversial and difficult. 

It is important to distinguish between those norms (which I shall call ‘descriptive norms’) that 

enable us to describe a language or variety from observation of data, and prescriptive or 

‘pedagogical norms,’ which often reflect some abstract ideal of how a language should be used, 

rather than the actual practice of native speakers of that language” [1]. Taking into consideration 

this separation of the language norms, we can presume that: by knowing all the ‘pedagogical 



2 

norms’ of a language, we are able to apply just a formal set of rules and not to completely 

understand or reproduce all the variations of the language. Furthermore, a language can have 

variations based on geographical location, context, age of the speaker/writer, and form. For 

example, the language that is used in a court, can be far different from the language used in a 

school, or a radio station. Native speakers learning the ‘descriptive norms’ based on their 

observation and experience. In the present dissertation techniques, algorithms and classification 

models, designed and trained in a variety of different contexts are presented, in order to be able to 

classify texts. One of the aspects of this training process, is to find patterns such as norms that can 

be observed by processing huge datasets rather than described by concrete rules. Content 

classification without taking into consideration the norms of a language1, can achieve good 

accuracy but this disability of utilizing the norms makes classification context insensitive. While 

content can be classified with or without context, genre classification is way more complicated. 

“Genre is necessarily a heterogeneous classificatory principle, which is based among other things 

on the way a text was created, the way it is distributed, the register of language it uses, and the 

kind of audience it is addressed to” according to Brett Kessler, Geoffrey Nunberg and Hinrich 

Schutze [2]. Genre classification can give an additional context for content classification. Genre 

detection has a lot of aspects. For example, poems have a variety of structural characteristics such 

as thyme, rhythm, alliteration, personification that makes them different than novels; however, 

the fact that a text can have extensive usage of metaphors or personification or even rhyme, does 

not make it a poem. On Internet genre categorization can for example be the separation of the 

electronic newspapers and social media texts. A social media post can be shorter, using special or 

sub-language, extensive usage of punctuation marks such as hashtags2 etcetera. 

This dissertation is making a bibliographic review of the topic of analysis and classification of web 

data, followed by a bibliographic and comparative study of automatic text sorting systems. 

Additionally, machine learning algorithms are compared in Python using an English dataset. 

Training and experimental measurement of the text classifier performance results can be found in 

the appendices. The innovative aspect of the research will be the text classifier, which will be the 

deliverable of this dissertation. 

                                                
1 See the simple Bag of Words implementation. 
2 Hashtag (#) is extensively used in social media to mark the content with keywords or key 
phrases related with a general topic, condition or event for example: #summer_vacations, 
#elections2020 #covid19 etcetera. 
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1.1 Approach to the Problem 

Internet3 data can be unstructured, unconfirmed and chaotic. Also, it is hard to identify the 

authors of the web content and this raises questions about the authenticity of the content itself. If 

the data is not authentic, it can provide wrong information and be misleading. For example, text 

classification algorithms can be applied in order to evaluate the authenticity of the reviews in E-

commerce platforms. According to Saleh Nagi Alsubari, Mahesh B. Shelke and Sachin N. 

Deshmukh, “fake reviews posted in Ecommerce websites represent opinions of customers in 

which these reviews play a crucial role in e-business because they can indirectly affect future 

buying decisions” [3]. 

The main reasons of the unstructured nature of the Internet can be found in the fast growth of the 

technologies around it, as well as in its open nature. The great majority of the texts on the Internet 

is stored in HTML4. While HTML documents created in order to provide a fast and universal way 

to access (mainly) text data5, it took some time to encapsulate information that help on 

classification such as metadata keywords and text semantics. This technical gap caused the early 

information on the Internet to be even harder to extract information due to multilinguality of 

semantic Web technologies [4]. Additionally, since anyone is able to create and publish websites, it 

is not possible to control the way the information is presented, whether it has metadata and 

semantic information that describes the content accurately. 

The main and dominant way to access information on Internet, is via search engines. During 

years, search engines developed advanced Machine Learning techniques to organize the 

constantly increasing Web Data. Search engines are using bots called Crawlers that navigate to the 

hyperlinked pages, collecting metadata and semantics, mapping the websites and building a 

searchable dictionary of the entire Web [5]. The purpose of Data Mining and Machine Learning, as 

it will be presented to the third chapter of this dissertation, is to find patterns in a large scale of 
                                                
3 Often when Internet is mentioned, it refers to the World Wide Web (WWW). For clarity, it is 
important to separate these two terms. The first, is the global computer network that gives the 
ability to interconnect billions of devices all over the world using the Internet Protocol [61]. The 
World Wide Web proposed by Sir Tim Berners-Lee and Robert Cailliau in 1990 as a “universal 
hypertext system” [60]. The Web is worldwide thanks to the Internet. Despite the fact the Internet 
and the WWW are obviously two distinct terms, in this dissertation for simplicity and readability, 
the Internet is mentioned in a broader meaning that mainly refers to the World Wide Web. 
4 HTML: Short of Hypertext Markup Language. 
5 In 1989 Sir Tim Berners-Lee proposed an information management system based in 
hypertext [28] with main goal to find a better way to organize, link and share scientific 
documents in CERN. This idea was the base of the World Wide Web. 
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raw data, in order to be able to make decisions and extract useful information. But is it possible to 

classify this amount of information using these techniques? The sufficient use of the information 

on Internet is questionable. 

1.2 Contribution 

There is plenty of tools and services aiming for utilizing the Web Data. This dissertation presents 

some of the most popular scientific and development tools for text analysis and classification [6] 

[7] and continues with tools for text extraction. The deliverable tool of this dissertation 

(Katigoriopoiitis), aims to add additional value by introducing a SaaS6 solution for Web text 

classification. Katigoriopoiitis is mainly inspired by WebCorp tool and is able to classify Web 

search results in real time. Additionally, it is using techniques for clean content and metadata 

extraction. The tool can be trained in multiple topics and languages by feeding labeled texts. 

Furthermore, multiple predictions are possible7. The tool can be easily integrated with other 

services, web pages or mobile applications since its API is implemented over HTTP. 

1.3 Key research questions 

The key questions this dissertation aims to answer can be concluded as follows: 

• Can the information on the Internet be sufficiently used? 

• In which ways can it be classified? 

• By which methods can we classify texts based on their linguistic norms, the content and 

the genre? 

 

 

                                                
6 SaaS: Short of Software as a Service [63] 
7 For example, a model can be trained to detect the text Genre (such as news, literature, 
poetry) while a second prediction model can be trained in order to label the content (politics, 
sports, tech etcetera). 
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Chapter 2 
2. Methodology 

A bibliographic research was implemented with publications, articles and works related to the 

field. The dissertation presents existing tools for text classification and web content extraction.  

This was followed by a bibliographic (and comparative) study of automatic text classification 

systems with techniques from various scientific fields (decision trees, Naive Bayes, Nearest 

Neighbor, Support Vector Machines, Metadata, Ontologies). Following the scientific and technical 

research, the deliverable text classifier specifications were created. As it was presented in third 

chapter of this dissertation, a variety of scientific and development tools are already covering the 

topic of text classification and extraction however, there is still space of improvement in web 

search classification. Katigoriopoiitis is designed to be easy to use from users that are not familiar 

with NLP techniques, as well as for experienced users. All the techniques and the algorithms 

implemented in the tool are extensively presented in the dissertation. 
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2.1 Tools 

The main tool of the dissertation was chosen to be Python programming language due to the 

variety of machine learning libraries that offers. Text classifier API was written in Django 

framework. The main Python libraries used were: nltk, sklearn and pandas.  

The criteria of using those libraries were: 

• To have independency of third-party services as much as possible 

• To be well documented 

• To be simple to use and extendable 

 

NLTK [8] offers tools for text preprocessing such as for stemming and lemmatization, supporting 

several languages, and tokenization functions. Additionally, it offers a library of corpora that can 

be used for testing purposes. It mainly used for the Stemming tools. 

Greek Stemmer [9] was used for stemming Greek texts since NLTK does not support it. 

Scikit-Learn has implemented plenty of algorithms for supervised machine learning, as well as 

tool. It was used for training and using text classification machine learning models. 

Git [10] was used for version control and the code has been stored on GitHub [11].  

Heroku [12] cloud service was used for publishing the Classifier API. The reason is that it offers a 

free plan and also it is integrated with GitHub. 

Postman [13] was chosen for API testing. 

Figma [14] and was used for creating the Figures. 
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2.2 Web Text Classifier (Katigoriopoiitis) 

A Python project was created based on the research of the dissertation. Classifier designed as an 

API service. Which means it can be easily accessible from third-party software and technologies. 

The classifier was tested using Postman. An extensive presentation of the methods of analysis and 

classification of web data (Data Mining techniques, Machine Learning, Semantic Web) was done in 

order to explain how the tool works. Classifier has been designed in order to be flexible with data 

input. The tool supports three popular file formats: 

• Comma-separated values (csv) 

• Excel spreadsheets (xlsx) 

• JavaScript Object Notation files (json) 

2.3 Testing classification algorithms 

Classifier is designed to be a rapid, real-time and easy to use tool. In contrast to other tools, it is 

flexible in classification by giving the ability to the user to train and use classification models easily. 

Models with different implementations were created and tested in Python in order to specify 

which model achieves the best accuracy in text classification. Based on these, model presets have 

been created, in order users with limited knowledge on the field to be able to achieve high 

accuracy, without the need of tweaking the model settings. The training set had “2225 documents 

from the BBC news website corresponding to stories in five topical areas from 2004-2005. Class 

Labels: 5 (business, entertainment, politics, sport, tech)” [15]. 
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Chapter 3 
3. Web Text Classification 

Tools 

We are living in the era that analysis of web data is present in business, science, marketing and 

almost all other fields of human productivity. Data mining and machine learning tools that can be 

used by both machine learning experts and none experts are becoming more and more popular 

and necessity [16]. On the other hand, World Wide Web is enormously big source of data available 

to billions of people [17].  

Data mining is a very broad field of data sciences that inherits its techniques from variety of fields. 

There is a common confusion on how is data mining related with machine learning and statistical 

modeling. A recent definition of data mining can be found in a publication of David J. Hand and 

Niall M. Adams: “Data mining is the discovery of structures and patterns in large and complex data 

sets. There are two aspects to data mining: model building and pattern detection. Model building 

in data mining is very similar to statistical modeling, although new problems arise because of the 

large sizes of the data sets and the fact that data mining is often secondary data analysis. Pattern 

detection seeks anomalies or small local structures in data, with the vast mass of the data being 

irrelevant.” [18]. 
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A lot of similarities in techniques applied in Machine Learning can be found in Data Mining. 

According to Tom Mitchell: “In the field known as data mining, machine learning algorithms are 

being used routinely to discover valuable knowledge from large commercial databases containing 

equipment maintenance records, loan applications, financial transactions, medical records, and 

the like” [19]. As a result, machine learning can be considered as a part of data mining field. 

Arthur Samuel described machine learning in 1959 as: "the field of study that gives computers the 

ability to learn without being explicitly programmed" [20]. This is an older, informal definition.  

Tom Mitchell’s definition from 1997 provides a more modern assumption: "A computer program 

is said to learn from experience E with respect to some class of tasks T and performance measure 

P, if its performance at tasks in T, as measured by P, improves with experience E" [21].  

Machine Learning can be separated in two main types: 

• Supervised Machine Learning 

• Unsupervised Machine Learning 

In supervised learning [22], the training set is labeled. In text classification for example, when a 

model is trained using supervised learning, the training set is already tagged with class labels (the 

sports content will have a tag sport, the political content politics etcetera). The purpose of 

training is to “teach” the model, which content matches with which label. The idea is that there is a 

relationship between the input and the output in training data set. That’s why the output is 

considered as dependent value from independent input features in a data set.  

Supervised learning problems are divided into two categories: 

• Regression: Problem prediction results are within a continuous output. It means that 

input data is mapped to continuous numerical output. 

• Classification: Results are predicted in discrete categories. 

The unsupervised learning [23] does not need a labeled training dataset, and its algorithms can be 

divided in two categories: 
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• Clustering: These algorithms are good in finding patterns in order to split the training 

data into groups. It can be used for classification of unknown datasets. For example, a 

language agnostic text classification model can be built using Clustering algorithms. 

• Association: These algorithms are aiming to find patterns in order to associate related 

subjects. For example, it can find the association between e-commerce buyers and make 

predictions for product recommendations. 

Text classification is obviously classification problem. It can be treated both as unsupervised and 

supervised learning problem, depends on purpose of the task. This dissertation is focusing on 

supervised text classification techniques and most popular algorithms for supervised 

classification. 

There is variety of tools that can allow us accessing or processing of web data. In this chapter 

some of the most popular and modern tools in the field8 will be presented. The main goal is to 

present what are the possibilities at the time aiming to find a potential space of improvement. 

3.1 Tools for document classification 

Apache OpenNLP is a Java based advanced tool offering text classification through its Document 

Classifier (Doccat) for training models. It incorporates tools for tokenization, sentence 

segmentation, named entity extraction, and language detection. Models created in OpenNLP can 

be used through its coding API. Despite the fact it is originally written for Java, there are wrappers 

for other languages. It is open source and it needs to be downloaded and installed [24]. 

Orange Data Mining is another open source data mining tool. Its sophisticated interface makes it 

suitable for educational purposes as well as for scientific purposes. Orange Data Mining offers 

tools for text classification, sentiment analysis, text clustering, data preprocessing, popular data set 

analyses (twitter). It offers workflows that can be easily used from non-developer users, but 

advanced users have the ability to write Python snippets for more complex tasks. Additionally, it 

can be used as a Python library [25]. Other features are data visualization, cross validation tests 

and misclassifications. It can be downloaded and installed on Windows, Mac and Linux [26]. 
                                                
8 Jan Pomikalek presents and compares some of those tools in a PhD thesis in 2011. The 
thesis approaches the limitations of the Web search engines and aims to solve the problem of 
data extraction and duplication [66]. 
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DatumBox is another Java based tool. The difference with the tools mentioned above is the fact 

that it is offered as SaaS9 as well as a framework that can be downloaded and used locally. It its 

toolset contains sentiment analysis, twitter sentiment analysis, topic classification, keyword 

extraction, subjectivity analysis, adult content detection and spam detection. DatumBox’s topic 

classification function assigns documents in 12 (predefined) thematic categories [27]. 

Google Cloud offers tools for text, image and voice classification. Its NLP API contains plenty text 

classification and analysis tools. Sentiment analysis, syntax segmentation, entities and entity 

sentiments as well as content classification are the main features of the API. Google Cloud gives 

plenty of general purpose pretrained models and gives the option for custom data training. It is a 

full-featured commercial service that can be integrated in many programming environments [28].  

3.2 Web Corpora Tools 

WebCorp is an online tool for utilizing web texts as corpora. It is a real-time tool powered by Bing 

search engine and The Guardian Open Platform [29]. The main tool is a search engine with a free 

query string and additionally options of span size and case sensitivity. It also offers a wordlist tool 

for that generates word frequencies of a URL content [30] [31]. 

BootCat is a free tool written in Java, that bootstraps web texts to corpora. It builds the corpora 

based on input terms and stores the crawled pages in the local file system. It offers command line 

tools that can be used for automating the crawling process or third-party tools. BootCat needs to 

be downloaded and can be installed on Windows, Mac and Linux. Its source code is available on 

GitHub [32]. 

SketchEngine is a commercial online corpora creator. In its tool set has word collections, term 

extraction and bilingual term extraction, word frequency tools, morphological analysis and part of 

speech tagging. It also performs neologisms and diachronic analysis of word usage. Its crawling 

tool is based on BootCat, and it has the benefit of running as a service on cloud instead of local 

machine [33]. 

 

                                                
9  SaaS: Short of Software as a Service [63] 
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3.3 Web Content cleaning Tools 

The content of Web pages is surrounded by destructive information such as navigational 

elements, template markup and advertisements. Cleaning the web content is necessary for 

readability purposes for example the Instapaper [34] and the Arc90’s Readability10 tools as well 

as the browser AdBlocking11 tools. Another important reason of cleaning web content, is for text 

classification analysis. Web texts need to be clean of unrelated information in order to be 

classified. 

As can be seen in Figure 1, the useful information of the article is the Title, the Author, the Date 

of publication and the Actual Content of the article, while the rest of the items surrounding this 

                                                
10 The official Readability is not active anymore. Forks of the source code and its webpage 
can be still found [64].  
11 Mshabab Alrizah, Sencun Zhu, Xinyu Xing and Gang Wang analyzing in 2019, the 
challenges of cleaning advertisement content (ads) in AdBlocking software [65]. 

Figure 1: Content in this web page is 

surrounded by destructive information. 
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information is destructive and not related to the article. Despite the fact that it can be relatively 

easy for a human to locate the related information. Before text classification algorithms take place, 

content needs to be clean in order to be sufficiently classified. 

3.4 Space of improvement 

Considering the existing toolbox for Web data mining and text classification, a lot of important 

work has been done12 [35]. Focusing on the instant tools such as the web search engines, and 

SaaS APIs, a generic tool that can be continuously trained in different (custom) domains, would 

add an additional value. WebCorp is a great example of a real-time tool, however its search is 

limited in a very short character span13. Another limitation is that it does not offer content 

classification. DatumBox offers a service with plenty of tools, however, the content classification is 

limited in a general purpose of 12 predefined thematic categories. By using Apache NLP or 

Orange, online tools can be implemented, however, there is no real-time service offered out of the 

box. Furthermore, Google Cloud can be easier to be used as a base for creating a real-time service, 

however, it needs some development effort in order to satisfy the needs of a real-time Web 

classifier.  

 

  

                                                
12 It is important to be mentioned that plenty of advanced linguistic tools can be found. This 
dissertation focuses on finding solution in Web classification problem and cannot review all 
the important work that has been done in the topic. 
13 WebCorp returns results of 100 characters or 10 words span. 
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Chapter 4 
4. Classification Algorithms 

The purpose of this chapter is to present some of the algorithms that can be used for text 

classification. The following algorithms are based in different techniques. The size of the dataset 

and the nature of the task are crucial during the selection of the algorithm. Different algorithms 

have different pross and cons and based in the nature of the data they are applied to, can give 

better or worse results in comparison with others. An experiment including implementations of 

classification models based on Naïve Bayes, Decision Trees, K-Nearest Neighbors and Support 

Vector Machine algorithms was executed during the research and the results can be found in the 

Appendix A. 

4.1 Naïve Bayes 

The Naïve Bayesian algorithm is simple probabilistic algorithm based on Bayesian theorem. It’s 

called naïve because it considers independence among the features, or that effect of one feature on 

prediction of a class is independent from values of other features. 
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It is based on Bayesian formula:  

𝐏𝐏(𝐲𝐲|𝐱𝐱) =
𝐏𝐏(𝐱𝐱|𝐲𝐲)𝐏𝐏(𝐲𝐲)

𝐏𝐏(𝐱𝐱)
 

P(y|x) is the probability of target class y, given attribute x   

P(x|y) is the probability of attribute x, given class y 

P(x) is the probability of x 

P(y) is probability of class y  

In case of a text sentiment analyses or binary classification, the attribute x is the token (word) 

from corpora and y is the target class that can be positive or negative. First step in Naïve Bayesian 

is to make table of probabilities of all attributes in the given classes.  

  

freq(wi, class) is the number of words wi in the given class  

Nclass is the number (frequency) of all words in the given class  

The ratio of all positive and negative training samples (prior ratio), is useful to avoid unbalanced 

data.  The ratio of conditional probabilities is used to estimate likelihood of an attribute in target 

class. Product of a primer ratio and all sample likelihoods gives Bayesian inference that computes 

the posterior probability according to Bayes' theorem:  

  

Where m, is the number of words in new test sample, and probability of a class is computed as a 

product of ratio of conditional probabilities of all words in that sample to be in positive or negative 

class. Decision boundary in this binary classification example is set at 1. If the likelihood is greater 
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than 1, it is positive class and otherwise negative in binary classification. If it is equal to 1, it is 

considered as neutral. 

It’s obvious that there is a problem if words from new test sample do not appear in a vocabulary 

(data set) or in a specific class. It would annulate all other probabilities and make product equal to 

zero. In order to avoid probabilities being zero there is technique called Laplacian smoothening. 

Instead of counting conditional probabilities as a frequency of a word given class divided with the 

number of all words in a class, there is a slightly different formula that adds 1 to nominator and V 

(number of unique words in corpus) to denominator: 

  

Another issue is that the when we are computing probabilities, the product can be very small, and 

will quickly go to zero to the numerical precision of floating-point numbers. To resolve this issue, a 

simple solution is to instead compute the probability in their log space with decision boundary set 

at 0:  

  

Although this explanation is based on binary classification, it is not hard to implement Naïve 

Bayesian classifier to multiclass classification   

  

Where denominator P(x1,…, xn) can be omitted cause its always the same and base decision 

hypothesis has maximum probability, that is known as Maximum A Posteriori (MAP) where y 

class is predicted label Ck out of k labels as:  
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Apparent from its naïve assumption of independency of the features, this algorithm sometimes 

performs very well in document classification and spam recognition problems [36].  Its major 

advantage is that it is computationally not expensive and can be extremely fast in comparison 

with more sophisticated algorithms. It is used for very large data sets and on the other hand 

doesn't require a lot of training data. 

4.2 Decision Trees 

Decision tree algorithm, starting from the root node it makes decision on which attribute to split 

with greedy approach that measures consequences of every possible attribute-based partition. 

The goal at every partition is to split the data in the most homogenous segments possible. Every 

attribute-based partition is measured by entropy after partition and decision is based on choosing 

the most information gain or difference before and after partition. 

This process can take a lot of computational time, especially when data has a lot of features, which 

make training process longer than for some other algorithms. Also, in a case attribute values are 

continuous, it’s necessary to transform them into discrete values (binding). Attributes with large 

number of values are favored over attributes with small number of values. They become root 

attributes and make broad tree that performs poorly on unseen instances. It can be overcome 

with alternative method for measuring information gain (gain ratio) that penalize attributes with 

large numbers of values. 

It’s prone to overfitting, with very complex tree structure, that doesn’t perform well on a test data. 

In this situation, stopping the further growth or pruning the tree, setting the maximum number of 

the leaf nodes (final nodes), or maximum depth of the tree can help [37]. Test on validation set is 

one of a way how to decide when to stop tree partitioning. Of course, all of this make computation 

more complex. 

On the other hand, it doesn’t require a lot of data preparation. Decision tree is reliable 

comprehensive model with considering all possible decisions and making analysis. It can be 

represented in easier way to understand in some cases, set of if-then-else decision rules. But in 

classification it can have very complex structure cause number of features is extremely high. 
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4.3 K-Nearest Neighbors 

The k-nearest neighbors (KNN) algorithm can be used both to solve classification and regression 

problems. There is no real process of training the model. Transforming data attributes in feature 

vectors and saving it with corresponding labels is all that is done in this phase. Computation starts 

when it comes to evaluation of new unlabeled cases. It makes it very slow in evaluation and 

considered as one of the lazy learning algorithms. On the other hand, training process is much 

easier and faster than in more complex algorithms. 

The main idea is that data points who are close to each other in vector space should have same 

classification labels. So, estimation of new unlabeled sample is based on maximum between 

neighbor’s labels for specified number of neighbors k. This number k is chosen by user, usually 

through running multiple cross-validation tests. 

 

Figure 2: A simple representation on how k affects decision 

The number of neighbors is not only a parameter that affects accuracy of algorithm. Considering 

the fact that the most common way of measuring vector’s distance is the Euclidean distance: 
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It can be very wrong if the training data set is unbalanced, with some class having majority upon 

the others. Contribution of the neighbor is usually divided with its distance to query point in order 

to get better performance. One of the main disadvantages of the KNN is that decision is based on 

distance of all attributes from the query point. It is quite opposite from decision tree, based on 

measuring contribution of an attribute in categorization and it can lead to prediction based on 

unimportant features. This can be very serious issue, when there are many irrelevant attributes in 

the data set, as it can be the case in text classification tasks. Weighting importance of attributes or 

reducing features can improve performance in these situations [38]. 

4.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM), can be a very good choice for linearly non separable data. It maps 

data features to high dimensional vector space by adding features to it, but in much more 

computationally efficient way than adding high order polynomials in logistic regression. Functions 

that are used in this process are kernel functions. 

 
Figure 3: Kernel (figure by Grace Zhang) [39] 

The figure above shows how is two-dimensional linearly inseparable data transformed to three-

dimensional data with plane as decision surface. In machine learning problems, data is 

multidimensional and after transforming it into higher dimensionality, computations are much 

more complex and expensive. Using kernel method reduces this computation to originally 

dimensionality and that is called “kernel-trick". “The kernel corresponds to a dot product in a 
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(usually high-dimensional) feature space. In this space, our estimation methods are linear, but as 

long as we can formulate everything in terms of kernel evaluations, we never explicitly have to 

compute in the high-dimensional feature space” [40]. 

There are different kernel types, such as linear, polynomial, Gaussian, Radial Basis Function, or 

RBF, and sigmoid. Kernel is similarity function that provide more complex features from original 

data.  

SVM can be used without kernels, when data set is large and number of features is small. The goal 

of SVM in general is to find the largest separation or margin between the classes, thus SVM is also 

known as large margin algorithm. Support vector points are points closest to the margin or a 

hyperplane and only this subset of data points is used in the predictions for new samples, that 

improves memory efficiency. One more advantage of SVM is that is very accurate in high-

dimensional spaces.   

On the other hand, SVMs do not make probability estimates, which are desirable in some 

classification problems. They are not very efficient computationally if dataset is very big. But SVM 

is very effective in text mining tasks, particularly due to its effectiveness in dealing with high-

dimensional data. It is used for detecting spam, text category assignment and sentiment analysis. 
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Chapter 5 
5. Web Text Classifier 

(Katigoriopoiitis) 

The previous chapters approached the problem of utilizing web texts. Several tools and 

algorithms that can be used for web classification were presented. It was decided that a real-time 

tool that offering the benefits of a Web search engine in combination with text classification would 

contribute as an addition in the existing toolset. As key aspects of classification considered the 

extraction of: language, title, keywords, author, created/updated timestamps, the main text 

content, the content type and multimedia links related to the content. It was decided that the tool 

must be able to be trained for multiple domains and purposes. Based on the extracted content, the 

classifier must be able to make predictions by using one or many selected models.  

Third party systems can use Classifier as a backend. Classifier can perform for example as a 

backend system for an advanced search engine. Another use case of classifier is to perform as a 

crawler’s middleware. So, crawler can send retrieve and store the content classified. 
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5.1 Specifications 

1. The tool is able to classify a web page based on classification models. 

2. Classification models can be created by posting labeled training sets in CSV, Excel or JSON 

format to the API. The user is able to define n-grams, stemming and stop words 

preferences and the algorithm of the model. The system responds with a model id that can 

be used in classification requests. 

3. The tool is able to extract timestamps, keywords, authors and the text language LD of each 

page, based on the meta tags, Open Graph meta tags and JSON-LD. 

4. The tool is able to detect the language of the content based on meta tags, as well as on 

content analysis. 

5. The tool is able to get the main content of the page out of the boilerplate and any html tags. 

6. The tool can have as input one or multiple URLs and will respond with the classified data. 

7. The tool can perform a web search based on search terms and respond with the classified 

data for all the results. The search features offer pagination for more results as well as 

number of results per page. 

8. The search is able to be limited in a list of specified websites. 

9. The tool can take as parameter one or many trained model ids for classification. 

10. The tool is able to train models in the background and offers a way to check the training 

status. 

11. The tool calculates model accuracy by splitting the training set in 70% training and 30% 

testing. 
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5.2 Content Extraction 

HTML templates can be complex to analyze. There is a variety of implementations but there is no 

standard method of separating the content of the side information14. The tool needs to be able to 

extract the content. Two algorithms were considered as options. 

Readability15 achieved some positive results of extracting the main text of Web articles [41]. 

Readability algorithm is very simple, based only in structural features of the HTML DOM elements. 

It is mainly powered by a guess that DOM elements are labeled with common class names that 

describe their kind such as content, article, hidden, banner etc. There is a collection of positive 

and negative class names. When a DOM element is marked as negative, it is excluded of the 

output, when it is ranked as positive, it is considered as content. Neutral elements without any 

positive or negative classes are depending on parent elements. The algorithm takes into 

consideration additional information such as heading tags but the main issue is that it does not 

take into account any text features. 

Boilerpipe16 is another text extraction algorithm. In a paper published by Christian Kohlschütter, 

Peter Fankhauser and Wolfgang Nejdl in 2010, another approach was proposed in order to 

achieve more accurate results in Web Data extraction. The paper enumerates the features that can 

be used in order to separate the main content and the boilerplate17 of a Web page. In order to 

achieve a web scalable domain-independent solution, the paper is focusing on shallow text features 

that are language independent. Quantitative features such as average word length and average 

sentence length can be used. Additionally, in order to avoid “overfitting to a particular data set or 

domain” and keep the solution generic, the authors decided to focus only on limited structural 

features such as: “The presence of a particular headline tag (H1, H2, H3, H4, H5, H6), a paragraph 

tag (P), a division tag (DIV) and the anchor text tag (A) as an HTML element that encloses a 

particular text block”.  Unlike the Readability’s algorithm approach, the class names of the 

elements are not in consideration because “the more CSS is used, the less important the semantics 

                                                
14 A recently published book of Jay M. Patel analyzes the problem of web content extraction 
in depth [69]. 
15 The project as mentioned in previous chapter is not anymore active, however plenty of 
forks and adaptations of the original implementations can be found. For the needs of this 
dissertation, a python implementation of the algorithm was used [67]. 
16 For the needs of the classification tool, a Python port of Boilerpipe was tested and used 
[68]. 
17 As boilerplate considered the information that is not related with the main content of a Web 
Document. 
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of an HTML tag becomes […] unfortunately, CSS classes and sequences of HTML tags are 

inherently site- and document-specific”. It is important to mention that rendering the entire page 

including CSS styles considered as a potential approach that would give a cleaner picture of how 

the content blocks are related to each other, however, this is a “computational expensive 

operation” that is not scalable and further, training a model in specific templates, considered as 

non-reusable solution. The paper shows “that a combination of just two features - number of 

words and link density - leads to a simple classification model that achieves competitive 

accuracy” [42]. 

Boilerpipe algorithm is far from perfect. However, it achieved good results in news web pages as 

well as in blogs. So, it was chosen as the main method of content extraction. Boilerpipe fails to give 

good results in web pages lacking main content as for example social media pages or main 

website pages. If no content can be extracted, the metadata content is used for classification. 

5.3 Text Classification Techniques 

Text classifier needs to implement techniques of Natural Language Processing18. There are many 

different techniques to automate text classification. For example, a simple keyword search in texts 

in order to specify the category of the text can achieve some results. However, more advanced 

machine learning techniques are needed in order to achieve high accuracy in text classification. 

Katigoriopoiitis incorporates all the following techniques in its classification process. 

5.3.1. Pre-processing methods 

“Text pre-processing is an essential part of any NLP system, since the characters, words, and 

sentences identified at this stage are the fundamental units passed to all further processing stages, 

from analysis and tagging components, such as morphological analyzers and part-of-speech 

taggers, through applications, such as information retrieval and machine translation systems” 

[43]. 

Usually text contains characters or symbols that are not important for the classification, resulting 

in adding unwanted noise in the dataset. Removing symbols, whitespace, or even numbers is a 

                                                
18 “Natural language processing (NLP) is an integral area of computer science in which 
machine learning and computational linguistics are broadly used” [62]. 



25 

common pre-processing technique. Additionally, eliminating contractions in text can be beneficial 

in order to remove duplicate features. For example, it’s and isn’t will be converted to it is and is 

not respectively. This way the meaning of the tokens can be unified. 

Another pre-processing method is the stop words elimination. As stop words are considered the 

very common words such as pronouns and prepositions. This kind of words can potentially 

appear in all contexts or types of texts so they are not important in distinguishing classes. Stop 

words list can be different based on the kind of the text. For example, in scientific articles 

classification the list of stop words is including not only very common words, articles, pronouns 

and prepositions, but additional common scientific words. In some cases, stop words elimination 

is not a desired technique, however, it is heavily used in text classification preprocessing. 

Other common pre-processing methods can be the punctuation elimination and the character 

case elimination. In case of character case, there are techniques to keep names and abbreviations 

untouched. In order to avoid for example, the US (United States) abbreviation to be mixed with 

the word us. A simple technique is to leave untouched words with capital letters in the sentence 

and eliminate only capital letters of the first word of each sentence. 

5.3.2. Tokenization 

“Concepts such as word, collocation, and multimorphemic item are important to lexicographers 

and linguists; whereas the concept of token is specific to certain processes in NLP and MT. A token 

will not be broken down into smaller parts, lit other words, for the purpose of computational 

processing, it can be treated as an atom” [44]. 

While Machine Learning algorithms can achieve amazing accuracy in text classification, in reality 

the mechanism under the hood is far different of the human brain. Machines are able to 

understand text only as chunks of characters converted to numbers. The main idea of text 

classification lays on frequencies of chunks called tokens. Based on the goal, a token can be 

character based, syllable based, word based or even sentence based. One of the most common 

techniques in text classification, the Bag-of-Words (BoW), is based in word tokens. The phase of 

splitting the text in tokens is called tokenization [45]. 
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5.3.3. Word Normalization 

Since computers are not able to know and apply grammar rules, words with the same meaning 

need to be normalized in a basic form, ideally into lemmas. This process is called Lemmatization 

and it (ideally) demands a thesaurus dictionary available in order to be accurate. In lemmatization 

for example, the words cars, car’s, care, caring, walking, visually and visuals will be converted 

to car, car, care, care, walk, visual and visual respectively. As it is obvious in the example, since 

visually and visuals sharing the same lemma (and so most probably meaning), will be treated as 

the same word same for care and caring as well as cars and car’s. In 2018, Toms Bergmanis and 

Sharon Goldwater introduced a lemmatization model based on neural networks. The model was 

trained in 20 languages and proved to perform well with low resource training sets [46]. 

Often, it is not easy or even not necessary to get lemmatization done. Another process that can 

achieve similar results called Stemming can be applied. Stemming, based on very basic grammar 

patterns, erases suffixes of words in order to achieve something close to lemma. For example, in 

English language a very simple stemmer could remove suffixes like ing, ed, s, ‘s, ive, ively, able, 

atible, fy and ly. Considering the same example of cars, car’s, care, caring, walking, visually and 

visuals, by applying the above rules the outcome is car, car, care, car, walk, visual and visual 

respectively. While it can achieve some results, stemming has two main weaknesses. It can lead to 

wrong lemmas like in case of caring and car. Also, it can lead to none existing words (for example 

stepping would become stepp), since the stemmers are following very basic grammar rules. 

Good stemmers usually have some additional functionalities, such as a dictionary of irregular verb 

forms. For example, are, is, am would be converted to the same word be. One of the very first 

stemming algorithms for English language created by Porter in 1980. Porter’s algorithm, managed 

to reduce a vocabulary of 10000 words down to 6370 distinct entries [47]. 

Lemmatization and Stemming are limiting the number of features in order to avoid overfitting of 

the model. However, it is important to mention that eliminating important grammar information 

such as tenses, is not desirable in some cases. Word normalization can take place either before or 

after tokenization, depends on the implementation. Despite the fact lemmatization gives slightly 

better results, due to better performance [48], classifier is using Stemming and not Lemmatization 

since Stemming is simpler and so, faster. 
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5.3.4. Feature extraction and NLP Models 

When text pre-processing tokenization and normalization is done, tokens need to be transformed 

into features. This phase is called feature extraction and like the preview’s steps, it can be done in 

different ways, depending on the chosen technique and based on the nature of the data. 

Translation of a human language19 to machine language20, words with different semantic 

meanings based on context, distinguishing important terms for analyses from a bunch of others, 

understanding linguistic norms and grammar rules, all of these are necessity in complex tasks 

such as auto complete text recommendations. 

During feature extraction, tokens can be treated as independent or paired in continues sequences 

called N-grams21. N-gram models, revealing patterns in sequences of words. For example, in the 

simple Bag-of-Words approach, the words “Corona” and “Virus” would be treated separately, 

while their relationship is important. By using a bigram model, “Corona Virus” will be appeared as 

a feature. A trigram model for example could reveal “Corona Virus pandemic”. It is obvious that 

very big N-grams can lead to overfitting so they must be selected carefully. Additionally, 

combination of N-grams proven to be effective. So, for example features can be extracted from 

both unigrams and bigrams in the same model. 

After choosing the vocabulary of terms that are the best for representation of a document, it is 

necessary to transform that vocabulary to an algebraic model as an input for machine learning 

algorithms, also known as vector-space model. This is maybe the most important task of Data 

Mining. There are different formats of this model and the choice is based on the purpose of the 

analysis. The document (or training sample), is represented as a vector with dimension equal to 

the number of terms in the data set vocabulary. It has non-zero values if that specific term exists in 

the document (training sample). 

The simplest and oldest model is the Standard Boolean Model of Information Retrieval [49]. A 

vector of zeros and ones is saving binary information that represents whether the term (feature) 

exists. This model does not count frequencies. Further research led to more sophisticated models, 

that are giving weight to a term appearance. 

                                                
19 Natural Language 
20 Vectors 
21 N-grams are called differently based on the value of N: 1-grams are called unigrams, 2-
grams are called bigrams, 3-grams are called trigrams etcetera. 
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Term frequency model (TF) is a vector that is saving information of a frequency of a term in a 

document. The issue with TF is that in some cases terms are more frequent, but not important for 

distinguishing the meaning of a document, as they appear a lot in all documents of a data set.   

Term Frequency-Inverse Document Frequency (TF-IDF) model is made to penalize term 

frequency by dividing with frequency of a term in all documents. In text classification, TF-IDF 

doesn’t necessarily perform well, because it penalizes also terms important for specific class. It led 

to further researches in this field, like Supervised term Weight (STW), that is using training based 

on class for making input for training model. “Supervised term indexing leverages on the training 

data by weighting a term according to how different its distribution is in the positive and negative 

training examples” [50]. 

In the tasks such as Sentiment Analysis, Neural Machine Translation and Question Answering, 

that demand deeper understanding of the context, an advanced model named Word Embedding 

shows very good results. The idea is based on the concept that words with similar meaning should 

have similar representation, that make this representation capable to save semantic meaning of a 

word. Words are represented as a vector of features that are different aspects of semantic 

meanings and trained as a model. However, for simple text classification, some more advanced 

techniques can be avoided in order to make computation simpler. As can be seen in the Appendix 

A, TF-IDF with combination of N-Grams can give very good prediction accuracy when SVM is 

used. A unigram, bigram and trigram combination decided to be used for feature extraction. 

5.3.5. Dataset 

Beside the techniques of converting natural language texts to features and vectors, the most 

important part of machine learning is the dataset. The dataset needs to be balanced and 

representative. A balanced dataset is a dataset that represents all the categories equally. If for 

example a model aims to classify text into “political articles” and “tech articles”, the amount of 

texts of each category must be equal. 

A common practice in model training is to split the dataset into training dataset and test dataset. 

The reason is simple: while model training is done, prediction accuracy has to be measured. If the 

training dataset used for measuring the accuracy the results will be unrealistic, while the test 

dataset will contain unknown data and will give a better accuracy estimation. A possible split is for 

example to use 70% for training and 30% for testing. This split portion was used in the classifier. 
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5.4 Ontologies and Semantic Web 

Ontologies caring semantic information about the meanings and the relationships of terms. “From 

an object-oriented point of view, ontologies are domain classes that contain logical statements 

that make their meaning explicit. […] tools called reasoners can exploit these logical statements to 

perform advanced queries which reveal implicit relationships among resources” [51]. Semantic 

Web created in order to cover the weaknesses of HTML in incorporating semantics markup. 

“People can read and understand a web page easily, but machines can not. To make web pages 

understandable by machines, additional semantic information needs to be attached or embedded 

to the existing web data.” [52]. The representation of semantics had several different standards 

during the years. One of the most popular is the RDF [53] framework. There is an XML syntax 

called RDF XML as well as a JSON version called RDF JSON. Web ontologies and Metadata have 

important impact on search engine optimization (SEO) and should be taken in consideration for 

Web text classification. Search engines cooperated in order to force a standard object schema for 

web semantics [54]. Social networks on their side, forced other standards. Facebook proposed the 

Open Graph protocol which was based on RDF [55]. Twitter is using its own meta tags prefixed by 

“twitter:”, in combination with Open Graph meta tags [56]. Furthermore, JSON-LD [57] is one of 

the standards that can be found in plenty of modern websites. 

The classifier was designed to detect basic information such as author, publishing date, updated 

date and content description 22  based in meta tags, JSON-LD and Open Graph. A 

MetadataWrapper class was created in order to merge both information sources in a universal 

structure. For JSON-LD, a custom parser was created. Meta tags and Open Graph meta tags are 

extracted by using the metadata_parser python library [58]. The code can be found in the 

Appendix C. 

5.5 Web Search 

Web search is powered by Microsoft Azure Web Search API. The Search API returns the results 

list with titles, URLs and a very small text description. Classifier retrieves the URL list and fetches 

the content for each one. In order to improve the performance, the multithreading library is used 

                                                
22 Additionally, the tool tries to detect keywords, news_keywords and multimedia related to 
the content. 
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and each URL is fetched, parsed and classified in a different Thread. When all threads are done, the 

result set returns as a response. 

5.6 Limitations 

The tool needs to fetch each web page separately. This can cause delays in responses. If the tool is 

planned to be used from web applications, timeouts can be caused if big number of URLs or Web 

search results per page is requested. In this case, is recommended to limit the web results up to 10 

per page. Additionally, since the extraction of the data is based on Boilerpipe algorithm, 

Katigoriopoiitis fails to extract the main content in Web pages lacking of main text body. For 

example, it would perform pretty well in a newspaper article where the main text is much bigger 

than any other part of the page and poorly in a social media page, where the main content is 

spread in many posts. 
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Chapter 6 
6. Conclusion 

An important theoretical and practical work has been already done in the field of data mining. 

While the internet data is growing, more efficient tools are needed. This forces Internet 

technologies and standards to get richer and this maximizes the options for data mining. On the 

other hand, Internet data as well as the used base are growing exponentially adding additional 

obstacles and concerns. As presented in the dissertation, content classification can be easily 

achieved by using simple machine learning model implementations. However, more sophisticated 

models are needed in order to achieve high accuracy. This dissertation focused on supervised 

machine learning. The contribution of the dissertation lays on the deliverable system 

(Katigoriopoiitis). The ways of efficient classification of web data, as presented in the previous 

chapters, lay on multiple techniques: Automated web scrapping, data extraction strategies and 

machine learning algorithms are needed in order to achieve good results. All this work was 

integrated in the classifier and presented in this dissertation. The deliverable tool tried to give a 

generic and flexible solution in web classification. The ability of creating multiple models makes 

classifier efficient enough to cover both genre and content classification. 
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Chapter 7 
7. Future 

Katigoriopoiitis was built as a web API service. As a future research, the design and 

implementation of a web and a GUI application can be created. The tool detects videos and images 

related to the content. Image recognition models could extend the usability of the tool. The tool 

needs to fetch the full content of each URL in order to extract the data. Breaking the process in 

multiple threads reduced a lot the processing time; however, a more scalable architecture could 

be designed. Additionally, the implementation of web crawling functionality can expand the 

usability of the tool by creating labeled corpora in real-time. The datasets used in this dissertation 

were limited in size and variation. In the future Katigoriopoiitis could be improved by adding 

more and richer pre-trained models. Finally, further research in Web text extraction algorithms 

would aim to improve the performance of Katigoriopoiitis in social media pages. 
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Appendices 

Appendix A 
Model Accuracy Comparison 

Accuracies of different text classification models were tested on the same dataset. The dataset 

contained about 2225 documents from the BBC news of Politics, Entertainment, Technology, 

Business and Sports. The 70% (1557 documents) of the dataset were used for training and the 

other 30% (668 documents) for testing the accuracy in unknown data. The experimental models 

were based on the algorithms: SVM, Decision Tree, K-Nearest Neighbors, Bernoulli Naïve 

Bayes and experimentally, Gaussian Naïve Bayes which is usually used for regression problems 

rather than classification. 

All five algorithms were tested in four different N-Gram combinations giving a total of 
twenty different classification models: 

• Unigram 

• Unigram & Bigram 

• Unigram & Bigram & Trigram 

• Bigram 
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In all models (except Bernoulli Naïve Bayes implementation which has a binary representation) 

TF-IDF model was used for feature representation. The experiment was implemented in Python 

by using the sklearn, nltk and pandas libraries. The results are presented in Figures 6 - 9. The 

main conclusion is that the SVM algorithm performed well in all N-Gram combinations while 

Bernoulli Naïve Bayes accuracy dropped significantly in some models. 

Adding bigrams and trigrams improved language correlations, but on the other hand added more 

features to the data. In Figure 4, we can see how the vocabulary of the training dataset grows 

(and as a result, the features). This led to models with sparse data. The values of these n-gram 

features that were added to vocabulary will be represented mostly as zeros. In Bernoulli decision 

rule, these zero values are penalized and that is the reason of dramatical dropping of the accuracy.  

We can notice also in Decision Tree slightly dropping of the accuracy in the models with more 

features. On the other hand, in K-Nearest Neighbor models the accuracy is slightly increasing by 

adding more features. Combination of n-grams showed the best results in SVM models. The 

accuracy is improving by taking more features in consideration; as it could be expected because, 

as was mentioned in fourth chapter of this dissertation, SVM model performs well in high 

dimensional vector space. 

Figure 4: Training Dataset Vocabulary 
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Finally, using only bigram features is not showing good results. Logically, unigrams (or single 

words) have more power in differentiation of documents, while just some bigrams are important. 

For example, from the Shakespeare’s phrase: “Jealousy is the green-eyed monster”, we would 

get the bigrams: “Jealousy is”, “is the”, “the green-eyed” and “green-eyed monster”. The 

bigram “green-eyed monster” seems to have some sense considering document classification 

while the others could add unwanted noise in the training data. It could be concluded that it would 

be good in the future to try reduction of features with just certain n-grams. In this study, Gaussian 

Naïve Bayes was experimentally tested on discrete data and it is the only model in this test that 

improves with in the bigram model. Further research is needed in order to find the reasons of this 

behavior. 

Another aspect of poor accuracy in some models lays on the nature of the dataset. In this 

experiment the dataset was relatively small; this fact enhances can lead to overfitting and so, in 

poor performance in models that bigrams or trigrams are used. Some models seemed to be very 

sensitive in overfitting. Additionally, the dataset was taken only from BBC news and it is expected 

to have less accuracy on tests from real world data. As can be seen in Figure 5, the test dataset in 

unigram models found to have only 22.86% unknown vocabulary (that was not included in the 

training dataset) while in models containing bigrams and trigrams the great majority of the 

testing set vocabulary is unknown. 
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Figure 5:  Unknown vocabulary in test dataset 



Α-4 

 

The study was done on simple document classification and it showed some improvement with 

adding of features. It is assumed that this improvement would be higher in a task of sentiment 

analysis, where for example missing negation before word could really lead to misclassification. 

The conclusion is that adding of features should be carefully applied based on task and algorithm 

that is best for data set. It is not always improving accuracy, but in this relatively small data set, it 

showed very good results in combination with SVM classifier.  

Figure 6: “Unigram” model performances 

Figure 7: "Unigram & Bigram" model performances 
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Figure 8: “Unigram & Bigram & Trigram” model performances 

Figure 9: “Bigram” model performances 
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Appendix B 
Postman Collection 

A Postman Collection for testing the classifier’s API created and exported: 

 
{ 
   "info": { 
       "_postman_id": "33d531cf-2467-4e07-8ae3-40f270292a59", 
       "name": "Url Classifier", 
       "schema": 
"https://schema.getpostman.com/json/collection/v2.1.0/collection.json" 
   }, 
   "item": [ 
       { 
           "name": "Parse URL", 
           "request": { 
               "method": "POST", 
               "header": [ 
                   { 
                       "key": "Content-Type", 
                       "value": "application/json", 
                       "type": "text" 
                   } 
               ], 
               "body": { 
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                   "mode": "raw", 
                   "raw": "{\n    \"url\": \"https://docs.microsoft.com/en-
us/azure/cognitive-services/bing-web-
search/quickstarts/python\",\n    \"include_raw_data\": 
false,\n    \"classification_model_id\": [\"general_bbc_topics\", 
\"blogtext_2004_age_range\"]\n}", 
                   "options": { 
                       "raw": {} 
                   } 
               }, 
               "url": { 
                   "raw": "{{base_url}}/parse-url/", 
                   "host": [ 
                       "{{base_url}}" 
                   ], 
                   "path": [ 
                       "parse-url", 
                       "" 
                   ] 
               } 
           }, 
           "response": [] 
       }, 
       { 
           "name": "Web Search", 
           "request": { 
               "method": "POST", 
               "header": [ 
                   { 
                       "key": "Content-Type", 
                       "value": "application/json", 
                       "type": "text" 
                   } 
               ], 
               "body": { 
                   "mode": "raw", 
                   "raw": "{\n    \"search_query\": 
\"Albert\",\n    \"specific_sites\": [\"theguardian.com\", 
\"nytimes.com\"],\n    \"classification_model_id\": [\"b523c98b-07ca-4596-
8380-11b6f464bf3b\"],\n    \"page\": 1,\n    \"items_per_page\": 5\n}" 
               }, 
               "url": { 
                   "raw": "{{base_url}}/parse-web-results/", 
                   "host": [ 
                       "{{base_url}}" 
                   ], 
                   "path": [ 
                       "parse-web-results", 
                       "" 
                   ] 
               } 
           }, 
           "response": [] 
       }, 
       { 
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           "name": "Parse URL List", 
           "request": { 
               "method": "POST", 
               "header": [ 
                   { 
                       "key": "Content-Type", 
                       "type": "text", 
                       "value": "application/json" 
                   } 
               ], 
               "body": { 
                   "mode": "raw", 
                   "raw": "{\n    \"url_list\": 
[\n        \"http://gingernatalie.com/2020/03/how-to-be-
happier/\",\n        \"http://teenlibrarian.co.uk/2020/11/27/4-reasons-
verse-novels-are-awesome-by-lucy-
cuthew/\",\n        \"http://teenlibrarian.co.uk/2020/10/28/three-comic-
books-from-street-noise-
books/\",\n        \"http://teenlibrarian.co.uk/2020/10/26/guest-post-a-
monument-to-cognitive-dissonance-by-lindsay-k-
bandy/\",\n        \"http://teenlibrarian.co.uk/2020/07/15/when-stars-are-
scattered/\",\n        \"http://teenlibrarian.co.uk/2008/11/04/november-is-
nanowrimo/\"\n    ],\n    \"classification_model_id\": 
[\"general_bbc_topics\", \"blogtext_2004_age_range\"]\n}" 
               }, 
               "url": { 
                   "raw": "{{base_url}}/parse-urls/", 
                   "host": [ 
                       "{{base_url}}" 
                   ], 
                   "path": [ 
                       "parse-urls", 
                       "" 
                   ] 
               } 
           }, 
           "response": [] 
       }, 
       { 
           "name": "Upload Training Dataset", 
           "request": { 
               "method": "POST", 
               "header": [ 
                   { 
                       "key": "Content-Type", 
                       "value": "application/json", 
                       "type": "text", 
                       "disabled": true 
                   } 
               ], 
               "body": { 
                   "mode": "formdata", 
                   "formdata": [ 
                       { 
                           "key": "dataset_file", 
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                           "type": "file", 
                           "src": [] 
                       }, 
                       { 
                           "key": "content_column", 
                           "value": "text", 
                           "type": "text" 
                       }, 
                       { 
                           "key": "label_column", 
                           "value": "age_range", 
                           "type": "text" 
                       }, 
                       { 
                           "key": "ngram_range", 
                           "value": "1-4", 
                           "type": "text" 
                       }, 
                       { 
                           "key": "algorithm", 
                           "value": "SVM", 
                           "type": "text" 
                       }, 
                       { 
                           "key": "algorithm_parameters", 
                           "value": "", 
                           "type": "text", 
                           "disabled": true 
                       }, 
                       { 
                           "key": "eliminate_stopwords", 
                           "value": "true", 
                           "type": "text" 
                       }, 
                       { 
                           "key": "stem_words", 
                           "value": "false", 
                           "type": "text" 
                       } 
                   ] 
               }, 
               "url": { 
                   "raw": "{{base_url}}/upload-training-dataset/", 
                   "host": [ 
                       "{{base_url}}" 
                   ], 
                   "path": [ 
                       "upload-training-dataset", 
                       "" 
                   ] 
               } 
           }, 
           "response": [] 
       }, 
       { 
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           "name": "Check Classification Model Status", 
           "request": { 
               "method": "POST", 
               "header": [], 
               "body": { 
                   "mode": "raw", 
                   "raw": "{\n    \"classification_model_id\": 
\"blogtext_2004_age_range\"\n}", 
                   "options": { 
                       "raw": { 
                           "language": "json" 
                       } 
                   } 
               }, 
               "url": { 
                   "raw": "{{base_url}}/get-model-status/", 
                   "host": [ 
                       "{{base_url}}" 
                   ], 
                   "path": [ 
                       "get-model-status", 
                       "" 
                   ] 
               } 
           }, 
           "response": [] 
       } 
   ], 
   "event": [ 
       { 
           "listen": "prerequest", 
           "script": { 
               "id": "d70bed9e-e8b3-4c76-a43f-0f886aee16ad", 
               "type": "text/javascript", 
               "exec": [ 
                   "" 
               ] 
           } 
       }, 
       { 
           "listen": "test", 
           "script": { 
               "id": "9167fd83-7658-4c20-8283-f8ea511ec082", 
               "type": "text/javascript", 
               "exec": [ 
                   "" 
               ] 
           } 
       } 
   ], 
   "variable": [ 
       { 
           "id": "657f1d32-6b89-43d0-9769-a967f516e1c7", 
           "key": "base_url", 
           "value": "http://127.0.0.1:8099" 
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       } 
   ], 
   "protocolProfileBehavior": {} 
} 
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Appendix C 
MetadataWrapper Class 

JsonLdParser: 

 
import json 
from scrapy.selector import Selector 
 
 
class JsonLdParser: 
 
   def __init__(self, html_document=None, json_ld={}): 
       self.json_ld = {} 
 
       if type(json_ld) is dict: 
           self.json_ld = json_ld 
 
       # Extract JSON+LD metadata from HTML: 
       if html_document: 
           try: 
               self.json_ld = 
json.loads(Selector(text=html_document).xpath('//script[@type="application/
ld+json"]//text()').extract_first()) 
           except Exception: 
               pass 
 
       # Merge meta nodes if the root node is a list: 
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       self.__merge_list_nodes() 
 
   def to_dict(self): 
       return self.json_ld 
 
   def get(self, prop): 
       return self.json_ld.get(prop) 
 
   def get_node(self, prop): 
       node_obj = self.json_ld.get(prop) or {} 
       return JsonLdParser(json_ld=node_obj) 
 
   def get_first_node(self, prop): 
       node_obj = self.json_ld.get(prop) or {} 
       if not node_obj: 
           return JsonLdParser() 
 
       if type(node_obj) is list: 
           node_obj = node_obj[0] 
 
       return JsonLdParser(json_ld=node_obj) 
 
   def __merge_list_nodes(self): 
       if type(self.json_ld) is not list: 
           return 
       json_ld_list = self.json_ld 
       merged = {} 
       for json_ld in json_ld_list: 
           if type(json_ld) is dict: 
               merged = {**merged, **json_ld} 
       self.json_ld = merged 
 
 

MetadataWrapper gives a universal output of the HTML metadata combined with the JSON-LD 

information. Several fallbacks and keywords merging offering a simple and universal output: 

import metadata_parser 
import re 
from .json_ld_parser import JsonLdParser 
 
 
class MetadataWrapper: 
 
   def __init__(self, html_document): 
       self.html_document = html_document 
 
       # Extract meta tags: 
       self.meta = metadata_parser.MetadataParser(html=html_document, 
search_head_only=False) 
 
       # Extract JSON+LD metadata: 
       self.json_ld = JsonLdParser(html_document=html_document) 
 
   @property 
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   def raw(self): 
       return { 
           'json_ld': self.json_ld.to_dict(), 
           'meta_tags': self.meta.metadata 
       } 
 
   @property 
   def title(self): 
       return (self.meta.get_metadatas('title') or [None]).pop() 
 
   @property 
   def description(self): 
       return (self.meta.get_metadatas('description') or [None]).pop() 
 
   @property 
   def multimedia(self): 
       return { 
           'image': self.image, 
           'video': self.video, 
           'tags': self.__merge_keywords(self.video_tags, self.image_tags) 
       } 
 
   @property 
   def image(self): 
       return (self.meta.get_metadatas('image') or self.meta.get_metadatas('thumbnail') or 
[None]).pop() 
 
   @property 
   def video_tags(self): 
       return self.meta.get_metadatas('video:tag') or [] 
 
   @property 
   def video(self): 
       return (self.meta.get_metadatas('player') or self.meta.get_metadatas('video:url') or 
[None]).pop() 
 
   @property 
   def image_tags(self): 
       return self.meta.get_metadatas('image:tag') or [] 
 
   @property 
   def content_type(self): 
       return (self.meta.get_metadatas('type') or [None]).pop() 
 
   @property 
   def locale(self): 
       return self.meta.get_metadatas('locale') 
 
   @property 
   def site_name(self): 
       return (self.meta.get_metadatas('site_name') or 
self.meta.get_metadatas('al:android:app_name') or 
self.meta.get_metadatas('app:name:googleplay') or 
self.meta.get_metadatas('al:iphone:app_name') or [None]).pop() 
 
   @property 
   def keywords(self): 
       return (','.join(self.meta.get_metadatas('keywords') or []).replace(' ', 
'')).split(',') 
 
   @property 
   def news_keywords(self): 
       return (','.join(self.meta.get_metadatas('news_keywords') or []).replace(' ', 
'')).split(',') 
 
   @property 
   def all_keywords(self): 
       return self.__merge_keywords(self.keywords, self.news_keywords) 
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   @property 
   def modified_time(self): 
       return self.json_ld.get('dateModified') or (self.meta.get_metadatas('updated_time') 
or self.meta.get_metadatas('article:modified_time') or 
self.meta.get_metadatas('article:modified') or [None]).pop() 
 
   @property 
   def published_time(self): 
       return self.json_ld.get('datePublished') or self.json_ld.get('uploadDate') or 
(self.meta.get_metadatas('article:published_time') or 
self.meta.get_metadatas('article:published') or 
self.meta.get_metadatas('video:release_date') or [self.__scrap_meta_publishdate_in_js()] or 
[None]).pop() 
 
   @property 
   def author(self): 
       return self.json_ld.get_first_node('author').get('name') or 
(self.meta.get_metadatas('article:author') or self.meta.get_metadatas('byl') or 
[None]).pop() 
 
   def __scrap_meta_publishdate_in_js(self): 
       """Attention! This is fallback for the very specific case of YouTube!""" 
       try: 
           # Example from YouTube.com: ,\\\"publishDate\\\":\\\"2017-10-10\\\", 
           publish_date_meta = 
re.findall(f'",\\\\\\"publishDate\\\\\\":\\\\\\"(.+?)\\\\\\",', str(self.html_document))[0] 
           if publish_date_meta: 
               # TODO: Ensure that publish_date_meta is a date 
               publish_date_meta.split('T')[0].split(' ')[0].strip() 
               publish_date_meta += 'T00:00:00.000000'  # Add timestamp info 
           return publish_date_meta or None 
       except Exception: 
           return None 
 
   def __merge_keywords(self, *args, to_lower_case=False): 
       merged_kw = set() 
       for kw_list in args: 
           for kw in kw_list: 
               if kw: 
                   if to_lower_case: 
                       kw = kw.lower() 
                   merged_kw.add(kw) 
       return list(merged_kw) 
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Appendix D 
Use Examples of Katigoriopoiitis 

 

Figure 10Training model can run in the background. Classifier returns a classification 

model id. 
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Figure 11We can check model status anytime during or after training. When the 

process is finished, status value turns to done. The model accuracy is calculated and 

included in get-model-status response. 

 

Figure 12Web search can be limited in specific websites. Pagination information 

included in the response. 
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Figure 13Multiple classification models can be included in the request. The 

predictes_classes will be presented as an array of predictions, ordered as the model ids 

respectively 

Example Request: 

 
{ 
   "url": "http://teenlibrarian.co.uk/2020/07/15/when-stars-are-scattered/", 
   "include_raw_data": false, 
   "classification_model_id": ["general_bbc_topics", "blogtext_2004_age_range"] 
} 
 
 

Example Response: 

{ 
   "url": "http://teenlibrarian.co.uk/2020/07/15/when-stars-are-
scattered/", 
   "data": { 
       "title": "When Stars are Scattered", 
       "type": "article", 
       "site_name": "Teen Librarian", 
       "timestamps": { 
           "published_at": "2020-07-15T08:30:00+00:00", 
           "updated_at": "2020-07-12T09:43:41+00:00", 
           "parsed_at": "2020-12-02T21:27:28.276194" 
       }, 
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       "locale": { 
           "lang": "en", 
           "tags": [ 
               "en_US" 
           ] 
       }, 
       "multimedia": { 
           "image": "http://teenlibrarian.co.uk/wp-
content/uploads/2020/07/BlogTourLowRes.jpg", 
           "video": null, 
           "tags": [] 
       }, 
       "content": { 
           "full_text": "July 15, 2020 9:30 am , Caroline Fielding Omar and 
his brother Hassan, two Somali boys, have spent most of their lives in 
Dadaab, a refugee camp in Kenya. Separated from their mother, they are 
looked after by a friendly stranger. Life in the camp isn't always easy and 
the hunger is constant . . . but Omar devotes everything to taking care of 
his young brother and pursuing his education. Faber This is set to be one 
of my favourite graphic novels of all time. You will laugh, cry, rage, and 
cheer many times over the course of the book, a study in empathy, as Omar 
and Hassan experience the ups and downs of life in a refugee camp with the 
dream of resettling in America hanging over their heads. It is based on 
Omar Mohamed's account of real experiences of growing up, so obviously the 
relationships are real, but they are brought off the page so beautifully 
and in so few words, through the skillful work of Victoria Jamieson 
(brilliantly coloured by Iman Geddy). Narrated by Omar, we see his 
perspective of the environment and people, and how it changes when he was 
feeling hopeful or down. Bad things do happen to them, as well as good 
things, and Omar talks them through and shares his feelings with the 
reader. One panel that really struck me was after Omar had been talking to 
a friend who's family had been chosen to be resettled, he tries so hard to 
be positive all the time but can't help but think "It's not fair". He tells 
us: ...Of course, thinking like this doesn't do you any good. Somalis even 
have a word for it. BUFIS. It means the intense longing to be resettled. 
It's almost like your mind is already living somewhere else, while your 
body is stuck in a refugee camp... We first meet Omar and his brother 
Hassan once they have already been living in the camp for a long time (have 
a read of the first chapter in the extract) and the way their journey to 
the camp is told to us, as it recounted in Omar's UN interview for 
potential resettlement, is really powerful. We follow them for years, until 
Omar is 18, and I was particularly moved by the relationship with Fatuma, 
how they came to be together, and how Omar realised more and more with age 
how lucky they all were to have one another. Enjoy this exclusive extract 
of WHEN THE STARS ARE SCATTERED It does have a happy and hopeful ending for 
Omar and Hassan, but doesn't let you forget the thousands more people still 
stuck in the limbo of refugee camps. I think this is essential reading for, 
well, everyone aged 8+ frankly. Huge thanks to Faber for sending me a copy 
for review and inviting me to join the blog tour. WHEN STARS ARE SCATTERD 
is out in the UK now! Share this:", 
           "author": null, 
           "tags": [], 
           "keywords": [ 
               "" 
           ], 
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           "news_keywords": [ 
               "" 
           ], 
           "extract_code": "1_1" 
       }, 
       "errors": [], 
       "predicted_classes": [ 
           "entertainment", 
           "23-27" 
       ] 
   } 
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