
Open University of Cyprus

Faculty of Applied Sciences

Postgraduate (Master’s) Programme of Study
Cognitive Systems

Postgraduate (Master’s) Dissertation

OPEN
UNIVERSITY OF
CYPRUS

Cognitive Swarm of Drones Search and Rescue System

Guillaume Voirin

Supervisor

Loizos Michael

June 2020

Open University of Cyprus

Faculty of Applied Sciences

Postgraduate (Master’s) Programme of Study
Cognitive Systems

Postgraduate (Master’s) Dissertation

Cognitive Swarm of Drones Search and Rescue System

Guillaume Voirin

Supervisor

Loizos Michael

The present Postgraduate (Master’s) Dissertation was submitted in
partial fulfillment of the requirements for the postgraduate degree

in Cognitive Systems

Faculty of Applied Sciences

of the Open University of Cyprus.

June 2020

iv

Summary

In an attempt to solve search-and-rescue problematics such as rescue time and
difficulty in accessing certain search areas, a cognitive swarm of drones system
is proposed, using artificial intelligence techniques interacting with cognitive
components.

The system’s various elements (drones’ cognition, pathfinding, policies, but
also humans-swarm interactions) are elaborated, implemented and evaluated
using a simulator custom-built for this dissertation.

Evaluation outcomes show that cognitive functions can be beneficial to non-
cognitive drone components, and vice versa. Possible improvements are dis-
cussed.

v

Acknowledgments

Thanks to my girlfriend,

to my family and friends for their support in my endeavors,

and to my supervisor Loizos Michael for his advice.

In addition, I would also like to acknowledge support from the European Re-
gional Development Fund and the Republic of Cyprus through the Research
and Innovation Foundation with grant number INTEGRATED/0918/0032.

Contents

1 Introduction 1
1.1 Challenges . 3

2 Related works 5
2.1 General works . 5
2.2 Domain-specific works . 7

3 Methodology 10
3.1 Proposed system overview . 10
3.2 Cognitive drones . 11

3.2.1 Sensing . 11
Camera and image analysis system 12
LiDAR . 12

3.2.2 Cognition . 13
Individual cognition . 14
Attention . 16
Summary . 17
Collective cognition . 17

3.2.3 Pathfinding . 20
Collective movement forces 22
Dynamic obstacle avoidance 24
Collective speed attraction 31
Summation . 32
Restricted area avoidance 32

3.2.4 Intentions and policies . 34
Intentions . 34
Internal intentions . 35
External (operator) intentions 35
Policies . 35

3.3 Landing pads . 39

vi

CONTENTS vii

3.4 Operator stations . 40

4 Implementation 41
4.1 Software platform . 41
4.2 Generic simulation world . 42

4.2.1 Content . 42
4.2.2 Scenarios . 42
4.2.3 Physics engine . 43

Drone physics . 44
4.3 User interface . 46
4.4 SAR simulation world . 47

4.4.1 Cognitive drones . 48
4.4.2 Landing pads . 49
4.4.3 Obstacles . 49
4.4.4 Restricted areas . 49
4.4.5 Rescuable entities . 50

5 Evaluation and testing 51
5.1 Pathfinding . 51

5.1.1 Zero-knowledge dynamic pathfinding 51
Single drone . 51
Multiple drones . 54

5.1.2 Cognitive dynamic pathfinding 56
5.1.3 Restricted areas pathfinding 59

5.2 SAR operations . 60
5.2.1 Semi-stochastic exploration algorithm 60
5.2.2 Operator querying . 62

6 Discussion 65

Appendices 74

A Technical choices 75
A.1 Why Java? . 75

B Algorithms 77
B.1 Distance from point to segment 77
B.2 A* . 78
B.3 Bresenham algorithm . 79

Chapter 1

Introduction

In the last decade, numerous disasters whether natural (hurricanes, tsunamis,
earthquakes, floods, wildfires, volcanic eruptions...) or technological (nuclear
power plant explosions, bridge collapses...) have re-emphasized the critical im-
portance of Search and Rescue (SAR) operations.

SAR, according to the US coast guard, can be formally defined as “the use of
available resources to assist persons or property in potential or actual distress”.

The SAR task can be split into four distinct subtasks — at least:

• Navigate to given location while avoiding obstacles (pathfinding actions)

• Explore an area as a team (coordinated exploration)

• Identify entities to rescue (synchronized identification)

• Manage resources (ensure autonomy: eat/drink/rest, charge batteries, re-
fuel, etc.)

Of all the influencing factors, time is arguably the most important in deciding
whether SAR operations turn out successful or not (Adams et al. 2007). In
fact, according to the aforementioned study, the probability of finding survivors
decreases exponentially as time passes, and drops to nearly 0% after only 24
hours. More generally, it seems safe to say that the first 72 hours of SAR
operations are critical (Erdelj et al. 2017; Communications 2012).

A number of factors negatively influence rescue timings: they include, amongst
others, terrain — or access difficulties in urban areas (Statheropoulos et al.
2015), rescuers’ safety, unfavorable climatic conditions, and night operations.

Today, there are two main rescuer profiles on the SAR operations field: hu-
mans and robots. Humans are clever: they can use any clue or information
to estimate likelihoods of finding survivors in various areas. They also natu-
rally express empathy towards survivors: this helps in guessing their intentions.

1

CHAPTER 1. INTRODUCTION 2

They can also try to communicate with survivors. They can carry life-saving
equipment and provide emergency medical support, and use tools such as search
dogs to benefit from exceptional natural olfactive capabilities. They exhibit in-
efficiencies in terms of search range though: humans are slow, subject to fatigue
or injury, and cannot access certain areas. Robotics, on the other side, are very
good in terms of search range as they are able to operate 24 hours a day, and
have been used for SAR operations in the last few decades. They are, however,
not very clever yet, express no empathy, and cannot communicate directly with
survivors (although they can be used to relay communications).

Since the beginning of this century (Murphy 2014), a subset of robotics has
been introduced on the SAR operations field in part due to their exceptional
search range: unmanned aerial vehicles (UAVs). UAVs (drones) are fast, rela-
tively compact, agile, dark vision-enabled (using LiDAR1 or thermographic cam-
eras), and can fly into the most remote of areas. They seem like an ideal tool for
performing exploration operations, and several UAV-centric non-cognitive SAR
solutions can be found in the literature (Erdelj et al. 2017; Waharte and Trigoni
2010; Scherer et al. 2015; Remy et al. 2013). They however exhibit limited
autonomy (recharging is often required) — although this is bound to improve;
and can hardly carry equipment due to flying-induced weight restrictions.

Current SAR drone swarm approaches, however, do not come without draw-
backs. First, a survey report (Chung et al. 2018) suggests that the missing com-
ponent of modern automated SAR systems is a measure of learning to provide
better autonomy and better flexibility. Furthermore, a meta analysis review
(Hocraffer and Nam 2017) outlines several human factors challenges, including
high cognitive demands for the operator and non-intuitive behavior. This re-
view also states that these challenges could be mitigated by raising the swarm’s
level of autonomy to reduce operators’ cognitive workload and by way of fact
improve their situation awareness.

A possibly overlooked aspect of the SAR challenges also lies in the potential
absence of well-defined search perimeters (both in area and in nature) at the
beginning of operations. How could the uncertain but still critical information-
gathering time immediately following a disaster be used in a proactive and
useful way, instead of delaying UAV swarm deployment until more information
is gained? How could drones, instead of being pre-programmed beforehand to
search for specific targets, be enabled to explore and learn from their environ-
ment without a definite goal, and ask queries to a human operator — which is,
by all means, the definitive expert in determining what is normal from what is
not — before triggering rescue interventions?

1Light Detection and Ranging

CHAPTER 1. INTRODUCTION 3

In an aim to overcome these challenges, and combine the best of both
human and automated solutions, we hereby propose a cognitive swarm
of drones SAR system.

The main objective is to benefit from search range and reach of UAVs, while
integrating a measure of cognition (“cleverness”), but still use human expertise
when it is by far the best option.

Our system should be able to learn both from the environment (to enhance
functionalities such as pathfinding and exploration), and from a human operator
(to reduce required interactions and lower operator cognitive demands for iden-
tification). It should display a good level of autonomy, by for example managing
its charging needs by itself. It should be governed by algorithms that are simple
enough — and eventually inspired from natural processes we are familiar with
— to be grasped without difficulty, to avoid inexplicable or uninterpretable be-
haviors and save on resource-hungry onboard computing hardware (and thus on
recharging frequency: drones technically cease SAR operations while recharg-
ing).

1.1 Challenges
Designing a cognitive swarm of drones SAR system raises a number of problems
to be solved.

First, and to adopt a holistic point of view, it seems useful to determine the
actual components involved in the proposed system and its operations, whether
endogenous (internal to the system, i.e. certain types of drones obviously, but
this could also include battery charging stations, radio transmission vehicles,
etc.) or exogenous (external to the system, i.e. its environment).

The swarm of UAVs has to be able to learn from its environment if it is
to be cognitive. Cognition, as the definition goes, is the “process of acquiring
knowledge and understanding through thought, experience, and the senses”
(Cognition | Definition of Cognition by Lexico 2020). This can result from
individual efforts (each drone acquiring and using its own knowledge to enhance
its functionalities), collective efforts (segments of each drone’s knowledge being
shared and used by all), or both.

However, accumulation of knowledge is pointless without proper use. There-
fore, it has to be determined which UAV systems can make use of the acquired
knowledge and in what ways. Could pathfinding be enhanced by cognition? Or
inter-drone organization? Operations speed?

Speaking of which: pathfinding is, in fact, the next obvious challenge. SAR
operations include a great measure of exploration, and as drones will evolve in

CHAPTER 1. INTRODUCTION 4

partially known environments, they must be able to handle the following tasks:

• avoid unknown obstacles on their way to a designated (possibly self-
designated) target position

• avoid eventual pre-defined, known obstacles (for example, restricted mili-
tary areas, or more broadly, any areas system operators wish to avoid)

In addition, UAVs generally need to recharge often due to their reduced on-
board battery size: weight, of all limiting factors, is arguably the most important
for flying devices. Techniques to decide on when to cease SAR operations and
return to a charging area must be devised. And, in a more general way, so do
behavioral policies which ensure immediate adequacy of UAV behavior within
the SAR operations environment.

Also, the human operator - UAV swarm relationship must be worked on, as
it is arguably a weaker point in UAV swarm systems.

Finally, to validate chosen solutions, a realistic software simulation should
be set up, in order to test and evaluate various components of the system and
the system as a whole.

Chapter 2

Related works

Works related to the use of groups of UAVs for general SAR operations are not
plethora. This is probably due to at least two reasons: first, as the technology
is quite recent, systems are still “handcrafted”; and second, as field testing has
thankfully been limited overall (Murphy 2014), it is difficult to gather definitive
conclusions on the benefits of using or not certain methods, or their advantages
and drawbacks. However, separate works on pathfinding, swarm intelligence,
cognitive systems, robotics, and exploration policies are numerous.

2.1 General works
A holistic review (Erdelj et al. 2017) presents various ways UAVs have been used
in the context of disaster management. These obviously include search missions,
but also monitoring for early warning signs, disaster information gathering, situ-
ational awareness and logistics / evacuation support, standalone communication
systems, or damage assessment.

Another work (Waharte and Trigoni 2010) evaluates potential UAV search
strategies in the SAR context. Three are tested (via a software simulation)
against time of finding survivors: the greedy heuristics approach in which each
UAV explores the highest confidence location nearby, the potential-based ap-
proach in which goals are associated with attractive potentials and obstacles
with repulsive potentials, and finally the partially observable Markov decision
process approach. Each strategy can lead to good results, however best timings
come with exploiting information obtained during search operations to the best
extent possible.

A few practical studies (studies which include field testing with actual UAVs)
can also be found. The first combines centralized and distributed decision-
making methods (Scherer et al. 2015). Another (Remy et al. 2013) evaluates

5

CHAPTER 2. RELATED WORKS 6

UAV swarm search strategies (independent or in squadron) with communication
constraints. One last presents an UAV multi-agent autonomous exploration
solution that ensures real-time adaptability (Sampedro et al. 2016).

Finally, UAV area meshing (enabling UAVs to self-organize in order to opti-
mally cover an area while maintaining communication links), with applications
in SAR scenarios, is also explored by a more recent study (Ruetten et al. 2020).

Further works of interest — not necessarily linked to SAR — include a gen-
eral survey about aerial swarm robotics (Chung et al. 2018), in which various
algorithms and state-of-the-art methods for swarm communication, tasks al-
location, trajectories planning, and flight coordination are exposed. Flocking
algorithms — in particular boids-type algorithms (Reynolds 1987), amongst
others, are presented. The report overviews control mechanisms, including the
leader-follower paradigm with human-UAV leader(s) interactions and herding
strategies. The multiple UAV, multiple moving targets problem that is to be
worked on in the present dissertation is also accounted for. Although very dif-
ficult to solve in practice, a few approaches including PHD1 filters (Reid 1979)
are cited. The power management issue is also introduced, as well as obsta-
cle avoidance methods (including speed adjustments, sequencing, and potential
fields). Overall, the one important area of study that the report identifies as
crucial for the future of swarm developments is the introduction of learning and
decision-making architectures that can provide UAV swarms with higher levels
of autonomy and flexibility.

Regarding multi-robot systems, an interesting survey (Senanayake et al.
2016) presents an overview of numerous swarm intelligence algorithms, namely
particle swarm optimization (PSO), bees algorithm, artificial bee colony opti-
mization, the classic ant colony optimization algorithm, bacterial foraging opti-
mization, glowworm swarm optimization, the firefly algorithm, and the biased
random walk algorithm. These will be inspirational for certain algorithms de-
signed in this Master’s dissertation.

Another interesting work — related to the previous — deals with how natural
entities move and sense their environment collectively (Berdahl et al. 2013). By
taking an example of fishes searching for darker areas, this work shows that a
simple algorithm using only local information can describe a collective behavior.
This could help in justifying simplified, locality based algorithms in the design
of collective systems, as nature and evolution have taken that path more often
then not, with great success (bird and fish flocks, bees, ants, etc.). This trend
is reinforced by another research work (Lim and Rus 2012) which shows that
a global traffic congestion problem can be solved using local information and
local processing only.

1Probability Hypothesis Density

CHAPTER 2. RELATED WORKS 7

In the field of robotics and cognition, another work (Levesque and Lake-
meyer 2008) outlines the various challenges faced by cognitive system designers
in robotics and tries to reconcile traditional, less cognitive robotics with other
areas of AI such as planning and agent-oriented programming. Sensing, knowl-
edge representation (or perception), reasoning and planning are introduced with
various algorithmic solutions.

Another interesting approach attempts to combine biologically-inspired swarm
behaviors with functionalities made possible by technological progress (Alfeo,
Cimino, and Vaglini 2019) by offloading some processing from the swarm. In
the work’s presented search scenarios, technology cooperates well and even en-
hances nature-inspired search algorithms. Methods reviewed include random
walk, human adaptation and an externally computed differential evolutionary
algorithm using aggregated swarm parameters to search for the most efficient
coordination setting. This work is inspirational for the collective processing
components detailed in our proposed system.

All in all, however, the approaches taken by UAV-centric works include few
learning and cognitive elements whereas the Chung et al. survey (Chung et al.
2018) has clearly identified a lack in that area: here, we intend to design an SAR
swarm of drones system that not only integrates algorithms derived from non-
cognitive robotics, but also benefits from learning components in an attempt to
better use those algorithms.

2.2 Domain-specific works
To create a cognitive swarm of UAVs, where else to look for cognition exam-
ples than in our own abilities? Works on human cognitive psychology, includ-
ing memory and attentional systems (Baddeley and Hitch 1974; Atkinson and
Shiffrin 1968; Kahneman 1973; Treisman 1964) provide starting points. It is
generally accepted that human memory consists in at least two storage means:
short-term and long-term (Atkinson and Shiffrin 1968; Baddeley and Hitch
1974). Furthermore, the manner in which sensory inputs are analyzed is also im-
portant for our future cognitive implementation (Treisman 1964; J. A. Deutsch
and D. Deutsch 1963). A general and reusable structure of cognitive systems is
also usefully presented in a study on human argumentation (Kakas and Michael
2016).

Obviously, pathfinding is of significant interest for UAVs to move and ex-
plore an SAR operations area. Robotics reactive pathfinding has been a subject
of interest for decades — by reactive, we mean the task of avoiding obstacles for
which a robot has no prior knowledge of. To solve this obstacle avoidance prob-
lem, two main approaches have been developed: the first consists in choosing

CHAPTER 2. RELATED WORKS 8

a direction that seems mostly obstacle-free (the vector field histogram or VFH
methods) , and the second in creating a “repelling forces” field from observed
obstacles.

The VFH family of algorithms (J. Borenstein and Koren 1991; I. Ulrich
and J. Borenstein 1998; Iwan Ulrich and Johann Borenstein 2000) is closely
linked to the development of multi-angular obstacle detection systems such as
sonar or LiDAR2 systems (Lidar 2020). These latter systems use a rotating
laser to calculate a distance from a laser source to an eventual obstacle, by
determining how much time it takes for the laser’s reflection (if any) to return
to its source. When represented on a polar graph, using regular angle intervals,
these timing returns form a histogram which in effect is a map of close obstacles’
proximity. The VFH algorithms utilize this histogram to determine a best
direction using various methods (early approaches select the closest obstacle-
free direction, while later works account for robots’ maneuverability as well).

Repelling force fields algorithms (Khatib 1986; Johann Borenstein and Koren
1988), on the other hand, generally aim at “pushing away” robots from obstacles,
while “pulling” them towards their given target T . They can be adapted to
high-speed robots, as they include a speed management component.

Planned pathfinding is not to be forgotten: sometimes, certain areas of the
map are known in advance. For this task, well-known graph search algorithms
exist (a known map can be divided into nodes and connections between each
form a graph) such as A∗ (Hart, Nilsson, and Raphael 1968) and others (Daniel
et al. 2010; Nash, Koenig, and Likhachev 2009). These algorithms even can,
under certain conditions, find a guaranteed optimal graph path using provided
heuristics.

Exploration is another important component of our SAR system. If one
considers the SAR operations area to be subdivided in a grid, with each grid
cell connected to its neighbors, then exploration consists in visiting as much
cells as possible efficiently in the graph uniting all cells. As there is initially
no knowledge of the environment, exploration will carry a sense of stochasticity
at first, and will thus be derived from a pure “random walk” process. Random
walks consist in blindly and randomly exploring geographic locations or graphs
and more efficient exploration derivatives have been studied to some extent
(Pelánek et al. 2005).

Identification of targets to rescue also needs to be considered. This will
necessitate the SAR swarm of UAVs system to learn from operator indications,
and to learn quickly as the amount of samples to learn from could be scarce.
Decision trees are well tailored for such a use case, and numerous decision-tree
creation algorithms exist (Quinlan 1986; Breiman 1984; Quinlan 1993; Kass

2Light Detection And Ranging

CHAPTER 2. RELATED WORKS 9

1980).
Finally, resource autonomy problems are necessarily related to drones physics

(the heavier a drone, the more energy it requires to fly); and thus, by way of
fact, to physics in general. For this, Newton’s general theory of physics, al-
though dated, is still a perfectly acceptable approximation of real world physics
(Newton’s Laws of Motion 2020).

Chapter 3

Methodology

First, it is necessary to define what the SAR field is made of, before a system
tailored for operations within can be discussed. At first sight, it seems that the
amount of possible cases is considerable, as geographic features (plains, seas,
mountains, forests, cities, etc.) can vary, and post-disaster areas can be chaotic
and in a totally abnormal state (flooded, covered with ashes, debris...).

However, every SAR situation has a set of common features:

• an imaginary boundary which defines the area where rescue operations
must take place

• a (possibly great) number of static obstacles, that can take the form of
terrain features (hills, mountains, cliffs, debris, etc.) or man-made features
(buildings, poles, etc.)

• a number of areas (restricted areas) that should be avoided by explor-
ing rescue devices (above an erupting volcano, near a waterfall, inside
protected military areas, etc.)

• living beings and other entities (unknowns) whose number and nature are
yet to be known, might move and could necessitate a rescue intervention

Unknowns might be rescuable if their features match information provided by
human operator(s) during SAR operations.

3.1 Proposed system overview
Our proposed system consists in a swarm of cognitive quadcopter UAVs with
a set of landing pads (at least one landing pad per drone) and an operators’
station.

10

CHAPTER 3. METHODOLOGY 11

Quadcopters seem like the better choice: although they have less range than
fixed wing UAVs, their agility and reduced size can be an invaluable asset. They
can operate, for example, in cramped urban environments, inside buildings,
underground, etc.

Actual exploration and SAR operations are thus performed by quadcopter
UAVs while landing pads enable deployment and recharging, as well as radio
transmissions between drones and the human operators’ station. For practical
reasons, operators might not necessarily be present on the SAR field of op-
erations. Vehicles (like trucks, or ships for maritime SAR operations) could
carry landing pads, and give a good balance of deployability speed, mobility
and versatility to the system.

3.2 Cognitive drones
Why, in the first place, equip drones with cognitive capabilities?

Simply put: the general idea is to add a learning and abstraction layer
after environmental sensing, and use this abstraction layer to enhance overall
functionalities of UAVs, as depicted in figure 1 (where policies can consist in
procedural actions, pathfinding, etc.).

Figure 1: Classic vs. cognition-enabled automated systems

3.2.1 Sensing

As the schema shows, everything starts with sensing. Drones are thus equipped
with the following:

• a sense of location (via a GPS1-like system)

• a sense of vision (via a camera and image analysis system)

• an obstacle proximity sense (via a LiDAR system, which operates like
a bat’s sonar but with lasers)

1Global Positioning System

CHAPTER 3. METHODOLOGY 12

• a radio reception sense (a radio system)

Additionally, a sense of hearing using a stereo microphone can be added for
further bias confirmation / entity recognition, but is not mandatory. A few
things can be elaborated regarding camera and LiDAR systems:

Camera and image analysis system

The image analysis system is capable of distinguishing essential features (ele-
ments) of the environment. CNN2-based vision systems, for example, display
good results (Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al. 2015; He
et al. 2016).

LiDAR

LiDAR3 is a system using light in the form of a pulsed laser to measure distances
to obstacles (Lidar 2020) as pictured in figure 2 where a laser beam is rotated
from left to right, and the position of terrain features computed using timing
information (the quicker a laser light comes back to the emitting source, the
closer an obstacle is).

Figure 2: A 90 degree LiDAR scan and associated obstacle-scape result
Scans OJ, OK, OL... are performed in sequence, by a laser rotating from
left to right. Range r is the LiDAR operating range beyond which obstacle
detection returns are inaccurate and ignored. JKL, T and RS represent
gaps, whereas MM ′, PP ′ and QQ′ are obstacle returns.

2Convolutional neural networks
3Light Detection and Ranging

CHAPTER 3. METHODOLOGY 13

3.2.2 Cognition

Sensing is not perceiving. For example, the amount of visual information that
reaches our retinas is — simply put — colossal, and yet, our brain manages
to extract important features from the flowing magma of data its vision senses
provide: it perceives the sky, the sun, a bird. But it has discarded the small,
unimportant stain on the window.

This simplified example outlines the filtering process that is taking place
between our senses’ raw capture of information and our memory’s ability of
presenting this data in a conscious or unconscious form, which is none other
than the perception and attention mechanism. Perception and attention are
closely interlinked: attention can modulate perception (for example, when fo-
cusing on the road, accident likelihood decreases (Kahneman, Ben-Ishai, and
Lotan 1973); or when focusing on a basketball, we don’t perceive the gorilla
(Simons and Chabris 1999)), and perception can direct attention (for example,
an alarm sound will be perceived without being attended to but perception will
immediately shift our attentional focus on it).

Numerous human cognitive psychology research works based on visual (Wol-
ford and Morrison 1980; FitzGerald and Donald E. Broadbent 1985) and audi-
tory (Cherry 1953; D. E. Broadbent 1958; Treisman 1964; J. A. Deutsch and
D. Deutsch 1963) experiments have been conducted to evaluate the amount of
brain processing on unattended signals, and although theories may differ, it has
been globally shown that there is, at least, a certain quantity of brain process-
ing on unattended inputs, but that this processing is more intense for attended
inputs (Coch, Sanders, and Neville 2005). In other words, perception of at least
some unattended signals (if not all) is actioned by our mental processes.

Here, we will take the bias of having drones perceive all information:
everything drones’ senses capture will be perceived, but only specific elements
of what is perceived will be attended to or stored. It is noteworthy to point out
that attention, in our system, is not used as a sensory input filter like in human
cognition, but rather as a means to emphasize or prioritize certain elements in
working memory.

Overall, drones benefit from two distinct cognition abilities: an individual
cognition ability (sourced from the drone’s own senses, attention/perception,
and memory mechanisms) and a collective cognition ability (sourced from every
drone, propagating via radio broadcast some of its perceptions to the swarm as
a whole). An overview of the swarm of drones’ cognition system is schematized
in figure 3 and different parts detailed in the forthcoming paragraphs.

Finally, cognition would be relatively purposeless if it wasn’t for the process
of creating or updating a plan to successfully achieve a set of goals: every drone

CHAPTER 3. METHODOLOGY 14

Figure 3: Drone swarm cognition overview

has an abstract set of intentions (i.e. goals) and an associated set of policies to
reach those goals. This is elaborated in section 3.2.4.

Individual cognition

Perception It is noteworthy to elaborate on an important process of percep-
tion, which is the “integration” capability. When we witness a barking dog, we
immediately associate sound and image as a single dog entity. However, this
is not trivial: how would we perceive a meowing dog? In any case, integration
is not really an issue here as perception systems are linked to different sets of
functionalities (it is not really important if an obstacle and a living being, for
example, are not integrated into a single entity: in the end, the obstacle will be
avoided and the living being rescued).

Memory One could argue: drones gather interesting information, let’s just
store everything and work from there! Why bother with a hierarchical memory
system?

This is not, however, the philosophy of our approach: nature has taught us
that only what really matters suffices in our adaptation to the environment, so
why take into account everything? We don’t, and we are still the best SAR
system known to date.

Furthermore, there is always a cost in not properly tailoring computer sys-
tems for their intended use: in the present case, drone energetic autonomy would
suffer (and so would operational time) if battery usage were to be increased due
to elevated amounts of data storage and associated processing. Also, storage

CHAPTER 3. METHODOLOGY 15

pre-filtering helps in achieving an immediate notion of saliency and this can be
life-saving (imagine if, for example, we stored an alarm sound with numerous
other pointless informations, and only processed it an hour later...).

Drones are therefore equipped with a dual store memory system loosely de-
rived from the multi-store model (Atkinson and Shiffrin 1968), or to some extent,
Baddeley and Hitch’s working memory model (Baddeley and Hitch 1974).

They possess a working memory and a long-term memory, complemented
by a separate spatial memory. Distinct elements from working memory and
accessible long-term memory constitute what is referred to as the “mental
model” of the drone. Elements in working and long-term memory are used
to store salient environment information, and reuse it even if it is not sensed
anymore — or if some senses were to be dysfunctional, just as we can manage
to find our way in the dark inside places we know.

There is no sensory memory so to speak, as every sensed world component
is immediately processed by perception and stored in working memory, and
removed from it soon after perception stops.

Working memory Perceived elements are added to working memory im-
mediately following perception, and are removed after not being perceived for a
lapse of time δwm. Perception time is not irrelevant to human cognition: we are
inclined to learn things we see often, although this is far from being an absolute
truth as learning is influenced by numerous other factors.

Long-term memory Long-term memory consists of two distinct storages:
a “recognizable” storage and an “accessible” storage.

Everyone has experienced recognizing an old image (old photo, etc.) al-
though it had been completely “forgotten”. Although memorizing and forget-
ting processes are an active subject of study and give lieu to various theories, it
is undeniable that retrieval cues (such as the old image itself in the above ex-
ample) play an important role in accessing long-term memory (Goodwin et al.
1969; Jonker, Seli, and MacLeod 2012): in other words, we might actually hold
much more knowledge in long-term memory than we think — “recognizable” if
given proper clues but not necessarily “accessible” at will. Drones’ long-term
memory structure is based on this paradigm.

The “recognizable” storage receives all elements that enter working memory.
In other words, once an element has been perceived by the drone and has thus
entered its working memory, it is also stored in the “recognizable” area of long-
term memory. After perception, an element is permanently recognizable by the
drone, but is not yet accessible at will.

The “accessible” storage represents elements in long-term memory that are

CHAPTER 3. METHODOLOGY 16

immediately accessible and thus part of the drone’s “mental model”. They
represent entities of the environment that the drone has learned as they are
often perceived, for example a major obstacle in the center of the map that is
being avoided continuously. To become a part of the “accessible” storage, an
element has to reside in working memory for a minimum time δacc such that
δacc ≫ δwm, to ensure that elements stored in accessible long-term memory are
significant to each drone. Significance, in the present context, is linked to the
amount of time an entity resides in working memory.

Spatial memory Much like one of the hippocampus’s recognized func-
tionalities (O’Keefe and Dostrovsky 1971), drones are equipped with a location
or spatial memory. This memory is subject to decay as only a limited amount of
locations are stored. When spatial memory is full and a new location is visited,
the oldest visited location is forgotten.

Attention

Attentional systems and their filtering of information are usually beneficial for
at least two reasons:

• without any pre-conceived knowledge, they offer root mechanisms for
learning, by bringing salient information to the front, to allow for fur-
ther analysis or storage

• they reduce required parallel analysis capabilities (i.e. information pro-
cessing resources) by shunting a good amount of non-significant (or per-
ceived as so) information

Both these advantages are possibly utilized by the human brain to better manage
its resources; and although the why of attention is yet to be fully known, it
has survived the test of Darwinian evolution. Its obvious drawback lies in the
discarding of considerable amounts of information which might contain critical
but unprocessed clues (magicians and pickpockets alike make a living out of
attentional drawbacks).

In practice, when an element is added to or removed from working memory,
it is tagged as attended and stays so for a minimum lapse of time δa (if an
element is removed from working memory, it is still stored temporarily as long
as it is attended to but not considered part of working memory). However, if an
attended element sees its status changed in working memory, this timing is reset
and the element stays attended for a new lapse of time of at least δa seconds.
This ensures that all attended elements are salient: their presence and absence
changes dynamically over time and these changes create new information which
require elucidation.

CHAPTER 3. METHODOLOGY 17

Summary

The above processes run in parallel and are assembled in algorithm 1, with D

representing a drone.

Algorithm 1 Individual cognition mechanism
function IndividualCognition(D)

do in parallel
E ← Perception(D)
for e ∈ E do

if e /∈WorkingMemory(D) then
WorkingMemory(D)← add(e)

end if
if e /∈ RecognizableLTM(δ) then

RecognizableLTM(D)← add(e)
end if

end for
for w ∈WorkingMemory(D) do

if Age(w) > δwm then
WorkingMemory(D)← Remove(w)

end if
end for
for c ∈ Changes(WorkingMemory(D)) do

if c ∈ Attended(D) then
Reset(Age(c))

else
Attend(c)

end if
end for
for a ∈ Attended(D) do

if Age(a) > δa then
UnAttend(c)

end if
end for
for r ∈ RecognizableLTM(D) do

if time(r,WorkingMemory(D)) > δltm then
AccessibleLTM(D)← add(r)

end if
end for
SpatialMemory(D)← add(Location(D))
if |SpatialMemory(D)| > ζsm then

SpatialMemory(D)← remove(oldest)
end if

end do
end function

Collective cognition

As a reminder, “collective cognition” refers to a set of cognitive processes that
take place onboard each drone but that use perceptual, radio-transmitted data
from all drones of the swarm.

Collective speed memory As drones’ efficiency in moving in their environ-
ment is highly desirable — be it only for battery savings, we introduce in the
forthcoming pathfinding section a collective (swarm intelligence) speed-based
attraction algorithm, to entice drones to use the “faster lanes” (obstacle-free
lanes) of the map.

This algorithm is supported by the knowledge of collective average speed
informations throughout the map. Therefore, each drone broadcasts its current

CHAPTER 3. METHODOLOGY 18

speed when visiting a location, to inform all others. This information is then
stored by each drone in a memory called the “collective speed memory”.

A location-based diffusion algorithm is continuously applied to this storage
space: just as a coloring substance slowly propagates and changes the color
of its container water, average speed values modify and “color” the values of
their neighbor locations, while respecting the natural diffusion principle i.e.
every value increase at a location must be compensated by a combined identical
decrease at some other(s) and reciprocally. This diffusion must be sufficiently
slow to allow a certain persistent “memory” of units passage to remain, but not
too slow to enable the creation of a progressive speed average gradient.

Our proposed diffusion algorithm is stochastic: on every iteration it chooses a
random location λ on the map to update its and its neighbors’ values. Algorithm
2 lists the pseudocode logic, with χ(l) the neighbors list function and ν(l) the
average speed value at location l.

Algorithm 2 Collective speed diffusion algorithm
function Diffuse(λ)

d← ην(l)
n← |χ(λ)|
ϵ← d

n
ν(λ)← ν(λ)− d
for l ∈ χ(λ) do

ν(l)← ν(l) + ϵ
end for

end function

Where η is a small positive value (η ≪ 1) influencing diffusion speed.
Stochasticity reduces artifact effects and produces better overall results at

the expense of slight imprecisions as some locations are temporarily visited more
than others, but with time, statistical smoothing preserves overall accuracy. It
also provides for a significant advantage of our presented algorithm which is a
parallelization ability.

Operator querying The swarm of cognitive UAVs is able to query and learn
from human operator responses. Obviously, if every drone were to ask its own
queries directly, the human operator(s) would soon become overloaded, hence
we introduce here a collective query system, that enables issuance of queries if
they are novel and current accumulated knowledge is not enough for drones’
machine learning processes to decide on a probable response (that is, barring
scarce stochastic re-issuances as described later).

Environmental observations pre-empting queries are gathered by the vision
system and its analysis software using attention (only attended-to elements are
queryable, in order to limit queries to salient elements), and must be formalized
to fuzzy feature vectors to make sure that elements displaying a great number

CHAPTER 3. METHODOLOGY 19

of similarities are not tagged as distinct (which would clutter the system with
redundant queries) because of detail-level differences. Fuzzy feature tags are
predefined and could, for example, include attributes of sizes, shapes, attitudes,
positions, movements, entity types (humans, animals, objects...), noise types (if
drones are equipped with a sense of hearing) etc. — in fact anything deemed
appropriate for SAR operations (the broader, the better in this case) with all
attributes having an “unknown” feature to account for lack of or perception
failure.

Query broadcasting Every time a drone observes an entity in the SAR
environment, whose fuzzified feature vector is undecidable using machine learn-
ing as to whether or not it needs rescuing, it broadcasts a rescue query via
radio. On a random basis, some queries which are associated with clear predic-
tions from machine learning are also allowed to be broadcast again, to confirm
operator bias (in other words: that two identical queries get the same answer)
and up-to-date validity of the knowledge base (things might change during the
course of SAR operations, with incoming field reports).

Queries are received by landing pads and relayed to the operators’ station
which eliminates duplicates (drones in proximal areas might make similar ob-
servations simultaneously).

Knowledge memory Knowledge memory contains a list of fuzzified fea-
ture vectors with operator-provided answers (also called outcomes). Every time
an operator asynchronously replies to a query, landing pads broadcast the fea-
ture vector and associated outcome (and, in the case of a negative outcome, an
eventual measure of “machine coaching” in the form of an attribute hint), and
both are added to every drone’s knowledge memory. To use the above attributes
example, a fuzzified feature vectors could be: {small, cubic, northwest, static,
rock, unknown} and its outcome {no} with an attribute hint {type}. This
knowledge base is then used as a training set by machine learning to decide on
forthcoming observations.

Machine learning We hereby propose the use of a decision tree-based
classification algorithm: the ID3 (Iterative Dichotomizer 3) algorithm (Quinlan
1986). It has a number of advantages, including:

• it generates understandable prediction rules

• few training examples are required, to create useful decision trees

• with no conflicting outcomes, the resulting tree validates its training set
entirely, which is highly desirable in a SAR operations context

CHAPTER 3. METHODOLOGY 20

Furthermore, the use of operator attribute hints can enable quick generalization,
by adding at once an important number of combinatory knowledge statements
to knowledge memory. ID3’s main drawbacks are overfitting as created trees
have no size bounds (although this can be mitigated by pruning techniques)
and computer intensiveness with bigger datasets, but in the present case this
is not a problem as the training set will be reduced in size (otherwise there is
an operator overloading problem). The algorithm is used here to predict the
classification of outcomes depending on the values of other attributes’ features.

ID3 is based on the concept of information gain (equivalent to entropy loss)
to decide on which node to add next to the tree. Leaf nodes have an entropy of
0.

Entropy E(S) is defined as follows (S is a state i.e. a selection of training
set examples from knowledge memory, X is the outcomes attribute, consisting
of yes, don’t know, and no answers, and P (x) is the probability of an event x of
S) :

E(S) =
∑
x∈X

−P (x) log2 P (x)

Information gain is computed as such (Sv is a subset of S for which attribute
A has value v):

IG(S,A) = E(S)− |Sv|
|S|

E(Sv)

The algorithm starts with an empty tree, and iterates until all leaves have a
nil entropy (all training set statements lead to a decision). On every iteration,
the attribute A that yields the largest information gain is chosen as the next
decision node. The tree is recomputed on a periodical basis onboard each drone.

In practice, when an observation receives a predicted yes outcome from the
onboard decision tree, the observing drone triggers a rescue intervention request
by radio including its current position, in order to inform all SAR operations
members (operator(s) and other drones to prevent duplicate requests).

3.2.3 Pathfinding

Exploration, and thus pathfinding, is a principal feature of any SAR system. A
common pattern found in automatic guidance systems it to have an autopilot
directly interpret obstacle sensing, but here, we direct pathfinding to actually
take its inputs from the mental model of the drone (which, as a reminder, is

CHAPTER 3. METHODOLOGY 21

constituted of distinct elements from working memory and accessible long-term
memory, issued themselves from sensing and perception).

Just as when we lean on a wall, we do not actually see it but we know it
is there as we have previously learned from its presence, drones are able to see
things they don’t currently perceive, such as obstacles behind or obstacles far
ahead, because they have already been exposed to them and have learned from
their previous exposures’ perceptions.

It is considered here that drones operate in a horizontal plane: designing sim-
ple but efficient three-dimensional pathfinding algorithms seemed out of scope
for the timeframe of this Master’s dissertation, especially when the emphasis is
put on cognition and pathfinding and not on pathfinding alone. Fixed-altitude
operations are far from unrealistic anyways: they are required in many areas
such as inside buildings, near airports, above certain military areas etc.; also,
altitude changes are often convenient but not necessarily efficient battery-wise
(Shakeri et al. 2018), autonomy being one of the major drawbacks of quad-
copters today; and finally, it is more challenging for a collision avoidance system
to cater for constrained spaces. It is however possible to adapt all the presented
algorithms to three-dimensional operations as they have no dimension-bound
constraints.

At first sight, pathfinding has at least four components:

1. a collective drone movement component (in other words, inter-drone
avoidance and movement as a swarm)

2. a dynamic obstacle avoidance component (avoidance of unpredictable
obstacles)

3. an efficiency component

4. a restricted area avoidance component (avoidance of known obstacles
— stored on each drone in a permanent database).

All components need to be combinable. The efficiency component will here
be provided by a collective speed attraction algorithm to learn from other
drones’ speeds at various locations.

Overall, this separates the pathfinding problem in two categories: while
the first three components attempt to reach a given target T using dynamic
adaptation to the environment, the last one is a planning problem that can be
used to precompute lists of intermediate targets Ti to use by the first three.

In order to achieve dynamic adaptation, we introduce here a system of sum
of forces (or potential fields), where each sub-component (collective drone move-
ment, dynamic obstacle avoidance, and collective speed attraction) commands a

CHAPTER 3. METHODOLOGY 22

force that is added to the global pathfinding force −−−−−−−−→Fpathfinding. This process en-
sures a fluid or analogue nature to pathfinding: it is progressive and continuous
in nature, and easily explainable by studying individual sub-forces.

Pathfinding planning is treated as a path optimization problem, with classic
artificial intelligence tools.

Collective movement forces

Drone/drone avoidance is, in a way, a special case of obstacle avoidance, but it
is useful to distinguish the two as drones gather much more information from
their peers than from a generic obstacle: they can perceive other’s exact position,
speed, intentions, directions, etc. and it is beneficial to use this information to
improve collective drone maneuvering and organization.

Here, we use an iteration of the boids algorithm (Boids (Flocks, Herds, and
Schools: A Distributed Behavioral Model) 2020; Reynolds 1987) as it is com-
patible with the “sum of forces” paradigm. This swarm intelligence algorithm
applies three different forces to every boid — drone in our case (Hartman and
Benes 2006): cohesion, separation, and alignment forces.

Cohesion (flocking) Drones try to stay close to the center of the local flock
formed by the drone and its neighbors (denoted C in figure 4). Other drones
are considered part of the “local flock” if their distance from the current one are
inferior to a predefined ρc value.

Figure 4: Drone cohesion forces

Position of center C is calculated as follows, if p1..n are the positions of the
local flock of n drones:

pC =
1

n

n∑
i=1

pi

CHAPTER 3. METHODOLOGY 23

Cohesion force is then computed for each drone as follows (with p the position
of the drone):

−→
Fc = pC − p

This force is only applied to the set of drones having the same intentions
(i.e. moving to the same point for example).

Separation Drones must stay far enough from their neighbors to avoid po-
tential collisions (as in figure 5). A drone is considered a neighbor if its distance
is less than a predefined ρs value.

Figure 5: Drone separation forces

With p the position of the current drone and p1..n the positions of its n

neighbor drones, we use the following:

−→
Fs =

n∑
i=1

ˆp− pi
∆(p, pi)2

Where ∆(p, pi) = max(ε, d(p, pi) − ω) is the actual distance between two
drones (as positions are taken at drones’ center of gravity, two drones whose
position distances are inferior to a drone width are probably touching each
other), with ε a small positive number such that ε ≪ 1 and ω the usual drone
width.

This formula generates a significant avoidance force when drones are close
by, and a negligible one when they are well apart.

Alignment (velocity matching) Drones try to match the direction and
speed of their neighbors (a drone is considered a neighbor for alignment if its

CHAPTER 3. METHODOLOGY 24

distance is less than a predefined ρa value) as in figure 6.

Figure 6: Drone alignment forces

Speed vectors are displayed in black and alignment forces
in blue.

With −→s the current drone’s speed vector and −→si other drones’ speed vectors,
we have:

−→
Fa = −−→s +

1

n

n∑
i=1

−→si

Summation Cohesion and separation appear like antagonist forces, but their
norms and directions are usually different. Alignment forces encourage drones
to move as a squadron.

The final collective motion force is computed as follows for each drone:

−−→
Fcm = αc

−→
Fc + αs

−→
Fs + αa

−→
Fa

With αc, αs, αa a set of predefined coefficients to fine-tune each sub-force’s
influence.

Dynamic obstacle avoidance

The problem with dynamic obstacles is that no real planning can be made:
they are mostly unknown to the drone, apart from those that have already been
encountered and remembered. Thus the system must be reactive as opposed
to predictive: it must adapt to unforeseen situations in real time, but nothing
guarantees that it won’t take a sub-optimal path (in the medium to long term
that is).

CHAPTER 3. METHODOLOGY 25

To best cater for this, we introduce here an algorithm derived from the VFH
family of algorithms (J. Borenstein and Koren 1991; I. Ulrich and J. Borenstein
1998; Iwan Ulrich and Johann Borenstein 2000). VFH uses information from
the returns of a set of ahead-projected rays (which is exactly the information
provided by LiDAR systems) to find gaps in the obstacle landscape (directions
where there are no obstacles, also called a polar histogram). The best gap is
then selected in different manners depending on the VFH variant.

Our algorithm is effectively derived from VFH but with one (big) difference:
instead of directly using LiDAR-provided data, it uses cognitive information:
rays are virtually projected via software using the drone’s “mental model” in-
formation (in effect, this means that data from LiDAR returns and memory are
used altogether). This can, in fact, make a significant difference in choosing
the best direction as drones’ lookahead capabilities are much greater than their
LiDAR range once they have already acquired a certain “knowledge” of the envi-
ronment (accessible from their “mental model”). The algorithm is also tailored
for high-speed quadcopters (VFH was initially designed to guide relatively slow
robots on the ground).

Before dynamic obstacle avoidance computations are made, cognition-provided
obstacles are artificially resized via software in the following way: they are in-
flated with a safety area that can be computed in a straightforward manner by
“extending” obstacle detection traces in all directions on a horizontal plane as
in figure 7, by a length l — usually adjusted to match drone maneuverability
(the less maneuverable the drone, the greater the size of the safety area). This
is a safety measure to ensure drone pathfinding will not compute trajectories
incurring close encounters with obstacles (a gust could easily send an UAV into
a wall).

Figure 7: Obstacle ABCDEF in blue and computed safety area GHIJKL in
hashed gray

From there, algorithms consider the safety area to “be” the real obstacle and

CHAPTER 3. METHODOLOGY 26

try to avoid it at all cost.

Static repelling forces Intuitively, it is desirable to stay away from ob-
stacles in general as they might incur abrupt avoidance actions which could
outmaneuver fast-moving UAVs, but this must not prevent a drone to reach its
target position T if T is near an obstacle.

Therefore, we apply a set of “repelling” forces when a drone is in the vicinity
of obstacles:

1. An emergency repelling force that is triggered when drones, despite avoid-
ance algorithms, penetrate an obstacle’s safety area

2. A slow-down force introduced when a drone is quickly approaching an
obstacle’s safety area

3. A tactical placement force that gently pushes drones away from obstacles

Emergency force If, at any time, a drone is perceived inside an obstacle’s
safety area, with −→n the closest safety area segment normal as in figure 8 and φ

a factoring coefficient (taken quite big as the safety area must be immediately
exited), we take:

−→
Fe = φ−→n

Figure 8: Emergency repelling force

Slow-down force The slow-down force attempts to reduce the incoming
velocity of drones quickly approaching an obstacle safety area segment, if this
segment’s distance is less than target T ’s (see figure 9). With −→s the drone’s
speed and di the distance to the intersection of the drone’s direction with the
safety area segment:

CHAPTER 3. METHODOLOGY 27

Figure 9: Slow-down repelling force

−→
Fsd =

−2−→s · −→n
di

−→n

Tactical placement force An artificial tactical placement force is cre-
ated from all cognition-provided obstacle segments and is proportional to their
distance to the drone (this is the same concept as the boids separation force
above). With p the drone’s position, n the number of obstacle segments, and Si

each segment (d() computes a distance from point to segment, as in algorithm
5):

−→
Ftp =

1

n

n∑
i=1

−→ni

d(Si, p)

Summation Overall, the global static repelling force is thus:

−→
Fsr =

−→
Fe +

−→
Fsd +

−→
Ftp

All sub-forces might be nil depending on conditions (drone not in an obstacle
safety area, not approaching an obstacle segment, or not perceiving any obstacle
respectively).

Best direction force (VFH-inspired) The best direction force is the prin-
cipal force of obstacle avoidance, as it attempts to propel drones towards their
target T , while “steering” them away from frontal obstacles, by looking for gaps
between those obstacles.

CHAPTER 3. METHODOLOGY 28

Figure 10: Best direction selection

CHAPTER 3. METHODOLOGY 29

The straight line towards target T is tested first and immediately used if
clear. When this is not the case (such as in figure 10), a choice of direction has
to be made. The best direction amongst possible options is chosen according to
a segment-to-point distance. In practice, this segment-to-point distance for a
segment AB and point P is the distance between P and the point on AB that
is closest to P (see algorithm 5).

In figure 10, where O is the drone’s position and segments OA,OB,OC... are
the software-projected rays (with r = d(O, T)), with a blue rectangle obstacle
and its hashed computed safety area, we see that the best (lowest) distance
possible to T corresponds to distance c or d(O,G), hence OG is considered the
best direction available as it can bring the drone closest to its target.

The resulting force, with pb the position of the best direction segment’s
extremity (G in the above example, it could simply be T if in line of sight), p
and −→s the considered drone’s position and speed vector, and γa an anticipation
scalar that helps avoid target overshoot, is written:

−→
Fbd = ˆpb − (p+ γa−→s)

Escape maneuver force Our best direction selection algorithm has a
drawback: in some corner cases, a drone can get “stuck” near an obstacle;
in fact, VFH-family algorithms are known to be sensitive to “local minima”
(Leca et al. 2019). This can happen, for example, when drones discover their
environment and meet an obstacle that is much wider than the field of view of
their LiDAR system (which is the only source of obstacle information available
to cognition at this stage, as nothing has been learned yet).

Figure 11: Stuck drone

CHAPTER 3. METHODOLOGY 30

In this situation (depicted in figure 11), the drone is unable to “see” any
gaps in obstacles ahead and thus the selected best direction is OE (as distance
a is the shortest possible) which sends the drone straight towards the middle
of the obstacle — where it will soon stop without reaching target T due to the
influence of obstacle repelling forces.

When this happens, a secondary logic or “escape maneuver” is triggered.
The escape maneuver consists in the addition of a force pushing the drone
“along the walls” (i.e. the obstacle’s safety area in practice): exactly as, when
lost in a labyrinth, we follow a wall to find our way out, here walls are followed
until the drone either acquires a line of sight with its target T or finds a gap in
the drone-target direction. This is similar, in a way, to the “tangential escape”
approach (Ferreira et al. 2008; Brandão, Sarcinelli-Filho, and Carelli 2013).

In short, when the drones’ average speed gets below a threshold value σa, the
following force is triggered, with XY the closest obstacle safety area segment
(such as in figure 11), −→v equal to −−→

XY or −−→Y X (whichever results in the smaller
turn), αem a scaling coefficient and −→n the normal unit vector to XY pointing
towards the drone:

−−→
Fem = αem(2−̂→v −−→n)

Figure 12: Escape maneuver force

The force also gently pushes the drone towards the wall as in figure 12, to
counter static obstacle repelling forces.

Summation Overall, the dynamic obstacle avoidance force is the following,
with k a scaling coefficient:

−−→
Fdoa = k

−→
Fsr + (

−→
Fbd or −−→

Fem)

CHAPTER 3. METHODOLOGY 31

Collective speed attraction

As we have seen in the cognition section, collective cognition includes a collective
speed memory that is used to store average speeds of drones.

The swarm intelligence algorithm using this data and introduced here is
based on the ant colonization family of algorithms (Dorigo, Birattari, and Stüt-
zle 2006) where, by producing pheromones as they move, ants attract other
members of the colony on their path. This, in turn, produces an interesting
path-optimization emergent behavior.

If, for example, an ant colony lies in A and a food source in B, as they
explore their environment, ants from A will inevitably find various ways to go to
B. However, ants using the shortest paths will be able to perform more journeys
between A and B than others in a given time, and will hence leave a higher
density of pheromone traces of their passage. As pheromone concentrations get
increased in the vicinity of shortest paths, other ants will be enticed to use
them as well and the process will self-reinforce itself, leading the whole colony
to automatically prefer shortest paths from A to B.

However, in the context of SAR operations, drones actually want to explore
their environment (in other words, display a measure of curiosity) and not go
from a point to another using the same path repeatedly (except, possibly, to
return to landing pads to recharge): ant-colony algorithms are not applicable
as such. We therefore propose a variation based on speed of travel.

Collective speed values are here used to influence drone paths laterally: a
collective speed attraction force −−→

Fcsa is introduced, perpendicular to a drone’s
speed vector −→s . As a reminder, collective speed memory is permanently the
subject of a diffusion algorithm, whose aim is to create progressive average speed
gradients between grid cells of the SAR operations area.

If a drone with position p and speed −→s is currently inside a grid cell G, its
lateral positions pl, pr are found by using grid cell diagonal length ld and −→sr
a vector obtained by rotating −→s to the right by a 90° angle in the horizontal
plane containing p:

pl = p− ld−̂→sr
pr = p+ ld−̂→sr

From there,

Gl = gridcell(pl)

CHAPTER 3. METHODOLOGY 32

Gr = gridcell(pr)

If υ(Gi) is the average speed value at cell Gi, the lateral collective speed
attraction force is computed as follows:

−−→
Fcsa = (υ(Gr)− υ(Gl))−̂→sr

Summation

All three dynamic adaptation forces are added with various coefficients to get a
final pathfinding force

−−−−−−−−→
Fpathfinding = αcm

−−→
Fcm + αdoa

−−→
Fdoa + αcsa

−−→
Fcsa

In practice, this force is then converted to yaw, pitch, bank, and thrust
commands to try achieve a corresponding horizontal acceleration.

Restricted area avoidance

Restricted areas are permanently stored in an onboard database and therefore
avoidance can be planned and optimal paths computed onboard drones. We
propose here the use of the classic artificial intelligence A* algorithm (Hart,
Nilsson, and Raphael 1968).

A* is a graph search algorithm. It computes a list of nodes to visit to
maximize a given heuristic while going from a start node to a target node and
avoiding unwanted nodes. The path computed can be optimal (node-wise),
and, if the graph is not too big, the computation is relatively inexpensive. A
pseudocode listing of A∗ is presented in algorithm 6.

If we divide the SAR operations area in grid cells, each cell representing a
node, we can use A∗ to compute optimal paths between two cells, by using an
euclidian distance heuristic (which, as a side note, is an admissible heuristic
ensuring optimality), and tagging certain cells as restricted (or not usable). In
practice, the process is to tag all cells containing a part of a restricted area as
unusable.

The standard version of A∗ only takes into account neighbor nodes of each
node to perform its computations, and visiting each in sequence will look unnat-
ural (“jerky” path with multiple turns instead of straight lines), as in figure 13
where nodes take the form of grid cells.

CHAPTER 3. METHODOLOGY 33

Figure 13: Paths without / with post-smoothing

Post-smoothing Post-smoothing is the process of joining two cells that are
in line of sight with a straight line. By reducing unnecessary intermediate
waypoints, it reduces the distance between two cell points while also saving
battery by incurring less maneuvers. It can be computed in a number of ways;
here we’ll use a recursive iteration of the Bresenham algorithm (Bresenham
1965) to smoothen computed paths. Bresenham’s algorithm is well known in
the field of computer graphics: it is a line drawing algorithm that determines
which cells to select in a grid (a screen grid for example) to obtain as close an
approximation of a straight line as possible between two points.

The Bresenham algorithm’s pseudocode version is presented in algorithm 7.
Here, we use Bresenham’s algorithm to compute a line of sight between two

points, in relation to restricted areas. Cells marked by Bresenham’s algorithm
as being on a straight line between two points A and B are checked to see if
they are restricted. If a marked cell is restricted, then there is no line of sight
between A and B. If no cell is restricted, then there is a line of sight between A
and B and the path between A and B is simplified by removing all intermediate
cells in between.

The overall logic is listed in algorithm 3.

Flight plan generation Overall, combining A∗ and post-smoothing produces
a list of nodes (which are grid cells in the present case) that have to be visited
in sequence by a drone to go from a start position to a goal position. However,
dynamic adaptation pathfinding is based on targeting a given position T .

Therefore, lists of grid cells to visit are converted to positional data by
computing the position of each grid cell’s center, and stored in a each drone’s
flight plan memory. This flight plan memory is actioned by each drone in the
following manner: as soon as a target T is reached, it is removed from the flight
plan sequence, and the first remaining target becomes T . If the flight plan is
empty, the drone stops.

CHAPTER 3. METHODOLOGY 34

Algorithm 3 Bresenham-based post-smoothing
function LineOfSight(node A, node B)

for each N ∈ Bresenham(A, B) do
if restricted(N) then

return False
end if

end for each
return True

end function

function RecursiveSearch(node A, node B)
if A = B then

return B
end if
if preceding(B) = A then

return B
end if
if ¬ LineOfSight(A, B) then

return RecursiveSearch(A, preceding(B))
end if

end function

function PostSmoothing(list P)
if ¬ empty(P) then

list L ← new list
node S ← first(P)
L ← add S
while S ̸= last(P) do

S ← RecursiveSearch(S, last(P))
L ← add S

end while
return L

end if
return P

end function

3.2.4 Intentions and policies

In order to be autonomous in their environment, cognitive drones must exhibit
a certain set of behaviors: they need a set of intentions (possibly given by the
operator), and ways of successfully achieving these (by either designing a plan
or following a procedure). Plan generation is powerful but as with all things
subject to learning, mistakes and approximations are part of the process (things
rarely unroll exactly as planned!); and in the present context we want drones to
be immediately operational and efficient in performing SAR operations, without
providing training. The procedural route seems therefore more appropriate: a
set of behavioral policies is thereby conceived. Policies are actioned depending
on the drone (or the operator’s) intentions.

Intentions

Drones keep track of a duality of intentions: an internal intention that can be
modified by the drone itself depending on the situation, and an external inten-
tion (operator intention) which is only assignable and modifiable by the swarm
operator. Drones’ internal intentions are initially set to match any assigned
external intentions, but are subsequently modified as necessary to manage im-

CHAPTER 3. METHODOLOGY 35

peratives such as battery charging for example.
As an example is sometimes worth a thousand words, let’s imagine the

swarm operator has assigned the external intention Deploy to drones. When
they reach the associated assigned position, their internal intention becomes
Standby. After a while, a certain number of drones assess that their current
position and battery charge level (both provided by individual cognition sys-
tems) is making energy requirements a concern and that recharging is soon to
become critical. They automatically assign themselves a Recharge internal
intention, and start searching for the nearest landing pad. Once charging is
done, they again modify their internal intention to Deploy to move back to
the location they left, and finally revert to a Standby internal intention and
are now again on par with external (operator) intentions.

Internal intentions

There are 5 internal intentions:

• Standby - stay immobile at the current location

• Deploy - move to a specified location

• Explore - perform a stochastic exploration of surroundings

• Follow - follow another entity

• Recharge - find and move to the nearest available landing pad to recharge

External (operator) intentions

External intentions are assignable by the swarm operator. There are 2 external
intentions:

• Deploy - go to a location, by using in sequence the Deploy and Standby
internal intentions

• Rescue - initiate internal intention Explore; allow the swarm to ask
queries about what to search for, then Follow matching entities to rescue
while broadcasting a rescue intervention request

Policies

Policies are pre-wired, “instinctive” list of actions that depend on intentions.
Just as living beings are equipped with various life-saving reflexes (such as
breathing for example), drones are provided with policies enabling them to
“thrive” in their environment.

CHAPTER 3. METHODOLOGY 36

For each internal intention, the associated policy is described by the following
flow charts (figures 14, 15, 16, 17, 18).

Figure 14: Standby Figure 15: Deploy

Figure 16: Explore Figure 17: Follow

CHAPTER 3. METHODOLOGY 37

Figure 18: Recharge

Exploration policy Exploration is one of the principal functions of SAR
drones, to find who to rescue and where. Here, we propose the use of a semi-
stochastic algorithm (semi stochastic in the sense that it won’t send drones back
on their own recent “footsteps” nor in non-navigable areas of the map).

First, as it is random, it is impossible to know in advance its next target
location and thus cannot be tricked by an adversarial trying to avoid detection.
Although this sounds inutile in the context of SAR (who would not want to
be rescued?), it is actually useful as living beings to rescue could potentially be
avoiding detection without wanting to by moving in a given direction, and finding
their movements match those of a predetermined drone search pattern with a
delay. That would leave drones completely blind to their presence, whereas it is
statistically close to impossible to match random patterns hence semi-stochastic
location assignments prevent this unwanted behavior.

As with any search algorithm confronted to targets moving unpredictably,
it can either be lucky or unlucky in its path selection. Also, it is not optimal
in terms of area covered, as it doesn’t systematically target every area of the
map in sequence, but by having a better chance of finding moving objects than
a methodical approach it compensates for that; and finally, it is based on the
hypothesis that all areas of the map have the exact same probability of entailing
rescue operations.

The semi-stochastic exploration algorithm avoids locations that:

• are in the drone’s spatial memory

• are inside restricted areas

CHAPTER 3. METHODOLOGY 38

• are not in line of sight (obstructed by perceived obstacles residing in the
drone’s “mental model”)

We want to make sure that barring obstacles and restricted areas, drones are
guaranteed to find an unvisited location after a number of tries. If r is the
distance to the next location, for this to happen we need the area of the circle
with radius r to be greater than the area covered by the n locations in spatial
memory. However, in the worst-case scenario, a drone can be in a corner of the
map and only have a quarter of this circle available for its next location. Thus,
if a is the area of a location in spatial memory, we must have:

πr2

4
> an

Which has a positive solution:

r > 2

√
an√
π

If we set m = 2
√
a n√
π
, with σmd the minimum desired distance to the next po-

sition, γdc a direction continuity coefficient such that 0 < γdc < 1, k a reach coef-
ficient (k > 1) and p the drone’s position, the actual semi-stochastic exploration
algorithm is listed in algorithm 4. Functions rand() and gaussianRand() re-
spectively return random numbers between 0 and 1 and gaussian-distributed
random numbers (normally distributed with mean 0 and standard deviation 1).
Gaussian random numbers and the related coefficient γdc are used to statistically
lessen significant direction changes.

The probability P (kmrand() > m) is k−1
k : for example with k = 4, in the

worst possible case, every kmrand() call has 3 chances out of 4 of returning
a guaranteed acceptable next position, barring obstacles. Lower k values favor
more progressive, local exploration whereas higher k values favor extra reach and
can result in drones traveling greater distances from one position to another.

Battery charging policy Battery charging is one of the few “survival in-
stincts” of drones aside from dynamic pathfinding. The question of when to
recharge is not trivial at all, as an error will force an emergency landing in
a disaster area, and the drone will certainly be lost. However, initiating the
recharge process too quickly will also incur many return flights to the nearest
landing pads and this will be very costly operationally (while recharging, drones
cease SAR duties).

CHAPTER 3. METHODOLOGY 39

Algorithm 4 Semi-stochastic exploration algorithm
function RandomPosition(drone D, tries t)

if t < 0 then
return p

end if
d← σmd + km rand()
θ ← yaw(D) + π γdc gaussianRand()
pt = p + d{cos θ, sin θ, 0}
if pt ∈ SpatialMemory(D) or restricted(pt) or ¬sight(pt) then

return RandomPosition(D, t− 1)
else

return pt

end if
end function

In other words, the resulting algorithm must be a little conservative, but not
too much.

Our proposed algorithm predicts battery level on arrival (Bp) at the current
nearest landing pad Ln, using the current battery level Bc, the average battery
depletion rate∆b, the drone’s maximum speed sm and the current drone position
p:

Bp = Bc −
d(p, Ln)

σ sm
∆b

σ is a conservative positive factor (σ < 0.1) as the computed distance
d(p, Ln) does not account for obstacles.

In practice, when the resulting battery level Bp is under a predefined thresh-
old, the drone changes its internal intention to Recharge and temporarily
ceases SAR operations.

It then tries to pair itself with the closest available landing pad (landing
pad status is known via radio) by broadcasting a pairing request that includes
the landing pad’s identification number. If the request is unsuccessful, it tries
another landing pad (the next closest): as there is at least one landing pad for
each drone, the request is guaranteed to succeed rapidly even if all drones decide
to recharge simultaneously.

3.3 Landing pads
Landing pads have two physical functionalities: 1) offer drones a safe landing
area and 2) perform bilateral communications with the swarm of drones and
with the operators’ station. They are, in fact, the radio transmission relay
between drones and an operator station.

Additionally, they manage incoming recharge requests through a pairing
protocol. Here is what happens when a landing pad receives a drone’s pairing
request:

CHAPTER 3. METHODOLOGY 40

• if the landing pad is not paired, the query is accepted and a pairing ac-
ceptation message including the accepted drone’s identification number is
broadcast

• otherwise, the landing pad does not reply

That way, every drone is informed of its query response. If drones send simulta-
neous requests to the same landing pad, only one is chosen and its identification
number broadcast, and others are immediately informed of their request refusal
as the broadcast identification number does not match theirs.

3.4 Operator stations
Operator stations are the human-swarm interface. They are used to store all
incoming swarm queries, and present them to the operator(s) using a human-
readable format (as soon as a query is answered, identical queries in memory
are discarded), and also to receive all drone rescue intervention requests and
dispatch them to the rescue intervention team upon an eventual positive visual
confirmation (via the drone’s camera).

Chapter 4

Implementation

In order to test the ideas presented in this Master’s dissertation, a software
SAR simulation has been developed. It consists in two subparts: a generic
UAVs simulation framework and an iteration of this framework applied to a
SAR operations environment using a cognitive UAV swarm; but many others
could also be thought of and implemented.

The codebase is designed with modularity in mind: any kind of object with
its own characteristics, cognitive abilities, physics, or world interactions is easy
to add to the simulation.

Other iterations of the simulation could, for example, introduce new drone
models that have completely different purposes and governing algorithms, be
it for learning, pathfinding, or anything conceivable; other world objects such
as ground vehicles, ships, or new kinds of obstacles or natural features such as
mountains, lakes, seas, etc.

The codebase is hosted online and accessible on request 1. It consists of a
set of about 200 Java classes and 7000+ lines of code.

4.1 Software platform
For a simulation environment to be broadly useful, it must at least:

• be simply deployable on a variety of environments (Windows, MacOS,
Linux)

• be fast enough to function properly on a modern laptop

• be modular enough to allow for future use cases
1https://github.com/gvoirin/airswarm

41

CHAPTER 4. IMPLEMENTATION 42

Language-wise, it was decided to make use of Java and the Valhalla future
evolution of the JDK2. The simulation environment is designed to run on any
Valhalla-compatible JVM 3: the best of both worlds regarding speed and plat-
form portability. For a detailed explanation about technical choices, please see
appendix A.1.

Three open-source libraries were also selected for inclusion in this project:
the minimal-json4 library to read JSON scenario files, the JavaFX5 library to
take care of the two and three-dimensional displays software layer, and the
Weka6 library for its decision tree classifiers.

4.2 Generic simulation world
The generic simulation world is graphically delimited by a black boundary and
governed by the same laws we are accustomed to: i.e. gravity, air resistance,
time, etc. It is updated in real-time, although time can be slowed down using
the appropriate control (see section 4.3).

4.2.1 Content

The simulation world can contain an arbitrary number of components (overall
performance being the only limit) each having its own three-dimensional position
and associated three-dimensional representation in the main view. Also, the
world is backed by a grid array that can serve purposes such as A∗ computations
or information storage. Every three-dimensional position within the world’s
boundary has corresponding two-dimensional grid cell coordinate values as in
figure 19.

4.2.2 Scenarios

Scenarios represent objects’ states (positions, features, etc.) in the simulated
world, at time t = 0.

The JSON (JSON 2020) file format is an ideal storage medium for scenario
files, as it is easily readable and self-explanatory while having enough data
structure wrappers (objects, arrays...) to enable hierarchical storage: it is used
for the simulation iteration of this Master’s dissertation. An excerpt of a scenario
file (taken from the cognitive search and rescue swarm of drones system), is
presented in figure 20.

2Java Development Kit
3Windows, MacOS or Linux versions: https://jdk.java.net/valhalla/
4https://github.com/ralfstx/minimal-json
5https://openjfx.io
6https://github.com/Waikato/weka-trunk

CHAPTER 4. IMPLEMENTATION 43

Figure 19: Dual coordinate system in the simulation world

Points O and A are defined by 3-D world coordinates (0, 0, 0)
and (25, 15, 10) in the above schematic (Oz is not pictured
as the eye is facing down) and are also part of grid cells
(10, 10) and (12, 11)

...
"drones": [

{
"dimensions": [

1,
1

],
"max_thrust": 15,
"mass": 1,
"position": [

150,
150

]
}

],
...

Figure 20: Excerpt of a JSON scenario file

4.2.3 Physics engine

In order to compute realistic object movements, our simulator is equipped with
a physics engine. Newton’s laws of motion (Newton’s Laws of Motion 2020)
are applied to a subset of objects in the simulator, called “physical” objects to
distinguish them from the remaining “virtual” objects on which these laws do
not apply.

In Newton’s physics, all objects are subject to a set of forces which can be
aggregated as a single summation force −→

F (i.e. −→
F is the sum of forces applied

CHAPTER 4. IMPLEMENTATION 44

to the object in N). The set includes by default objects’ own weight computed
as −→w = m.−→g and whose norm is expressed in N (1N = 1kg.m.s−2), with m the
object mass in kg and ∥−→g ∥ = 9.80665m.s−2.

Using Newton’s laws, we have:

−→
F = m.−→a

Hence,

−→a =

−→
F

m

Every computation iteration, a time difference elapsed since the last compu-
tation iteration is retrieved (in floating-point number of seconds) and referred
to as dt.

New speeds and positions are then computed as such:

−→s = −→s +−→a .dt

p = p+−→s .dt

Physical objects can additionally be subjected to air resistance or drag (Drag
(Physics) 2020), in which case a drag force directly opposed to the speed vector
is automatically added to an object’s sum of forces −→F . Its norm is computed as
follows:

R =
1

2
ρACd∥−→s ∥2 (4.1)

With ρ = 1.225kg.m−3 the density of air, Cd the drag coefficient and A the
exposed surface variable for each object type.

Drone physics

Drones are quadcopters and their specific physics complement the simulation
framework’s physics engine. As other physical objects, they are subject to weight
and air resistance forces.

CHAPTER 4. IMPLEMENTATION 45

Level flight Furthermore, as they operate in level flight, their sum of forces is
vertically nil (otherwise a climb/descend force will incur vertical movement). If
we set aside air resistance (which has no vertical component as movement takes
place on a horizontal plane), we get the vertical constraints system schematic
displayed in figure 21. The following are thus derived from level flight con-

Figure 21: Physics of level flight

O is the drone’s center of gravity, θ the drone’s pitch angle,−→
OT represent the thrust vector−→T and−−→

OW the weight vector
−→w . Ft is the forward thrust component

straints:

W = T cos(θ)

Ft =
√
T 2 −W 2

Obviously, T ≥ W otherwise the drone descends.

Dynamic thrust Depending on the drone’s speed and position in regards to
relative airflow, propeller thrust efficiency varies. Requested thrust is therefore
corrected to dynamic thrust: drones’ four propellers are assimilated to a single
one whose center lies at the drone’s center of gravity, and the thrust correction
force −→

D is computed depending on this propeller’s angle to the relative air flow.
Experimental testing has demonstrated a near-linearity of the obtained thrust /
demanded thrust ratio in regards to relative speed of propellers to surrounding
air (jburgoyn 2014; Staples 2019) so we’ll use this good enough approximation
here.

CHAPTER 4. IMPLEMENTATION 46

−→
D = −η

−̂→
T ∥−→s ∥

√
T 2 −W 2

T
cos(−̂→s ,−→T)

The formula can be demonstrated with usual trigonometry. −→T is the thrust
produced by propellers in still air (as demanded by the drone’s software pilot)
expressed in N , θ the pitch angle, −→w the weight, η a predefined penalty factor,
and −̂→s ,−→T is the angle between the quadcopter’s speed and requested thrust
vector in a horizontal plane.

The new thrust force vector after correction is then

−→
Tc =

−→
T +

−→
D

However, the corrected thrust vector must also maintain level flight con-
straints and this incurs a change in pitch angle from θ to θ′ (as W = Tc cos(θ′)).
This is a differential equation: dynamic thrust modifications incur changes in
pitch angle to maintain vertical flight constraints, but changes in pitch angle
also modify dynamic thrust values. However, the variation of dynamic thrust
from pitch angle θ to θ′ is usually minimal and the associated numerical error
is accepted here.

The air resistance and weight forces are then added to−→Tc (see section 4.2.3) to
obtain the final force−→F (which must have no vertical component if computations
are right, due to the level flight constraints).

Newton’s laws of physics are then applied to deduce the resulting acceleration
−→a and from there speeds and positions are updated.

4.3 User interface
The simulation user interface consists of a single window, subdivided into dis-
tinct panes (see figure 22).

The main view pane displays a three-dimensional bird’s eye view of the
world. It is possible to zoom in and out, click into, or translate and rotate the
viewpoint using the mouse.

On the top right, the individual cognition pane represents the drone’s
mental model from a bird’s eye perspective, with symbols and colors the same
as in the main view. Next to it, the collective speed memory pane displays
collective average speed memory in the form of a heatmap, again from a bird’s
eye perspective (the whole map is represented).

Just under these two panes, the mouse action pane offers four selectable
options: position, to point to a position in the simulated world via a click inside

CHAPTER 4. IMPLEMENTATION 47

Figure 22: Simulation user interface window

the main view, translation, to move the camera (eye) left/right or up/down in
the world, rotation, to rotate the camera angle, and info, to select an object in
the main view. Additionally, this pane includes a set of zoom buttons to zoom
in and out of the main view (zoom is multiplied/divided respectively by a scale
factor of 1.1).

Under the mouse action pane, the time management pane enables control
of simulation time. It includes a simulation time display as well as start/stop
buttons and a slow-motion controller). The scenario selection pane is a
drop-down list used to select and load a scenario file from disk. The operator
(external) intentions pane is used to send external (operator) intentions to
the swarm: deploy or rescue.

The swarm queries pane simulates operator stations querying: swarm
queries are accessed there in an unformatted manner. They can be replied to
asynchronously (they are non-blocking: the simulation continues to run with
unanswered queries).

4.4 SAR simulation world
The SAR simulation world consists of five types of elements: cognitive drones,
landing pads, obstacles, restricted areas, and other entities. At t = 0, drones
have no knowledge of obstacles and other entities.

CHAPTER 4. IMPLEMENTATION 48

4.4.1 Cognitive drones

Cognitive drones are implemented using the algorithms presented in chapter 3.
In particular, the horizontal pathfinding force −−−−−−−−→

Fpathfinding is computed for
each drone, then converted to a desired thrust vector using the laws of level
flight (−−−−−−−−→Fpathfinding gives the direction of the required forward thrust component
as in section 4.2.3), which is itself associated with yaw, pitch, bank, and thrust
values.

Also, collective speed memory diffusion (cf. section 3.2.2) being quite com-
puter intensive (a simulation world can be divided in millions of grid cells), it
is massively parallelized and computed in small batches at every time step dt.

Cognitive drones representations are displayed in figure 23. The green bar
underneath displays battery level. Instantaneous battery depletion is computed
proportionally to the current thrust vector norm. The image on the far right
shows drones above landing pads.

Figure 23: Cognitive drones representations

For this simulation’s purposes, a set of implementation scalars has been
chosen. They are listed in table 1 with their reference section.

r = 50 section 2 η = 0.001 size(grid)√
size(grid)

section 3.2.2
δwm = 60s section 3.2.2 ρc = 20m section 3.2.3
δacc = 300s section 3.2.2 ρs = 10m section 3.2.3
δa = 10s section 3.2.2 ρa = 10m section 3.2.3
αc = 0.2 section 3.2.3 l = 2m section 3.2.3
αs = 5 section 3.2.3 φ = 100 section 3.2.3
αa = 1 section 3.2.3 γa = 1.25 section 3.2.3

αem = 50 section 3.2.3 k = 2 section 3.2.3
αcm = 1

3 section 3.2.3 αdoa = 1 section 3.2.3
αcsa = 1 section 3.2.3 σ = 0.1 section 3.2.4
γdc = 0.75 section 3.2.4 k = 4 section 3.2.4

Table 1: Implementation scalars

CHAPTER 4. IMPLEMENTATION 49

4.4.2 Landing pads

Landing pads’ inner works (in particular, the drone pairing algorithm) are pre-
sented in chapter 3. In the present implementation, drones just need to hover
above landing pads to start recharging.

They are represented by cyan cylindrical volumes, as in figure 24.

Figure 24: Landing pads representations

4.4.3 Obstacles

Obstacles take various purple three-dimensional rectangular shapes in the present
implementation, as in figure 25.

Figure 25: Obstacles representations

4.4.4 Restricted areas

Restricted areas surfaces are depicted in grey as in figure 26, and consist of
ellipse and rectangle-like figures.

Figure 26: Restricted areas representations

CHAPTER 4. IMPLEMENTATION 50

4.4.5 Rescuable entities

Rescuable entities can take various colors, sizes or shapes as in figure 27: they are
only symbolic representations, used as abstractions to any kind of real object
or living being. They can move in the simulated world if required, and are
able to avoid dynamic obstacles. They are allowed to enter drone-restricted
areas, and can trigger a rescue intervention if their “fuzzy feature vectors” (see
section 3.2.2) match certain characteristics induced from the swarm-operator
relationship.

Figure 27: Rescuable entities representations

Chapter 5

Evaluation and testing

Our implementation of a simulation environment, described previously, now en-
ables us to test various aspect of our cognitive swarm of drones system, through
a set of challenges. These will test swarm units both individually and collec-
tively.

5.1 Pathfinding
Pathfinding is, by far, the main functionality of exploration drones. In our ap-
proach, pathfinding takes its inputs from cognition, but often, as drones are ex-
ploring, they are yet to acquire knowledge of their environment. We’ll therefore
test both pathfinding without environment knowledge (in which case cognition
has close to zero immediate effects), and with environment knowledge (where
cognition-provided information should enable cleverer paths). Also, algorithms
chosen for restricted areas pathfinding will be evaluated.

5.1.1 Zero-knowledge dynamic pathfinding

Zero-knowledge pathfinding is crucial: if not implemented properly, drones
won’t be able to explore all areas of the map and thus learn from them: poor
zero-knowledge pathfinding can in fact severely impact drone cognitive abilities.
Not to mention the fact that, in a SAR environment, it is clearly detrimental
not to be able to explore all parts of the operational area.

Single drone

Our first challenge consists in putting a single drone in front of a complicated,
unseen-before obstacle field (no learning of the environment has been allowed).

51

CHAPTER 5. EVALUATION AND TESTING 52

Figure 28: Single drone zero-knowledge pathfinding challenge

Its aim is to go to a landing pad on the other side of the field, at a distance
of 150m. Obstacles are wide and numerous, and completely prevent a visual
sight on the target as in figure 28. Dynamic obstacle avoidance (see section
3.2.3) is put to a serious test here: we expect the drone find its way, possibly
with difficulty (via a non-optimal path), but successfully.

Step by step progress is shown in figure 29. We can observe that the drone
progresses with general ease and constancy in a quite difficult pathfinding en-
vironment. Between t = 25s and t = 42s, the drone enters a dead end area due
to a combination of speed and inertia, but quickly turns back thanks to static
obstacle repelling forces (cf. section 3.2.3) and the escape maneuver (cf. section
3.2.3), and eventually finds its way out.

Overall, its path is smooth and few slowdowns are observed although the
close proximity of obstacles entails moderate speed. Our sum-of-forces approach
to dynamic pathfinding is an overall success here.

CHAPTER 5. EVALUATION AND TESTING 53

t = 12.4s t = 25.0s

t = 42.9s t = 52.4s

t = 66.7s t = 73.8s

Figure 29: Single drone zero-knowledge pathfinding progress

CHAPTER 5. EVALUATION AND TESTING 54

Multiple drones

For our second challenge we set up the same type of environment, albeit this
time we reduce the number of obstacles and test a flock of 20 drones having the
same intention (i.e. to reach the landing pad on the other side of an obstacle
field). As a drone swarm covers more area, it’s a very difficult challenge as units
have to inter-organize in order to find passages through narrow gaps, while
avoiding each other. The challenge visual overview is presented in figure 30.

Figure 30: Multiple drone zero-knowledge pathfinding challenge

We expect drones to find their way, by eventually splitting into sub-groups or
following one another through narrow gaps (as collective movement forces issued
from the boids algorithm described in section 3.2.3 favor group cohesion).

Figure 31 shows a timeline of the drones’ progress. As there are less obstacles
and thus more space in between, the first drones of the swarm are able to pickup
speed and reach their target quickly. At narrow gaps, slowdowns are observed
for the other drones, and one even interestingly reverts to an escape maneuver
(cf. section 3.2.3) to find its way. However, all drones eventually reach their
target successfully.

Overall, our sum-of-forces approach seems to work here as well: its relative
simplicity can entail emerging group behaviors such as sub-group splitting, and
even individual reactive behaviors when a unit leaves the group to find its own
way after being blocked by the others for too long.

It has to be noted, though, that there are corner cases in which the escape
maneuver is clearly sub-optimal: it can send drones in any direction depending
on walls, and this can include a direction opposite to the target. There is
certainly room for improvement on that matter. However, drones eventually
reach their targets even by using the long route: this is overall a very positive
outcome.

CHAPTER 5. EVALUATION AND TESTING 55

t = 9.8s t = 17.9s

t = 26.6s t = 31.3s

t = 42.8s t = 52.2s

Figure 31: Multiple drone zero-knowledge pathfinding progress

CHAPTER 5. EVALUATION AND TESTING 56

5.1.2 Cognitive dynamic pathfinding

Drones constantly acquire knowledge while in their environment, even by stay-
ing static: they learn from other drones’ status, or eventual unknown entities
passing close by. But like many living beings, exploring is their main knowl-
edge acquisition vector. How does this knowledge then transpire in drones’
pathfinding capabilities?

Here, we setup an environment that will voluntarily entice a drone to make
the wrong choice, without it knowing as it does not yet have any knowledge of its
environment. But it should, thanks to its cognitive functions, be able to avoid
the wrong route afterwards whereas non-cognitive drones would repeatedly fall
into the “trap”.

Figure 32: Cognitive test

The schematic of the concept is displayed in figure 32. A drone is on a
landing pad to the right, and is requested to deploy to the left side of the map
to a target depicted by a dark blue dot. However, in the middle of the map
lies an obstacle (exactly in between the landing pad and target), that cannot be
perceived yet as it is too far for the drone’s LiDAR system in this scenario. The
drone is thus expected to go straight towards the wall ahead until it realizes it
is a dead end.

The interesting thing about this scenario is that it potentially puts to test the
escape maneuver (to exit the dead end), individual cognition to memorize
the environment once it has been discovered, collective cognition with speed
memory to smoothen paths, and the battery charging policy to send the
drone back to its landing pad for a recharge. To make the overall process
automatic, the battery onboard the drone has a low capacity and depletes very
quickly. Once the drone reaches its target on the left, it takes only a few
seconds before it initiates a return to its landing pad due to low battery. Once
the battery is recharged it goes back to its intended target, and so forth.

In figure 34, we can observe the following: at t = 8.4s the drone sees that

CHAPTER 5. EVALUATION AND TESTING 57

the three walls around it are a dead end (also see figure 33 for a representation
of the drone’s current mental model status, where walls are surrounded by red
borders marking attended elements). It starts an escape maneuver and then
follows the top wall at t = 24.2s, back on its own steps. At t = 35.7s it
turns back again but this time decides to go above the three-wall obstacle, and
reaches its target successfully at t = 50.0s. Once the battery charging policy
decides it is time to return to the closest landing pad, it initiates its return
journey at t = 61.2s. At t = 71.2s, it reaches its landing pad with remaining
battery and starts recharging. Once the battery is fully recharged, it heads
back towards its assigned target. But by t = 86.5s it has done something
very interesting: although its LiDAR cannot directly sense the vertical wall,
its cognition (working memory specifically) has informed pathfinding about the
obstacles ahead and they are avoided just as if they were sensed: the drone is
using its knowledge to perform obstacle avoidance and easily avoids the “trap”
this time. From here thereafter, it systematically avoids the three-wall obstacle
on its journeys between landing pad and target.

After a while, collective speed memory has collected enough data (with mul-
tiple drones it goes quicker) to start its subtle job of smoothening paths, by
gently pushing the drone onto its faster lanes. As it only uses a single drone’s
data, doing the same return journey over and over, its effect is here minor as
expected. Its state at t = 978.4s is displayed in figure 35, where we can see
clearly the two main fast lanes (one for the forward, and one for the return
journey).

So, overall, cognition does seem to improve pathfinding: there is a clear
advantage in learning from salient parts of the environment, as this case study
shows.

t = 8.4s t = 24.2s t = 35.7s

Figure 33: Cognitive test mental models

CHAPTER 5. EVALUATION AND TESTING 58

t = 8.4s

t = 24.2s

t = 35.7s

t = 50.0s

t = 61.2s

t = 71.2s

t = 86.5s

Figure 34: Cognitive test progress

CHAPTER 5. EVALUATION AND TESTING 59

t = 978.4s

Figure 35: Collective speed memory status

On a side note, and speaking of collective speed memory, the diffusion al-
gorithm is as important as the storage space itself, as its aim is to propagate
information in all directions and create average speed information gradients.
For testing purposes, in figure 36, we apply the algorithm to a random matrix
(η = 0.1). Results are satisfying: smooth gradients are created throughout the
heatmap and do “generalize” information in space.

i = 0 i = 2000 i = 4000 i = 6000 i = 8000

Figure 36: Diffusion algorithm progress (with i the iteration count)

5.1.3 Restricted areas pathfinding

An A∗ “test playground” is setup, with a single drone starting on a landing pad
and having to navigate through a complex set of restricted areas. It steers in
between restricted areas (in grey as in figure 37) and reaches its target (a dark
blue dot in the bottom left, while the next intermediate waypoint is depicted
by a light blue dot). The combination of A∗ and post-smoothing works well:
paths are straight with necessary turns only.

CHAPTER 5. EVALUATION AND TESTING 60

Step 1/4 Step 2/4

Step 3/4 Step 4/4

Figure 37: Restricted areas avoidance

5.2 SAR operations
The swarm of cognitive, autonomous drones performs SAR operations by 1)
exploring the environment and 2) querying the operator if necessary. Exploring
is done with the help of our semi stochastic algorithm, while querying involves
decision trees to learn from operator responses.

5.2.1 Semi-stochastic exploration algorithm

What we want to evaluate here is whether the semi-stochastic exploration al-
gorithm actually makes drones explore the whole map, even though we know
this will not be performed in an optimal manner (although there is a very small
probability it could be).

A 400m x 400m SAR world is setup with various SAR elements (cf. section
4.4) and 16 drones ready to go on their landing pad in a corner of the map, as
in figure 38. Collective speed memory is used to verify actual exploration of the
map.

Figure 39 shows map exploration progress with time. At t = 120s a large
part of the map is already explored (a status picture is displayed in figure 40),
at t = 240s an even greater part is explored, and at t = 480s (8 minutes) we
start to see non-navigable area contours which shows that a significant portion
of the map has been explored. This is reasonably fast for an admittedly non-
optimal algorithm, on a 400m x 400m area (due to simulator physics, speed and
maneuverability of drones are realistic). In fact, with a 50m visual range (the
actual visual range of drones in the present example), the whole map has been
visually explored by t = 480s.

CHAPTER 5. EVALUATION AND TESTING 61

Figure 38: Semi stochastic exploration algorithm challenge map

t = 30s t = 60s t = 120s

t = 240s t = 480s t = 960s

t = 1920s

Figure 39: Semi stochastic exploration progress

CHAPTER 5. EVALUATION AND TESTING 62

Figure 40: A general situation picture at t = 120s

5.2.2 Operator querying

To simulate operator querying, we consider a very restricted set of attributes:
{type, attitude, size, movement}, and their associated (restricted again) fuzzy
feature tags presented in table 2.

Type Attitude Size Movement
human aggressive small none
cat lying down large slow
bird waving huge fast

unknown unknown unknown unknown

Table 2: Fuzzy feature tags set

We suppose that the operator has already given an answer to the following
queries:

1) {cat, aggressive, small, slow} → {no, hint type}
2) {human, unknown, large, fast} → {no}
3) {unknown, unknown, small, slow} → {no}
4) {unknown, lying down, large, none} → {don’t know}
5) {human, waving, unknown, slow} → {yes}

After these 5 queries, the decision tree produced by ID3 is displayed in
figure 41.

We can see that {human, waving} already triggers an automatic rescue in-
tervention from drones, based on operator decisions. However, due to a lack of

CHAPTER 5. EVALUATION AND TESTING 63

Figure 41: Decision tree after query 5

observations, numerous leaves have an uncertain outcome: the swarm continues
to systematically produce observation-based queries in these branches of the
tree. We can also see that operator hinting has completely excluded type “cat”
from rescuing operations.

After a while, drones make other observations and the following queries are
answered:

6) {bird, unknown, small, fast}→ {no, hint type}
7) {unknown, aggressive, small, slow} → {no}
8) {human, lying down, large, none}→ {yes}

We now have the tree displayed in figure 42.

Figure 42: Decision tree after query 8

After only 8 queries, the decision tree is already very informative: {human,
waving}, and {human, lying down} now trigger automated rescue interventions,
cats and birds are excluded altogether as well as aggressive unknown types.

Let’s now suppose that ongoing field reports inform the operator that the ma-
jority of adults waving are actually fine and just signal their ok status, whereas
children waving are usually in immediate need for rescue. As a reminder, drones
continue to send decidable queries based on current observations to check that
nothing has changed, but on a stochastic basis to greatly limit their number

CHAPTER 5. EVALUATION AND TESTING 64

(a bias is taken that no error is made and no change is necessary). A query is
considered decidable if the decision tree associates a clear outcome to it (either
yes or no).

Thus, as time passes by and drones detect more and more humans, some
decidable queries are re-issued, such as in the following list:

9) {human, waving, large, unknown}→ {don’t know} (was decidable)
10) {human, waving, small, fast}→ {yes} (was decidable)
11) {human, waving, small, slow} → {yes} (was decidable)
12) {human, waving, small, unknown} → {yes}

After query 12, the actualized tree is displayed in figure 43.

Figure 43: Decision tree after query 12

The updated tree does now make a distinction between adults and children,
and only children trigger automatic rescue intervention requests, as per new
operator decisions. In the same way, every new observation and associated
query request updates the tree, and an operator can constantly update the
swarm’s knowledge state through this process: decision making is dynamic and
so are updated decision trees. This system also allows for errors, as contradicting
query answers are also taken into account, and the priority given to the answer
with highest probability by the decision tree generation algorithm.

Chapter 6

Discussion

We have hereby attempted to achieve a symbiotic combination of simple pathfind-
ing algorithms coupled with cognitive functionalities and artificial intelligence-
borrowed tools; pathfinding providing information to cognition which in turn
influences it, and cognition generating observations from its mental model which
in turn trigger drone-operator queries whose replies are learned from using ma-
chine learning classification techniques.

The SAR operations context seemed like an ideal framework for such an
attempt: being highly dynamic and in an unknown state, it forces swarms
of drones to adapt in real time to unseen-before information and in multiple
manners (via pathfinding and via observation/detection through queries).

Algorithms presented in this Master’s dissertation have various roots: com-
mon sense (dynamic obstacle avoidance), natural observation (swarm intelli-
gence with boids and ant colony-type algorithms), formal computer science (A∗,
Bresenham, or ID3 algorithms), or cognitive psychology principles (individual
cognition algorithms), but all belong to one of the multiple facets of artificial
intelligence in general.

Interestingly, cognitive drone’s pathfinding algorithms, although simple in-
dividually, can collectively be considered an example of fluid argumentation:
conflicting forces (swarm cohesion, separation, and alignment; best direction
and obstacle repelling forces; individual and collective cognition-incurred forces)
influence each drone’s motion, just as in human argumentation, strongest sets
of arguments outweigh others to offer an apparent best outcome to the problem
at hand.

Although cognition is often defined through the prism what is learned, it
can arguably just as well be defined by what is forgotten. It is striking to no-
tice that in recent years, considerable progress in machine learning has been
achieved through forgetting by, for example, using dropout techniques in neural

65

CHAPTER 6. DISCUSSION 66

network training, or multiple trees based on partial data in random forest classi-
fication algorithms. By introducing timing-based information filtering through
our human-inspired individual cognition system, we have actually implemented
a time-based forgetting mechanism related to its natural counterpart. After all,
cognition is also linked to perceived saliency, and environmental features that
are continuously interacted with are more likely to be considered salient (and
learned from) than, for example, the fly that just went out through the window.
Here, the words more likely are important, as cognition in general (and human
cognition in particular) is a great deal more complex than that: sometimes tran-
sient events can leave everlasting traces in memory as other cognitive processes
give them crucial importance and utmost saliency.

So, does this mean the presented system is optimal? Far from it! Improve-
ments can actually be made in all areas.

First of all, speaking of cognition, it could be more extensive in general and
integrated with other functionalities. By “more extensive”, we mean that it
could account for more than timing-based interactions, and include levels of
emotions for example that would influence its memorizing and attention mech-
anisms. Also, it could be integrated in the planning stage, together with A∗
computations, battery recharging requirements, or general behavior policies to
bring a component of learning to these — although this might be undesirable
in some cases for uniformity reasons.

Pathfinding could also be improved: first by making algorithms fully three-
dimensional, by polishing or replacing dynamic obstacle avoidance forces, best
direction force and related escape maneuver which are far from optimal but
functional, and finally, by using any-angle algorithms in the pathfinding plan-
ning stage, such as θ∗ (Daniel et al. 2010) or incremental ϕ∗ (Nash, Koenig, and
Likhachev 2009), or another post-smoothing algorithm coupled with A∗. Swarm
behavior and A∗ is also an area where improvements can be made, by for ex-
ample designing a “single file” procedure or a modified A∗ that accounts for the
swarm’s size. The semi-stochastic exploration algorithm could also be “cleverer”
by either integrating it with a dynamic, cognitive component (for example, by
having drones explore some areas more intensively if they trigger more rescue
interventions from these) or a pre-planned statistical component (by giving ab
initio different weights to different areas, to influence semi-stochastic search),
or both.

Operator querying could also be clearly improved, as the swarm-operator
relationship is semantically minimal. Ideally, operators should be able to start
a dialogue if necessary with the swarm, to further define their objectives or
inform the swarm of special cases. This is achievable using NLP tools and
through further research.

CHAPTER 6. DISCUSSION 67

Regarding the simulation framework, extra precision (by, for example, reduc-
ing the acceptable error made by dynamic thrust computations with differential
equation solving techniques) and the addition of atmospheric conditions to ac-
count for lower visibilities or wind components would be interesting upgrades;
and finally, unexpected events such as drone sensing failures should also be
testable and possibly make another use case for cognition.

Finally, on a more general level, the proposed system could be straightfor-
wardly adapted to maritime/coastal operations and rescuing by 1) modifying
existing behaviors or complementing them with new ones, and by 2) tailoring
algorithms and environmental parameters of the simulation. Semi-stochastic
search, for example, is not very efficient when obstacles are few, and could be
improved with a measure of statistical bias: future positions of entities adrift at
sea can be well anticipated using wind or sea current components. Adding these
to the simulation would be an appropriate first step in tailoring the system to
maritime environments.

Bibliography

Adams, Annette L. et al. (June 2007). “Search Is a Time-Critical Event: When
Search and Rescue Missions May Become Futile”. In: Wilderness & Environ-
mental Medicine 18.2, pp. 95–101. issn: 10806032. doi: 10.1580/06-WEME-
OR-035R1.1. url: https://linkinghub.elsevier.com/retrieve/pii/
S1080603207702181 (visited on 05/15/2020).

Alfeo, Antonio L., Mario G.C.A. Cimino, and Gigliola Vaglini (Oct. 2019). “En-
hancing Biologically Inspired Swarm Behavior: Metaheuristics to Foster the
Optimization of UAVs Coordination in Target Search”. In: Computers &
Operations Research 110, pp. 34–47. issn: 03050548. doi: 10.1016/j.cor.
2019.05.021. url: https://linkinghub.elsevier.com/retrieve/pii/
S0305054819301340 (visited on 05/26/2020).

Atkinson, Richard C. and Richard M. Shiffrin (1968). “Human Memory: A Pro-
posed System and Its Control Processes”. In:

Baddeley, Alan D. and Graham Hitch (1974). “Working Memory”. In: Psychology
of Learning and Motivation. Vol. 8. Elsevier, pp. 47–89.

Berdahl, Andrew et al. (Feb. 1, 2013). “Emergent Sensing of Complex Envi-
ronments by Mobile Animal Groups”. In: Science 339.6119, pp. 574–576.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.1225883. url: https:
//www.sciencemag.org/lookup/doi/10.1126/science.1225883 (visited
on 05/26/2020).

Boids (Flocks, Herds, and Schools: A Distributed Behavioral Model) (2020). url:
http://www.red3d.com/cwr/boids/ (visited on 02/07/2020).

Borenstein, J. and Y. Koren (June 1991). “The Vector Field Histogram-Fast Ob-
stacle Avoidance for Mobile Robots”. In: IEEE Transactions on Robotics and
Automation 7.3, pp. 278–288. issn: 1042296X. doi: 10.1109/70.88137. url:
http://ieeexplore.ieee.org/document/88137/ (visited on 10/30/2019).

Borenstein, Johann and Y. Koren (1988). “High-Speed Obstacle Avoidance for
Mobile Robots”. In: Proceedings of the 3rd International Symposium on In-
telligent Control, pp. 382–384.

68

https://doi.org/10.1580/06-WEME-OR-035R1.1
https://doi.org/10.1580/06-WEME-OR-035R1.1
https://linkinghub.elsevier.com/retrieve/pii/S1080603207702181
https://linkinghub.elsevier.com/retrieve/pii/S1080603207702181
https://doi.org/10.1016/j.cor.2019.05.021
https://doi.org/10.1016/j.cor.2019.05.021
https://linkinghub.elsevier.com/retrieve/pii/S0305054819301340
https://linkinghub.elsevier.com/retrieve/pii/S0305054819301340
https://doi.org/10.1126/science.1225883
https://www.sciencemag.org/lookup/doi/10.1126/science.1225883
https://www.sciencemag.org/lookup/doi/10.1126/science.1225883
http://www.red3d.com/cwr/boids/
https://doi.org/10.1109/70.88137
http://ieeexplore.ieee.org/document/88137/

BIBLIOGRAPHY 69

Brandão, Alexandre Santos, Mário Sarcinelli-Filho, and Ricardo Carelli (2013).
“An Analytical Approach to Avoid Obstacles in Mobile Robot Navigation”.
In: International Journal of Advanced Robotic Systems 10.6, p. 278.

Breiman, L. (1984). “Algorithm Cart”. In: Classification and Regression Trees.
California Wadsworth International Group, Belmont, California.

Bresenham, Jack E. (1965). “Algorithm for Computer Control of a Digital Plot-
ter”. In: IBM Systems journal 4.1, pp. 25–30.

Broadbent, D. E. (1958). Perception and Communication. Elmsford, NY, US.
Pergamon Press. http://dx. doi. org/10.1037/10037-000.

Cherry, E. Colin (1953). “Some Experiments on the Recognition of Speech, with
One and with Two Ears”. In: The Journal of the acoustical society of America
25.5, pp. 975–979.

Chung, Soon-Jo et al. (Aug. 2018). “A Survey on Aerial Swarm Robotics”. In:
IEEE Transactions on Robotics 34.4, pp. 837–855. issn: 1552-3098, 1941-
0468. doi: 10.1109/TRO.2018.2857475. url: https://ieeexplore.ieee.
org/document/8424838/ (visited on 05/26/2020).

Coch, Donna, Lisa D. Sanders, and Helen J. Neville (2005). “An Event-Related
Potential Study of Selective Auditory Attention in Children and Adults”. In:
Journal of cognitive neuroscience 17.4, pp. 605–622.

Cognition | Definition of Cognition by Lexico (2020). url: https : / / www .
lexico.com/en/definition/cognition (visited on 05/07/2020).

Communications, Tait (2012). Race against Time - Emergency Response - Pre-
venting Escalating Chaos in a Disaster. url: https://www.taitradio.
com/__data/assets/pdf_file/0008/156077/Tait_WP_Race-Against-
Time_US_v1_WEB.pdf (visited on 05/15/2020).

Daniel, K. et al. (Oct. 29, 2010). “Theta*: Any-Angle Path Planning on Grids”.
In: Journal of Artificial Intelligence Research 39, pp. 533–579. issn: 1076-
9757. doi: 10.1613/jair.2994. url: https://jair.org/index.php/
jair/article/view/10676 (visited on 03/08/2020).

Deutsch, J. Anthony and Diana Deutsch (1963). “Attention: Some Theoretical
Considerations.” In: Psychological review 70.1, p. 80.

Dorigo, Marco, Mauro Birattari, and Thomas Stützle (2006). “Ant Colony Op-
timization – Artificial Ants as a Computational Intelligence Technique”. In:
IEEE Comput. Intell. Mag 1, pp. 28–39.

Drag (Physics) (Apr. 23, 2020). In: Wikipedia. url: https://en.wikipedia.
org/w/index.php?title=Drag_(physics)&oldid=952685266 (visited on
04/30/2020).

Erdelj, Milan et al. (2017). “Help from the Sky: Leveraging UAVs for Disaster
Management”. In: IEEE Pervasive Computing 16.1, pp. 24–32.

https://doi.org/10.1109/TRO.2018.2857475
https://ieeexplore.ieee.org/document/8424838/
https://ieeexplore.ieee.org/document/8424838/
https://www.lexico.com/en/definition/cognition
https://www.lexico.com/en/definition/cognition
https://www.taitradio.com/__data/assets/pdf_file/0008/156077/Tait_WP_Race-Against-Time_US_v1_WEB.pdf
https://www.taitradio.com/__data/assets/pdf_file/0008/156077/Tait_WP_Race-Against-Time_US_v1_WEB.pdf
https://www.taitradio.com/__data/assets/pdf_file/0008/156077/Tait_WP_Race-Against-Time_US_v1_WEB.pdf
https://doi.org/10.1613/jair.2994
https://jair.org/index.php/jair/article/view/10676
https://jair.org/index.php/jair/article/view/10676
https://en.wikipedia.org/w/index.php?title=Drag_(physics)&oldid=952685266
https://en.wikipedia.org/w/index.php?title=Drag_(physics)&oldid=952685266

BIBLIOGRAPHY 70

Ferreira, André et al. (2008). “An Approach to Avoid Obstacles in Mobile Robot
Navigation: The Tangential Escape”. In: Sba: Controle & Automação So-
ciedade Brasileira de Automatica 19.4, pp. 395–405.

FitzGerald, Peter and Donald E. Broadbent (1985). “Memory for Attended
and Unattended Visual Stimuli”. In: The Quarterly Journal of Experimental
Psychology 37.3, pp. 339–365.

Goodwin, Donald W. et al. (1969). “Alcohol and Recall: State-Dependent Effects
in Man”. In: Science 163.3873, pp. 1358–1360.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”. In: IEEE transactions
on Systems Science and Cybernetics 4.2, pp. 100–107.

Hartman, Christopher and Bedrich Benes (July 2006). “Autonomous Boids”. In:
Computer Animation and Virtual Worlds 17.3-4, pp. 199–206. issn: 1546-
4261, 1546-427X. doi: 10.1002/cav.123. url: http://doi.wiley.com/
10.1002/cav.123 (visited on 10/01/2019).

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

Hocraffer, Amy and Chang S. Nam (Jan. 1, 2017). “A Meta-Analysis of Human-
System Interfaces in Unmanned Aerial Vehicle (UAV) Swarm Management”.
In: Applied Ergonomics 58, pp. 66–80. issn: 0003-6870. doi: 10.1016/j.
apergo.2016.05.011. url: http://www.sciencedirect.com/science/
article/pii/S0003687016300989 (visited on 05/16/2020).

jburgoyn (Jan. 6, 2014). Dynamic Thrust. url: https://itsallrc.wordpress.
com/2014/01/06/dynamic-thrust/ (visited on 10/16/2019).

Jonker, Tanya R., Paul Seli, and Colin M. MacLeod (2012). “Less We Forget:
Retrieval Cues and Release from Retrieval-Induced Forgetting”. In: Memory
& Cognition 40.8, pp. 1236–1245.

JSON (Apr. 27, 2020). In: Wikipedia. url: https://en.wikipedia.org/w/
index.php?title=JSON&oldid=953472069 (visited on 04/30/2020).

Kahneman, Daniel (1973). Attention and Effort. Vol. 1063. Citeseer.
Kahneman, Daniel, Rachel Ben-Ishai, and Michael Lotan (1973). “Relation of

a Test of Attention to Road Accidents.” In: Journal of Applied Psychology
58.1, p. 113.

Kakas, Antonis and Loizos Michael (2016). “Cognitive Systems: Argument and
Cognition”. In: Cognitive Systems, p. 7.

Kass, Gordon V. (1980). “An Exploratory Technique for Investigating Large
Quantities of Categorical Data”. In: Journal of the Royal Statistical Society:
Series C (Applied Statistics) 29.2, pp. 119–127.

https://doi.org/10.1002/cav.123
http://doi.wiley.com/10.1002/cav.123
http://doi.wiley.com/10.1002/cav.123
https://doi.org/10.1016/j.apergo.2016.05.011
https://doi.org/10.1016/j.apergo.2016.05.011
http://www.sciencedirect.com/science/article/pii/S0003687016300989
http://www.sciencedirect.com/science/article/pii/S0003687016300989
https://itsallrc.wordpress.com/2014/01/06/dynamic-thrust/
https://itsallrc.wordpress.com/2014/01/06/dynamic-thrust/
https://en.wikipedia.org/w/index.php?title=JSON&oldid=953472069
https://en.wikipedia.org/w/index.php?title=JSON&oldid=953472069

BIBLIOGRAPHY 71

Khatib, Oussama (1986). “Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots”. In: Autonomous Robot Vehicles. Springer, pp. 396–404.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “Imagenet
Classification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems, pp. 1097–1105.

Leca, D. et al. (June 2019). “Sensor-Based Obstacles Avoidance Using Spiral
Controllers for an Aircraft Maintenance Inspection Robot”. In: 2019 18th
European Control Conference (ECC). 2019 18th European Control Confer-
ence (ECC). Naples, Italy: IEEE, pp. 2083–2089. isbn: 978-3-907144-00-8.
doi: 10.23919/ECC.2019.8795882. url: https://ieeexplore.ieee.org/
document/8795882/ (visited on 06/01/2020).

Levesque, Hector and Gerhard Lakemeyer (2008). “Cognitive Robotics”. In:
Foundations of artificial intelligence 3, pp. 869–886.

Lidar (Apr. 25, 2020). In: Wikipedia. url: https://en.wikipedia.org/w/
index.php?title=Lidar&oldid=953045738 (visited on 04/28/2020).

Lim, Sejoon and Daniela Rus (May 2012). “Stochastic Distributed Multi-Agent
Planning and Applications to Traffic”. In: 2012 IEEE International Con-
ference on Robotics and Automation. 2012 IEEE International Conference
on Robotics and Automation, pp. 2873–2879. doi: 10.1109/ICRA.2012.
6224710.

Murphy, Robin R. (2014). Disaster Robotics. MIT press.
Nash, Alex, Sven Koenig, and Maxim Likhachev (2009). “Incremental Phi*:

Incremental Any-Angle Path Planning on Grids”. In: p. 7.
Newton’s Laws of Motion (Mar. 8, 2020). In: Wikipedia. url: https://en.

wikipedia.org/w/index.php?title=Newton%27s_laws_of_motion&
oldid=944492729 (visited on 04/30/2020).

O’Keefe, J. and J. Dostrovsky (Nov. 12, 1971). “The Hippocampus as a Spatial
Map. Preliminary Evidence from Unit Activity in the Freely-Moving Rat”.
In: Brain Research 34.1, pp. 171–175. issn: 0006-8993. doi: 10.1016/0006-
8993(71) 90358 - 1. url: http : / / www . sciencedirect . com / science /
article/pii/0006899371903581 (visited on 05/10/2020).

Pelánek, Radek et al. (2005). “Enhancing Random Walk State Space Explo-
ration”. In: Proceedings of the 10th International Workshop on Formal Meth-
ods for Industrial Critical Systems, pp. 98–105.

Project Valhalla (Dec. 13, 2019). Project Valhalla: Fast and Furious Java. url:
https://www.javaadvent.com/2019/12/project-valhalla-fast-and-
furious-java.html (visited on 04/26/2020).

Quinlan, J. Ross (1986). “Induction of Decision Trees”. In: Machine learning
1.1, pp. 81–106.

https://doi.org/10.23919/ECC.2019.8795882
https://ieeexplore.ieee.org/document/8795882/
https://ieeexplore.ieee.org/document/8795882/
https://en.wikipedia.org/w/index.php?title=Lidar&oldid=953045738
https://en.wikipedia.org/w/index.php?title=Lidar&oldid=953045738
https://doi.org/10.1109/ICRA.2012.6224710
https://doi.org/10.1109/ICRA.2012.6224710
https://en.wikipedia.org/w/index.php?title=Newton%27s_laws_of_motion&oldid=944492729
https://en.wikipedia.org/w/index.php?title=Newton%27s_laws_of_motion&oldid=944492729
https://en.wikipedia.org/w/index.php?title=Newton%27s_laws_of_motion&oldid=944492729
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/0006-8993(71)90358-1
http://www.sciencedirect.com/science/article/pii/0006899371903581
http://www.sciencedirect.com/science/article/pii/0006899371903581
https://www.javaadvent.com/2019/12/project-valhalla-fast-and-furious-java.html
https://www.javaadvent.com/2019/12/project-valhalla-fast-and-furious-java.html

BIBLIOGRAPHY 72

Quinlan, J. Ross (1993). “C4. 5: Programming for Machine Learning”. In: Mor-
gan Kauffmann 38, p. 48.

Reid, Donald B. (1979). “An Algorithm for Tracking Multiple Targets”. In: IEEE
Transactions on Automatic Control 24, pp. 843–854.

Remy, Guillaume et al. (2013). “SAR.Drones: Drones for Advanced Search and
Rescue Missions”. In: p. 3.

Reynolds, Craig W (1987). “(~) ~ ComputerGraphics, Volume21, Number4, July
1987”. In: p. 11.

Ruetten, Laik et al. (Jan. 2020). “Area-Optimized UAV Swarm Network for
Search and Rescue Operations”. In: 2020 10th Annual Computing and Com-
munication Workshop and Conference (CCWC). 2020 10th Annual Com-
puting and Communication Workshop and Conference (CCWC). Las Ve-
gas, NV, USA: IEEE, pp. 0613–0618. isbn: 978-1-72813-783-4. doi: 10 .
1109/CCWC47524.2020.9031197. url: https://ieeexplore.ieee.org/
document/9031197/ (visited on 06/14/2020).

Sampedro, Carlos et al. (June 2016). “A Flexible and Dynamic Mission Planning
Architecture for UAV Swarm Coordination”. In: 2016 International Confer-
ence on Unmanned Aircraft Systems (ICUAS). 2016 International Confer-
ence on Unmanned Aircraft Systems (ICUAS). Arlington, VA, USA: IEEE,
pp. 355–363. isbn: 978-1-4673-9334-8. doi: 10.1109/ICUAS.2016.7502669.
url: http : / / ieeexplore . ieee . org / document / 7502669/ (visited on
06/14/2020).

Scherer, Jürgen et al. (2015). “An Autonomous Multi-UAV System for Search
and Rescue”. In: Proceedings of the First Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use - DroNet ’15. The First
Workshop. Florence, Italy: ACM Press, pp. 33–38. isbn: 978-1-4503-3501-0.
doi: 10.1145/2750675.2750683. url: http://dl.acm.org/citation.
cfm?doid=2750675.2750683 (visited on 05/15/2020).

Senanayake, Madhubhashi et al. (Jan. 2016). “Search and Tracking Algorithms
for Swarms of Robots: A Survey”. In: Robotics and Autonomous Systems 75,
pp. 422–434. issn: 09218890. doi: 10.1016/j.robot.2015.08.010. url:
https://linkinghub.elsevier.com/retrieve/pii/S0921889015001876
(visited on 05/26/2020).

Shakeri, Reza et al. (Oct. 23, 2018). “Design Challenges of Multi-UAV Systems
in Cyber-Physical Applications: A Comprehensive Survey, and Future Di-
rections”. In: arXiv: 1810.09729 [cs]. url: http://arxiv.org/abs/1810.
09729 (visited on 05/26/2020).

Simons, Daniel J. and Christopher F. Chabris (1999). “Gorillas in Our Midst:
Sustained Inattentional Blindness for Dynamic Events”. In: perception 28.9,
pp. 1059–1074.

https://doi.org/10.1109/CCWC47524.2020.9031197
https://doi.org/10.1109/CCWC47524.2020.9031197
https://ieeexplore.ieee.org/document/9031197/
https://ieeexplore.ieee.org/document/9031197/
https://doi.org/10.1109/ICUAS.2016.7502669
http://ieeexplore.ieee.org/document/7502669/
https://doi.org/10.1145/2750675.2750683
http://dl.acm.org/citation.cfm?doid=2750675.2750683
http://dl.acm.org/citation.cfm?doid=2750675.2750683
https://doi.org/10.1016/j.robot.2015.08.010
https://linkinghub.elsevier.com/retrieve/pii/S0921889015001876
https://arxiv.org/abs/1810.09729
http://arxiv.org/abs/1810.09729
http://arxiv.org/abs/1810.09729

BIBLIOGRAPHY 73

Staples, Gabriel (2019). Propeller Static & Dynamic Thrust Calculation - Part
1 of 2. url: https : / / www . electricrcaircraftguy . com / 2013 / 09 /
propeller-static-dynamic-thrust-equation.html (visited on 10/13/2019).

State of Valhalla (2020). url: http://cr.openjdk.java.net/~briangoetz/
valhalla/sov/01-background.html (visited on 04/26/2020).

Statheropoulos, M. et al. (2015). “Factors That Affect Rescue Time in Urban
Search and Rescue (USAR) Operations”. In: Natural Hazards 75.1, pp. 57–
69.

Szegedy, Christian et al. (2015). “Going Deeper with Convolutions”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–9.

Treisman, Anne (1964). “Monitoring and Storage of Irrelevant Messages in Se-
lective Attention”. In: Journal of Verbal Learning and Verbal Behavior 3.6,
pp. 449–459.

Ulrich, I. and J. Borenstein (1998). “VFH+: Reliable Obstacle Avoidance for
Fast Mobile Robots”. In: Proceedings. 1998 IEEE International Confer-
ence on Robotics and Automation (Cat. No.98CH36146). IEEE Interna-
tional Conference on Robotics and Automation. Vol. 2. Leuven, Belgium:
IEEE, pp. 1572–1577. isbn: 978-0-7803-4300-9. doi: 10.1109/ROBOT.1998.
677362. url: http://ieeexplore.ieee.org/document/677362/ (visited
on 11/01/2019).

Ulrich, Iwan and Johann Borenstein (2000). “VFH/Sup*: Local Obstacle Avoid-
ance with Look-Ahead Verification”. In: Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065). Vol. 3. IEEE, pp. 2505–2511.

Waharte, Sonia and Niki Trigoni (Sept. 2010). “Supporting Search and Res-
cue Operations with UAVs”. In: 2010 International Conference on Emerging
Security Technologies. 2010 International Conference on Emerging Security
Technologies (EST). Canterbury, TBD, United Kingdom: IEEE, pp. 142–
147. isbn: 978-1-4244-7845-3. doi: 10 . 1109 / EST . 2010 . 31. url: http :
//ieeexplore.ieee.org/document/5600072/ (visited on 05/15/2020).

Wolford, George and Fred Morrison (1980). “Processing of Unattended Visual
Information”. In: Memory & Cognition 8.6, pp. 521–527.

https://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html
https://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html
http://cr.openjdk.java.net/~briangoetz/valhalla/sov/01-background.html
http://cr.openjdk.java.net/~briangoetz/valhalla/sov/01-background.html
https://doi.org/10.1109/ROBOT.1998.677362
https://doi.org/10.1109/ROBOT.1998.677362
http://ieeexplore.ieee.org/document/677362/
https://doi.org/10.1109/EST.2010.31
http://ieeexplore.ieee.org/document/5600072/
http://ieeexplore.ieee.org/document/5600072/

Appendices

74

Appendix A

Technical choices

A.1 Why Java?
There were two main options for developing this project: C++ or Java. Both languages
are very evolved and are tailored for complex object-oriented programming projects -
in fact, due to the nature of artificial intelligence algorithms, an abstraction-capable
language (i.e. enabling concept abstractions via polymorphism, inheritance, etc.) is
more than welcome; however they differ on one fundamental aspect: C++ code is
compiled to native code whereas Java code is compiled into bytecode that can be
executed by a virtual machine running on a chosen target environment.

In other words: C++ compiled code is more machine-specific but faster, whereas
Java compiled code is less machine-specific but can end up being slower due to

• memory management: with C++ the developer has to manage memory by
him/herself, with Java a garbage collector runs asynchronously and cleans un-
used objets from memory but this can lead to unwanted delays during execution

• virtual machine overhead and bytecode interpretation, although modern virtual
machines compile parts of bytecode into native code (as is the case for Oracle’s
HotSpot1 JVM2 for example)

The first tested option was C/C++ and a graphic library based on OpenGL3 or
Vulkan4 (NanoGUI5 and ImGui6), with a multi-platform window management library
(GLFW7). With C/C++ code compiled into native code, speed results were fantastic;
however, trying to create a codebase compatible with Windows, Linux and MacOS
simultaneously turned out to be too troublesome and time-consuming in the context

1https://openjdk.java.net/groups/hotspot/
2Java Virtual Machine
3https://www.opengl.org
4https://www.khronos.org/vulkan/
5https://github.com/wjakob/nanogui
6https://github.com/ocornut/imgui
7https://www.glfw.org

75

APPENDIX A. TECHNICAL CHOICES 76

of a time-limited Master’s dissertation implementation. Things would certainly be
analyzed differently in the case of commercial video game development.

The second tested option was therefore Java. Initially, due to the high amount
of calculations inherent to a computer simulation, a considerable amount of objects
needed to be instantiated and dismissed and therefore the garbage collector was doing
too much work resulting in slowdowns. A pooling strategy was implemented: it pro-
duced good results but increased complexity notably while cluttering the code with
numerous extra instructions to take objects from/release objects to the pool; and over-
all it did not look completely adequate for the scope of this project. It appeared like
tradeoffs would have to be made.

The good news, however, is that developers at OpenJDK8 have been working for a
few years now on a project called Valhalla. It is a modification of Java virtual machine
specifications that enables the use of C++ struct-like data structures in Java. These
are extremely interesting for computer-intensive projects as their storage in memory is
optimized: they take less space and are much easier to reuse for memory management
systems - hence enable considerable performance increases in certain use cases, such as
computations involving a great number of memory accesses (Project Valhalla 2019),
like scientific simulations. Although an experimental project to this date, project
Valhalla will be merged with the mainstream JVM9 tree in the years to come (State
of Valhalla 2020), and is therefore future-proof.

8https://openjdk.java.net
9Java Virtual Machine

Appendix B

Algorithms

B.1 Distance from point to segment

Algorithm 5 Distance from point to segment
function SegmentToPointDistance(mental model M)

σ ← distance(A,B)2

if σ = 0 then return distance(A,P)
else

τ ← max(0, min(1,
−→
AP ·
−−→
AB

σ))

Pprojected ← translate(A, τ
−−→
AB)

return distance(P, Pprojected)
end if

end function

77

APPENDIX B. ALGORITHMS 78

B.2 A*

Algorithm 6 A∗ algorithm
function ReconstructPath(node N)

R ← new list
R ← add N
while preceding(N) exists do

N ← preceding(N)
R ← add N as first element

end while
return R

end function

function Heuristic(node N, node G) ▷ G is the goal node
return distance(N, G)

end function

function F-Score(node N, node G) ▷ G is the goal node
return g-score(N) + Heuristic(N, G)

end function

function AlphaStar(node S, node G) ▷ S and G are the start and goal nodes
g-score(S) ← 0
Set O ← new set
O ← add S
while ¬ empty(O) do

Node C ← node with lowest F-Score in O
if C = G then

return ReconstructPath(C)
end if
remove first(O)
for each Node N ∈ neighbors(C) do

T ← g-score(C) + distance(C, N)
if T < g-score(N) then

preceding(N) ← C
g-score(N) ← T
O ← N

end if
end for each

end while
return empty list

end function

APPENDIX B. ALGORITHMS 79

B.3 Bresenham algorithm

Algorithm 7 Bresenham algorithm
function Bresenham(cell A, cell B)

list R ← new list
x0 ← x(A)
y0 ← y(A)
x1 ← x(B)
y1 ← y(B)

dx ← |x1 − x0|
sx ← x0 < x1?1 : −1
dy ← −|y1 − y0|
sy ← y0 < y1?1 : −1
err ← dx + dy

while True do
R ← add cell(x0, y0)
if x0 = x1 and y0 = y1 then

return R
end if
e2 = 2 err
if e2 ≥ dy then

err ← err + dy

x0 ← x0 + sx
end if
if e2 ≤ dx then

err ← err + dx

y0 ← y0 + sy
end if

end while
return R

end function

	Introduction
	Challenges

	Related works
	General works
	Domain-specific works

	Methodology
	Proposed system overview
	Cognitive drones
	Sensing
	Camera and image analysis system
	LiDAR

	Cognition
	Individual cognition
	Attention
	Summary
	Collective cognition

	Pathfinding
	Collective movement forces
	Dynamic obstacle avoidance
	Collective speed attraction
	Summation
	Restricted area avoidance

	Intentions and policies
	Intentions
	Internal intentions
	External (operator) intentions
	Policies

	Landing pads
	Operator stations

	Implementation
	Software platform
	Generic simulation world
	Content
	Scenarios
	Physics engine
	Drone physics

	User interface
	SAR simulation world
	Cognitive drones
	Landing pads
	Obstacles
	Restricted areas
	Rescuable entities

	Evaluation and testing
	Pathfinding
	Zero-knowledge dynamic pathfinding
	Single drone
	Multiple drones

	Cognitive dynamic pathfinding
	Restricted areas pathfinding

	SAR operations
	Semi-stochastic exploration algorithm
	Operator querying

	Discussion
	Appendices
	Technical choices
	Why Java?

	Algorithms
	Distance from point to segment
	A*
	Bresenham algorithm

