

Open University of Cyprus
School of Pure and Applied Sciences

Postgraduate Thesis

In Computer and Network Security

Mitigating Insider Threats using Bio-Inspired Models

Andreas S. Nicolaou

Supervising Professor

Dr. Stavros Shiaeles

May 2020

Open University of Cyprus
School of Pure and Applied Sciences

Mitigating Insider Threats Using Bio-Inspired Models

Andreas S. Nicolaou

Supervising Professor

Dr. Stavros Shiaeles

A thesis submitted in partial fulfillment for the postgraduate degree in

MSc Computer and Network Security

To the School of Pure and Applied Sciences
Open University of Cyprus

May 2020

ii

BLANK PAGE

iii

Summary

Insider Threat has become a huge information security issue that governments and organizations

must face. The implementation of security policies and procedures may not be enough to protect

organizational assets. Even with the evolution of information and network security technology, the

insider threat problem is on the rise and many researchers are approaching the problem with

various methods, in order to develop a model that will help organizations to reduce their exposure

to the threat and prevent damage to their assets.

In this M.Sc. dissertation we approach the insider threat problem and attempt to mitigate it, by

developing a machine learning model based on bio-inspired computing. The model was developed

by using an existing unsupervised learning algorithm for anomaly detection and we fitted the

model to a synthetic dataset to detect outliers. We explored swarm intelligence algorithms and their

performance on feature selection optimization for improving the performance of the machine

learning model. The results showed that swarm intelligence algorithms perform well on feature

selection optimization and the generated near-optimal subset of features that has similar

performance with the original one.

iv

Περίληψη

Οι εσωτερικές απειλές έχουν εξελιχθεί σε ένα πολύ σοβαρό ζήτημα ασφάλειας πληροφοριών που

έχουν να αντιμετωπίσουν κυβερνήσεις και οργανισμοί. Η εφαρμογή πολιτικών και διαδικασιών

ασφαλείας ενδέχεται να μην είναι αρκετή για προστασία τα αγαθά ενός οργανισμού. Ακόμη και με

την εξέλιξη της τεχνολογίας στον τομέα της κυβερνοασφάλειας, το πρόβλημα της εσωτερικής

απειλής αυξάνεται και η ερευνητική κοινότητα προσεγγίζει το πρόβλημα με διάφορες μεθόδους,

προκειμένου να αναπτύξει ένα μοντέλο που θα βοηθήσεις τους οργανισμούς να μειώσουν την

έκθεση τους στην απειλή και να αποτρέψουν ζημιές στα περιουσιακά τους στοιχεία.

Με αυτή τη μεταπτυχιακή διατριβή προσεγγίζουμε το πρόβλημα προσεγγίζουμε το πρόβλημα της

εσωτερικής απειλής αναπτύσσοντας μοντέλο μηχανικής μάθησης, χρησιμοποιώντας Bio-Inspired

computing. Το μοντέλο αναπτύχθηκε χρησιμοποιώντας αλγόριθμο μάθησης χωρίς επίβλεψη για

ανίχνευση ανωμαλιών και προσαρμόσαμε το μοντέλο σε ένα γνωστό συνθετικό σύνολο

δεδομένων για εντοπισμών των ανωμαλιών. Εξερευνήσαμε Swarm intelligence αλγορίθμους και

την απόδοση τους σε βελτιστοποίηση επιλογής χαρακτηριστικών για τη βελτίωση της απόδοσης

του μοντέλου μηχανικής μάθησης. Τα αποτελέσματα έδειξαν ότι οι Swam intelligence αλγόριθμοι

έχουν πολύ καλή απόδοση στη βελτιστοποίηση επιλογής χαρακτηριστικών και το near-optimal

υποσύνολο χαρακτηριστικών έχει παρόμοια απόδοση με το αρχικό.

v

Ευχαριστίες | Acknowledgements

I would like to thank my wife Maria who encouraged me to apply for this program study and

supported me through the whole time and my two sons, Savvas and Ioannis for their understanding

and their patience during my journey of completing this work.

I would also like to thank my supervisor Dr. Stavros Shiaeles for trusting me with this M.Sc.

dissertation, but also for his support on this work.

vi

Table of Contents

1. INTRODUCTION ... 1

1.1 Mitigating Insider Threats ... 2

1.2 Bio-Inspired Computing .. 3

1.3 Machine Learning .. 3

1.4 Problem Statement .. 4

1.5 Chapters’ Overview ... 4

2. LITERATURE REVIEW ... 5

2.1 Techniques and Measures to Mitigate the Insider Threat ... 5

2.2 Computation Intelligence inspired by Nature ... 9

2.3 Summary ... 11

3. SWARM INTELLIGENCE AND BIO-INSPIRED COMPUTING 12

3.1 Neural Networks (ΝΝ) ... 16

3.2 Genetic Algorithm (GA) ... 17

3.3 Particle Swarm Optimization (PSO) .. 18

3.4 Ant Colony Optimization (ACO) ... 18

3.5 Artificial Bee Colony (ABC) .. 19

3.6 Bacterial Foraging Optimization Algorithm (BFOA) .. 20

3.7 Cuckoo Search (CS) ... 20

3.8 Firefly Algorithm (FA) .. 21

3.9 Leaping Frog Algorithm ... 22

3.10 Bat Algorithm (BA) ... 22

3.11 Flower Pollination Algorithm (FPA) ... 23

3.12 Artificial Plant Optimization Algorithm (APOA) .. 23

vii

3.13 Ant Lion Optimizer (ALO) ... 23

3.14 Grey Wolf Optimizer (GWO) ... 24

3.15 Comparison of Bio-Inspired Models .. 25

3.16 Selection of Bio-Inspired Models .. 29

3.17 Summary .. 30

4. METHODOLOGY ... 31

4.1 Overview ... 31

4.2 Dataset ... 33

4.3 Feature Selection Optimization using Swarm Intelligence Algorithms 33

4.4 Utilizing Machine Learning for Outlier detection .. 33

4.5 Technology and Libraries .. 34

4.5.1 Anaconda ... 34

4.5.2 Python .. 35

4.5.3 Jupyter ... 35

4.5.4 Pandas .. 35

4.5.5 Numpy ... 35

4.5.6 EvoloPy-FS .. 35

4.5.7 Scikit-learn .. 35

4.6 Performance Metrics ... 36

4.7 Summary ... 36

5. MACHINE LEARNING MODEL ... 37

5.1 System Overview ... 37

5.2 Data Collection and Pre-Processing ... 38

5.2.1 Dataset Overview .. 38

5.2.2 Scenarios ... 39

5.2.3 Log Files Structure ... 39

5.2.4 Sample Data .. 42

viii

5.2.5 Initial Feature Selection ... 46

5.3 Feature Selection using Bio-Inspired algorithms .. 50

5.4 Anomaly Detection (LOF) .. 50

5.5 Summary ... 51

6. FINDINGS AND ANALYSIS ... 52

6.1 Experimental Setup ... 52

6.2 Testing the Model .. 53

6.3 Performance Results ... 57

6.4 Testing more Bio-Inspired models ... 58

6.5 Performance Comparison with Other Approaches ... 60

6.6 Summary ... 61

7. CONCLUSION ... 62

7.1 Limitations .. 63

7.2 Future Research .. 63

Bibliography ... 64

8. APPENDIX A ... 1

Α.1 Data Collection & Data Pre-Processing ... 1

Α.2 Feature Selection Optimization .. 6

Α.3 Anomaly Detection ... 7

Α.4 Performance Metrics ... 9

1

Chapter 1
Introduction

The recent Data Breach Investigations Report (DBIR) by Verizon, reports that 34% of the reported

data breaches was a result of internal actors’ involvement and 2% of the data breaches was a result

of partners involvement (Verizon, 2019). The report was built with an analysis of 41,686 security

incidents, of which 2,013 are confirmed data breaches. The previous yearly data breaches reports,

DBIR 2018 and DBIR 2017, show a data breach percentage involving internal actors of 28% and

25%, respectively (Widup et al., 2018; Verizon, 2017). Insider Threat has been on the rise and the

latest DBIR reports by Verizon confirm the rapid increase of the problem.

In order to justify DBIR report’s results to the reader, we first need to clarify a few terms mentioned

in the report. A security incident is an event which compromises the confidentiality, integrity and

availability of an information asset. With the term “Data Breach” we mean that after the event of a

security incident, there was a confirmed data disclosure (Verizon, 2019). Confidentiality, Integrity

and Availability, also known as CIA triangle or triad, is an Information Assurance model, designed

years ago, to guide policies for Information Security in an organization. Confidentiality ensures that

only authorized users can access the data, information and services of a system and that the

communication between the user and the system remains private and usually is encrypted.

Integrity ensures that data and information of data can be created, modified and deleted only by

2

authorized users. Availability ensures that data, services and information of a system is always

available to legitimate users (Pfleeger and Pfleeger, 2002).

An internal actor, or insider in an organization, is a current or former employee, partner, contractor,

consultant, temporary personnel, personnel from partners, subsidiaries, contractors and anyone

else that has been granted access privilege in the organization’s network or data (Schultz, 2002;

Nurse et al., 2014). A threat is any intentionally or unintentionally act, that exploits a vulnerability

and cause damage to organization’s assets. An asset can be any element of an Information System,

such as software, hardware, data, procedures, communication or people. A vulnerability is a

weakness of an asset.

The CERT National Insider Threat Center defines malicious insider as “a current or former

employee, contractor, or business partner” who has authorized access to organizational system and

network resources and has intentionally exceeded or used that access in a manner that

compromises the confidentiality, integrity and availability of the organization’s data and

information systems. An unintentional insider threat is an internal actor who has authorized access

to organizational system and network resources and “causes harm or substantially increases the

probability of future series harm of the confidentiality, integrity and availability of the

organization’s data and information systems” (Theis at al., 2019).

Insider Threat is summed up as a security threat which describes the intentional or unintentionally

privilege misuse by an internal actor that causes damage to an organization’s asset.

A survey conducted by the CERT National Threat Center and CSO Magazine, revealed that 30% the

survey responders considered the damage caused by insider attacks more severe than the damage

caused by outsider attacks (Theis at al., 2019). Insider attacks incidents include information system

sabotage, theft of intellectual property, disclosure of confidential information, theft of trade secrets,

espionage that leads organizations to financial losses but also negatively impact their reputation

and brand (Theis at al., 2019).

1.1 Mitigating Insider Threats

To mitigate something means to make it less harmful and less severe (Dictionary.cambridge.org,

2019). By mitigating Insider Threats, we mean to establish security measures that will contribute

3

in the detection of the threats in an accurate and timely manner and respond accordingly in order

to reduce the damage of the insider attackers.

In order to mitigate and combat Insider Threats, we first need to identify the threats and know our

enemy. As Sun Tzu writes in his book “…if you know the enemy and know yourself, you need not

fear the result of a hundred battles…” (Tzu, 2007). By knowing our enemies, we can improve our

security measures to be more effective against them.

There is plenty of literature available on the mitigation of the insider threat problem that focus on

methods for detecting the insider threat. In this M.Sc. dissertation we focus on the detection of

insider threat using bio-inspired computing and utilizing machine learning.

1.2 Bio-Inspired Computing

Bio-Inspired computing is an emerging approach, inspired by biological evolution, to develop new

models that provides solution for complex optimization problems in a timely manner. The

explosion of data in the digital era has created challenges difficult to approach with traditional and

conventional optimization algorithms and lead the scientific community to develop Bio-Inspired

algorithms that can be applied as a solution. Swarm Intelligence is a family of Bio-Inspired

Algorithms (Abraham 2008). These algorithms have been proposed by researchers to solve

optimization problems by obtaining near optimal solutions (Krishnanand, Nayak, Panigrahi and

Rout, 2009).

1.3 Machine Learning

Machine Learning (ML) is a subset field Artificial Intelligence (AI) where we feed data into a model,

to discover patterns from the given data and make predictions. Machine Learning is applied in a

wide area of applications, such as healthcare, finance, biology and cybersecurity. Several algorithms

are used in Machine Learning and are divided into three main categories, Supervised learning,

Unsupervised learning and Reinforcement learning. In Supervised learning we are using labeled

data to train the machine based on input and output data. In Unsupervised learning we can feed the

machine with unlabeled data, since the objective is to detect regularities in the input data. The

objective is to detect the patterns that occur more often than others. In Reinforcement learning a

reward policy is involved and the machine learns to take decisions through trial and error

4

(Alpaydin, 2014). For the purpose of this M.Sc. dissertation we utilize Unsupervised learning for

outlier detection as described in chapter 4.

1.4 Problem Statement

The purpose of this M.Sc. dissertation is to approach the Insider Threat problem with a new model

that utilizes algorithms inspired by nature and contribute to the Insider Threat domain research by

exploring meta heuristic algorithms to solve feature selection optimization problems and improve

the performance of machine learning based insider threat detection models. The improvement of

the performance of insider threat detection models will help organizations to detect malicious

insiders in time before causing severe damage.

1.5 Chapters’ Overview

In this chapter we introduced the reader to the insider threat problem, by defining the problem and

related terms and we also state the importance of mitigating the insider threat problem.

In chapter 2 we review research related with the mitigation of insider threats and summarize

previous research focused on computation intelligence inspired by nature. In chapter 3 we present

an overview of Swarm Intelligence and Bio-Inspired computing and present several popular

models. In chapter 4 we present our methodology for the proposed approach. Chapter 5 presents

our proposed Insider Threat predicting model along with all the performed data pre-processing,

feature extraction and feature selection optimization steps. In chapter 6 we present our findings

from the evaluation of the algorithms and the improvement of the machine learning model after

feature selection optimization and we also compare the performance of our approach with other

approaches. Finally in chapter 7 we conclude and discuss about future work.

5

Chapter 2
Literature Review

In this chapter we review literature related to the insider threat problem, its impact to the

confidentiality, integrity and availability of organizational assets, countermeasures and strategies

introduced in past and present research. Various research papers review the insider threat

problem, present relevant statistics and propose measures in order to mitigate the problem. In the

second section of this chapter we present literature focused on computation intelligence inspired

by nature.

2.1 Techniques and Measures to Mitigate the Insider

Threat

The CERT division, part of Carnegie Mellon University’s Software Engineering Institute, provides

insider threats’ mitigation recommendations with the release of the “Common Sense Guide to

Mitigating Insider Threats”, based on research and analysis of previous insider threat cases. The

guide includes and describes practices that organizations should implement in order to reduce

their exposure to the insider threat problem. Although this is the sixth edition of the guide, the

6

insider threat problem continues to rise, which is another indication that further research must be

made on the detection aspect of the problem (Theis et al., 2019).

Schultz (2002) presents a framework based on insider behavior, to define insider attack related

indicators and predict an attack. By using multiple and various indicators, there is a better chance

to detect or predict the insider threat, than using one (Schultz, 2002). While some indicators, such

as “Preparatory behavior” for example, will indeed detect an insider attacker on the reconnaissance

phase trying to gather information about the target, some others such as “Meaningful Errors”, stand

on attacker’s skills and will be hard to detect a skillful attacker.

Salem, Hershkop and Stolfo (2008) conduct a research regarding approaches and techniques for

insider threat detection and acknowledge the challenge of building an effective and accurate system

for detecting insider attacks.

Brown, Watkins and Greitzer (2013) propose a system to monitor electronic communication in an

organization, to identify and predict an insider threat early. The system is based on personality

factors and word correlations. It detects common words in the communication data and calculates

a score based on the predefined words’ frequency of use. These scores are then combined into a

composite personality factor score for neuroticism, agreeableness and conscientiousness, which

are the three factors that are associated with high insider thread risk (Brown, Watkins and Greitzer,

2013). The authors state that their method mitigates possible legal or privacy concerns, but this

was before the enforcement of GDPR. Monitoring electronic communication to profile a user is

regulated by GDPR and raised privacy and legal issues.

Axelrad et al. (2013), propose a Bayesian network model, developed based on a list of variables

associated with insider threats, to predict the potential malicious insider. The Bayesian network

models generates a score for a person, based on the person’s characteristics. The list of variables

was prepared after research through various papers addressing the insider threat problem.

Correlations between variables were considered in the design of the model. Categories of the

variables include “personal life stressor and job stressors”, personality and capability, attitude,

workplace behavior and degree of interest (Axelrad et al., 2013). As the authors acknowledge there

are some concerns regarding collection of data for specific variables, such as job satisfaction, in

which data may not be accurate.

7

Nurse et al. (2014) propose a framework to better understand and fully characterize the insider

threat problem, developed after analysis of several real-world threat cases and relevant literature.

The authors’ proposed unifying framework consists several classes of components, which are

presented in four main areas and broken down into more sections, beginning with the analysis of

behavioral and psychological aspects related of the actor to understand one’s tendency to attack.

As the authors acknowledge, it is quite difficult to collect accurate psychological and historical

behavioral information regarding insiders, to understand one’s mind-set and in many times, this

applies even after an attack. Behavioral analysis is continued in the next section as well, by

observing the physical and cyber behavior of the subject. Observing the physical and cyber

behavior will be challenging to implement, since regulations vary among countries, for example in

European Union (EU), the General Data Protection Regulation (GDPR) regulates behavioral

observation. Despite regulations, there are many challenges of monitor the behavior of all insiders,

for example contractors and partners. In the third section the actor’s type, enterprise role and state

of relationship with the enterprise is defined, for example, whether the actor is an employee,

contractor or partner, a current or former one and in what role he acts, scientist, engineer, etc. The

last two sections analyze the attack and the assets under the attack with their vulnerabilities. The

proposed framework is indeed simple enough to follow, as the authors mention, and will help

enterprises to analyze past attacks and identify weak points in their network, based on the insider

attacker’s steps (Nurse et al., 2014).

Greitzer et al. (2014), propose mitigation strategies and countermeasures for the unintentional

insider threat, after their research of regarding cases and papers. The authors review of possible

causes and contributing factors and propose measures with an emphasis on employees’

continuously training, to recognize threats such as phishing and enhance their awareness on the

insider threat problem. Mitigation strategies also include the enforcement of security policies and

implementation of security best practices, such as two-factor authentication. Although the

proposed measures will enhance the awareness of the problem, they highly depend on the human

factor and do not consider a change in an employee’s behavior who might be become an actual

threat (Greitzer et al., 2014).

In order to build mechanisms for detection and prevention of insider threats, real data need to be

gathered and this “raise a variety of legal, ethical and business issues” (Glasser and Lindauer, 2013),

Eldardiry et al. (2013), propose a global model approach, based on feature extraction from user

activities, logged on large amount of work practice data. This data is comprised of various domain

8

areas, such as logfiles of logon and logoff events, http browsing history, external device usage and

file access. The authors evaluate their multi domain system, utilizing ADAMS synthetic dataset to

calculate the accuracy of anomalies and outlier detection and acknowledge that file access and

external device usage domains can be utilized for easier threat prediction, compared to logon and

http history domains (Eldardiry et al., 2013).

Rashid, Agrafiotis and Nurse (2016) utilize Hidden Markov Models (HMM) with Cert's synthetic

dataset to "learn" user normal behavior and then use HMM to detect significant changes in the

"already learned" behavior. The authors report that their approach can learn normal user's

behavior and then detect any significant deviations from it and detect potential malicious insiders,

with high accuracy. As the authors acknowledge, their model will not detect malicious insiders with

no previously logged normal behavior, such as internal actors who attack an organization's

systems, shortly after they log in (Rashid, Agrafiotis and Nurse, 2016).

Lo et al. (2018) apply Hidden Markov Method on CERT's synthetic data set and analyze a number

of distance measurement techniques, Damerau–Levenshtein Distance, Cosine Distance, and

Jaccard Distance and their performance for detecting changes of user behavior. The authors reports

that although HMM outscores each individual distance measurement technique, it needs more than

a day to process all data (Lo et al., 2018).

Tuor et al. (2017), propose an online unsupervised deep learning approach to detect anomalies

through analysis of the organization’s computer network activity. The authors use Deep and

Recurrent Neural Networks (DNN and RNN) and utilizes CERT’s synthetic Dataset to detect

anomalous activity.

Le and Zincir-Heywood (2019) propose a user-centered machine learning model that detects

malicious insiders with high accuracy. The authors present a machine learning model focused on

supervised learning by employing popular algorithms, such as Logistic Regressions (LR), Random

Forest (RF) and Artificial Neural Network (ANN). Even that their proposed system detects

malicious insiders with limited training, the authors propose the use of more sophisticated data

pre-processing techniques and feature analysis to improve system performance (Le and Zincir-

Heywood, 2019).

Liu et al. (2018) acknowledge that despite previous research on mitigating insider threats,

organizations continue to report severe damage caused by malicious insiders. In their survey they

9

review several proposed systems addressing insider threats based on data analytics and identify

relevant challenges. Log data analysis requires the collection of huge amounts of data, from a wide

area of systems and a dedicated system to store the data for further processing. Since log data takes

place on a variety of systems, there is no standard format for collected log data and data pre-

processing must be performed in order to clean the data and extract relevant features. As the

authors acknowledge, this process requires extensive scripting and coding skills and deep

understanding about the various involved systems. Another challenging problem is extracting the

important and relevant features and manage them effectively, by selecting the optimal subset to

capture the attacker’s footprint on time. Detecting the attacker’s tiny footprint is like “find a needle

in a haystack” and the challenge comes on deciding which method to utilize. The authors report that

incorporating prior domain knowledge to a certain degree, during the feature extraction process,

may offer better results than completely relying on prior domain knowledge (Liu et al., 2018).

2.2 Computation Intelligence inspired by Nature

In this section we present literature which propose models inspired by nature to solve complex

problems.

Xiao, Shao and Liu (2006) propose PSO-KM, a K-means algorithm based on Particle Swarm

Optimization. The authors acknowledge the challenges of labelling huge amounts of log data and

focus their work on detecting unknown attacks automatically, without any prior knowledge on the

domain’s log data. With the introduction of PSO into the K-means algorithm they present an

effective algorithm with the ability of partitioning large datasets and a better global search ability

(Xiao, Shao and Liu, 2006).

Del Valle et al. (2008), review the Particle Swarm Optimization (PSO) technique and its application

in power system optimization problems and give an insight on how the PSO technique can be used

to address complicated engineering optimization problems.

Mohemmed, Zhang and Browne (2010) convert the outlier detection problem into an optimization

problem and apply a Particle Swarm Optimization (PSO) based approach, using distance-based

measures for outlier detection. The author’s approach integrates feature selection ability into their

entire framework and directly detects outliers from a particular dataset (Mohemmed, Zhang and

Browne, 2010).

10

Kolias, Kambourakis and Maragoudakis (2011), perform a survey which explores the reasons of

the application of Swarm Intelligence (SI) algorithms in the Intrusion Detection field and present

various SI methods used for constructing Intrusion Detection Systems (IDS) (Kolias, Kambourakis

and Maragoudakis, 2011).

Srinoy (2007), presents an Intrusion Detection model, which uses Particle Swarm Optimization

(PSO) for feature selection and Support Vector Machine (SVMs), to detect suspicious activity in the

Intrusion Detection domain. The author performs feature selection optimization on an academic

widely known dataset in the Intrusion Detection domain, the KDD’99 dataset and employees PSO

to find the best optimal feature subset (Srinoy, 2007).

Nakamura et al. (2012) propose a binary version of the Bat algorithm (BAT) to address the problem

of high dimensionality. The authors’ proposed feature selection technique position the bats in

binary coordinates along the search space, which represent a string of bits indicating whether a

feature is selected or not after the optimization.

Emary et al. (2016a), propose binary variants of ant lion optimizer (ALO) for wrapper-based

feature selection. The author’s approaches are applied to find a feature subset in the Machine

Learning domain, by minimizing the number of selected features (Emary at al., 2016a).

Emary et al. (2016b) propose two novel binary versions of the grey wolf optimization (GWO) and

use it for feature selection optimization, to find optimal subset. The authors propose two binary

versions of GWO, which are used to search the feature space for the best combination of features,

which has maximum classification accuracy and minimum number of selected features.

Faris et al. (2018) state “Dimensionality is the main challenge that may degrade the performance of

the machine learning tasks”. The authors acknowledge the challenging problem of searching for the

optimal subset in the feature selection optimization process and test the performance of several

well-known Swarm Intelligence algorithms in solving this problem.

Khurma et al. (2020), acknowledge the importance of feature selection in the data mining process

and propose a Python optimization framework, named “EvoloPy-FS”, focused on solving feature

selection optimization problems. EvoloPy-FS framework comes with eight nature-inspired

metaheuristic optimizers, including particle swarm optimization (PSO), gray wolf optimizer

(GWO), bat algorithm (BAT), cuckoo search (CS) and firefly algorithm (FFA), in their binary

11

presentation. The author’s main objective for developing this framework is to help researchers

from various domains, with less knowledge in Swarm Intelligence, to setup experiments and get

rapid results for their problems, without having to code everything from scratch (Khurma et al.,

2020).

2.3 Summary

In the literature reviewed for the purpose of this M.Sc. dissertation, we came up only with a limited

study that uses Bio-Inspired computing to mitigate Insider Threats. Much research focus on

machine learning based insider threat detection to identify unusual behavior of users in regard with

their normal behavior. Machine learning models count on domain knowledge in the feature

extraction and selection process, resulting in time consuming during data pre-processing and

limited effectiveness on detecting the threats, in cases where domain knowledge is not stated.

Several researchers utilized Bio-Inspired models to address optimal solutions in complex

problems. We decided to utilize Bio-Inspired computing to enhance Machine learning models, by

automating the feature selection process and utilize unsupervised algorithms for outlier detection.

12

Chapter 3
Swarm Intelligence and Bio-

Inspired Computing

In this section we present an overview of Swarm Intelligence and Bio-Inspired computing, to get

the reader familiar with the concept and the methods used in this M.Sc. dissertation and we also

present the most popular developed algorithms in Bio-Inspired computing.

Bio-Inspired optimization algorithms have emerged to address highly complex problems in science

and engineering and provide solutions in time (Kar, 2016; Darwish, 2018). The scientific

community, inspired by the biological evolution, has proposed algorithms, such as Neural Network,

Genetic Algorithm and Swarm Intelligence, which are just three of the most popular domains, in

which meta heuristic optimization methods replicate biological organisms’ behavior to address

optimization problems (Kar, 2016). The social and foraging behavior of various species in the

nature, such as ants, birds, fish, bees, bats and wolves, have attracted the attention of several

13

researchers to mimic it in and propose algorithms to solve optimization problems in several

different fields, including science and engineering (Darwish, 2018).

Swarm Intelligence (SI), an Artifficial Intellience (AI) discipline, studies the collective behavior of

nature’s species (Li and Clerc, 2018), such as social insects, birds, fishes and other animals. Each

individual organization is not considered to be intelligent to solve a problem, but when these

species form a swarm and they interact with each other and their environment, they can solve

complex problems, such as find the shortest path between their nest and a food source (Saka et al.,

2013).

“Swarm intelligence refers to a kind of problem-solving ability that emerges in the interactions of

simple information-processing units.” (Kennedy, 2006).

A Swarm Intelligence System is composed of a population of individual simple agents and has no

centralized control. The interaction between these agents and the interaction of these agents with

the environment, creates a problem-solving ability in the SI system and makes the SI system to

behave in a complex and self-organized manner to address complex tasks that are too challenging

to conventional computation techniques (Li and Clerc, 2019). The processing unit of a swam can be

animate, mechanical, computational or mathematical (Kennedy, 2006).

“The concept of a swarm suggests multiplicity, stochasticity, randomness, and messiness, and the

concept of intelligence suggests that the problem-solving method is somehow successful.”

(Kennedy, 2006).

Swarm Intelligence based techniques, such as Ant Colony Optimization (ACO), Particle Swarm

Optmization (PSO) and Artificial Bee Colony (ABC), inspired by ant foraging behavior, bird flocking,

fish schooling and animal herding, have been applied in the field of intrusion detection (Kolias,

Kambourakis and Maragoudakis, 2011).

Bio-Inspired algorithms have been used in much research to address several real-world

challenging problems and portion of this research used more than a single algorithm to address the

same problem, to compare the performance of the algorithms on that problem’s domain. Literature

reports that not all algorithms perform the same in solving specific set of problems and researchers

experiment with modifications of existing algorithms or even propose new algorithms to reach a

better performance in their domain of research (Mirjalili, 2015). Table 1 displays bio-inspired

14

algorithms, as presented by the related literature reviewed for this M.Sc. dissertation, with the

scope of applications in which they have been used.

Algorithms Scope of Application

Neural Networks (NN) Association rules, pattern classification, regression, feature

selection, missing data prediction, sequence mining, data

reduction, probabilistic prediction, Bayesian and deep

learning, feature detection, speech and image recognition,

synchronization, control of non-linear systems, switching

networks (Kar, 2016).

Genetic Algorithm (GA) Search, maximization or minimization, sorting, multi-criteria

selection, job allocation, process scheduling, network

analysis, anomaly detection, intrusion detection, parallel

computation, prioritization, classification, network path

routing, load balancing problems, layout planning, signal

coordination, sorting, structural systems (Kar, 2016).

Particle Swarm Optimization

(PSO)

Distributed resource management, search, location

identification, resource allocation, regulation, chaotic

systems, oscillatory systems, global optimization, path

optimization, adaptive learning, job scheduling, thresh-

holding, network training, minimization, maximization,

migration (Kar, 2016).

Ant Colony Optimization (ACO) Network analysis, travelling salesman problem, scheduling,

routing, clustering, data compression, environmental and

economic dispatch problems, routing, data reconciliation,

parameter estimation, gaming theory, objective tracking,

demand forecasting, layout design, continuous optimization,

timing optimization, resource consumption optimization

(Kar, 2016).

15

Artificial Bee Colony (ABC) Numerical function optimization, multilevel thresh-holding,

network routing, allocation / assignment, test suite

optimization, search, bench-marking, probability

distribution, feature selection, single and multi-objective

optimization, discrete and continuous optimization (Kar,

2016).

Bacterial Foraging Optimization

Algorithm (BFOA)

Multi-optimal function optimization, numerical

optimization, global optimization, gradient based search,

linear combiners, forecasting models, minimization and

maximization, load forecasting and compensation, portfolio

value prediction, clustering, load dispatch and calibration

(Kar, 2016).

Cuckoo search (CS) Search problems, multi-objective problems, optimization

among designs, gradient based optimization, gradient free

optimization, multi-objective scheduling, multi-objective

allocation, phase equilibrium problems, reliability

optimization, path identification for network analysis,

knapsack problems (Kar, 2016).

Firefly Algorithm (FA) Digital Image Compression, Feature Selection (Yang and He,

2013a). Dispatch problems, job scheduling, chaotic

problems, structural optimization, continuous optimization,

vector quantization, clustering, price forecasting, discrete

optimization, load forecasting, network analysis, travelling

salesman problem, non-linear optimization, dynamic

environment problems (Kar, 2016).

Leaping Frog Algorithm Optimization problems from structures, mechanical

systems, neural networks, chemistry (Snyman, 2000).

Combinatorial problems, network design problems, job

scheduling problems, thresh-holding problems, network

scaling problems, cost minimization problems, permutation

16

based searching problems and resource constrained

problems (Kar, 2016).

Bat Algorithm (BA) Structural design optimization, multi-objective optimization,

numerical optimization problems, network path analysis,

multi-constrained operations, adaptive learning problems,

environmental/economic dispatch, scheduling, effort

estimation, classification, vector matching and association

rule mining (Kar, 2016).

Flower Pollination Algorithm

(FPA)

Control in multi-machine systems, feature selection,

structure optimization, data reduction, array synthesis,

classification, search, multi-criteria selection, chaotic

systems, electro-magnetics, large scale linear programming,

energy management, structural engineering (Kar, 2016).

Artificial Plant Optimization

Algorithm (APOA)

Protein analysis, network configuration simulation analysis,

coverage optimization, telecom sensor networks, molecular

structure analysis (Kar, 2016).

Ant Lion Optimizer (ALO) –

imitates the hunting process of

ant lions

Feature selection (Emary et al., 2016a),

Grey Wolf Optimizer (GWO) Feature selection (Ematy et al., 2016b), attribute reduction

strategy, route planning, reduced parametric sensitivity

(Darwish, 2018)

Table 1: Bio-Inspired algorithms

3.1 Neural Networks (ΝΝ)

Neural Networks (NN) have been widely applied to solve problems in the field of pattern

recognition, image recognition, speech recognition and natural language processing (Garro, Sossa

17

and Vazquez, 2009). Artificial Neural Networks attempt to simulate the networks of neurons of an

intelligent organism, such as the nerve cells of a human’s brain, by combining multiple processing

units, the neurons, into a self-adapting and self-organizing system (Sarle, 1994). These systems can

learn to perform various tasks, such as classify or recognize patterns, based on inputs and feedback

from each node in the neural network (Kar, 2016). There are many approaches for implementing

neural networks, with the simplest one being the Perceptron networks, which can be used for both

linear and non-linear systems. Deep Neural Network (DNN) has been utilized by Yuan et al. (2018)

in their proposed insider threat detection method, in which they use Long Short Term Memory

(LSTM) to “learn” the user behavior and extract abstracted temporal features, which are converted

to fixed-size feature matrices to be used by the Convolutional Neural Network (CNN) to detect

insider threat. Yuan etl a. (2018) reviews literature that explores various implementations of

Neural Networks, including Recurrent Neural Networks (RNN), to detect anomalous behavior. An

extensive literature exists, reporting approaches that utilize Neural Networks (NN) in several

subject areas, including Engineering, Computer Science, Mathematics, Physics and Astronomy (Kar,

2016). Garro, Sossa and Vasquez (2009) acknowledge that “neural networks cannot reach an

optimum performance in non-linear problems” and utilize Particle Swarm Optimization (PSO), to

automatically design an Artificial Neural Network (ANN). PSO is used to find all relevant values and

functions and optimize the error function.

3.2 Genetic Algorithm (GA)

Genetic Algorithm (GA), a population-based Evolutionary Algorithm (EA), attempts to simulate the

phenomenon of natural evolution and natural genetics, where the fittest individuals are selected for

reproduction, to identify good and working solutions (Kar, 2016). The literature reports several

versions of Genetic Algorithm implementations (Hassan, Cohanim, de Weck and Venter, 2005). The

implementation of GA starts with a set of individuals, the population, with everyone representing a

solution to the problem. GA employs a fitness function to determine the fittest individual and

computes a fitness score for each individual. The generation is represented by every iteration and

over several generations, the selection operator, which represents the “survival of the fittest”

principal, is employed to select the fittest individuals with the most positive characteristics, based

on its fitness score. The crossover operator is then used to produce new solutions based on the

positive characteristics of the current population, to propagate them to the future population. The

mutation operator is employed to ensure diversity within the new population and avoid local

optimality (Hassan, Cohanim, de Weck and Venter, 2005; Kar, 2016).

18

3.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO), introduced and developed by Kennedy and Eberhart in 1995,

is a population-based optimization and meta-heuristic technique, inspired by the social behavior of

bird flocking, fish schooling and swarming theory (Kennedy and Eberhart, 1995). PSO is considered

by researchers and practitioners an efficient and effective technique for solving complex

optimization problems (Li and Clerc, 2019). PSO is composed of a swarm of particles and each

individual particle represents a candidate solution. The particles move into the problem search

space with a certain velocity and their movement is affected by their own best position found so far,

which is defined as the pbest quality factor and the global best solution found by their neighbors in

the search space, which is defined as the gbest quality factor (Kennedy and Eberhart, 1995). The

position of each particle or the quality of the solution, is evaluated by the fitness function. Each

particle tries to modify its position using the equations (Zhan et al., 2009; Kolias, Kambourakis and

Maragoudakis, 2011):

1. 𝒗𝒗𝒗𝒗(𝒕𝒕 + 𝟏𝟏) = 𝝎𝝎 ⋅ 𝒗𝒗𝒗𝒗(𝒕𝒕) + 𝒄𝒄𝟏𝟏 ⋅ 𝒓𝒓𝟏𝟏 ⋅ (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝒙𝒙𝒙𝒙) + 𝒄𝒄𝟐𝟐 ⋅ 𝒓𝒓𝟐𝟐 ⋅ (𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 − 𝒙𝒙𝒙𝒙) (1)

2. 𝒙𝒙𝒙𝒙 (𝒕𝒕 + 𝟏𝟏) = 𝒙𝒙𝒙𝒙 + 𝒗𝒗𝒗𝒗 (𝒕𝒕 + 𝟏𝟏) (2)

Equation (1) updates the particle’s speed and equation (2) updates the particle’s position. In (1) vi

is the particle’s speed, ω is the inertia weight constant, c1 and c2 are the acceleration coefficients,

r1 and r2 are random numbers generated within [0,1], pBesti is the particle’s position with the best

fitness found so far, gBest is the swarm’s global best position and xi is the particle’s current position

(Kolias, Kambourakis and Maragoudakis, 2011). The particle’s velocity and position are initialized

randomly and then are updated using the equations (1) and (2).

 “Particle Swarm Optimization is an extremely simple algorithm that seems to be effective for

optimizing a wide range of functions” (Kennedy and Eberhart, 1995).

3.4 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a population-based metaheuristic technique, used for solving

combinatorial optimization problems. ACO was introduced by M. Dorigo and his colleagues, in early

1990s, inspired by the behavior of real ants (Dorigo and Di Caro, 1999; Dorigo and Blum, 2005).

19

Even though a single ant has limited intelligence and capabilities, when an ant works together with

other ants in an ant colony, they can be very well organized and effective to perform tasks that

requires intelligence, such as transport heavy goods or finding the shortest path between a food

source and their nest. Ants communicate with each other through a chemical substance, known as

pheromone, which they generate to relay a message, such as to give directions to other ants in their

colony (Chakraborty and Kar, 2017). An ant evaluates the quality and quantity of a food source as

soon as it finds one and generates pheromone during its way back the nest. The quality of the

pheromone generated on the ant’s trail, depends on the quality and quantity of the food source.

Ants will follow the pathway created by the pheromone and will renew the trail, depending of the

value of the source (Dorigo and Blum, 2005). Pheromone on the shortest path will be reinforced

sooner than the other paths, so the shortest path will have greater pheromone concentration and

higher probability of being selected from other ants (Kolias, Kambourakis and Maragoudakis,

2011). Figure 1 shows the random path selection (a) by ants in the search for a food source. The

shortest path is reinforced with more pheromone and attracts more ants and eventually the

pheromone trails on longer paths evaporate over time (b).

Figure 1: Ants seek for the shorter path of the two, between their nest and the food source (Li and Clerk,
2019).

3.5 Artificial Bee Colony (ABC)

Artificial Bee Colony (ABC) is a bio-inspired algorithm, which mimics the behavior of swarm

intelligence of bees in the way they communicate, navigating, selecting their nest, mating and floral

foraging, to search for an optimal numerical solution among a large number of candidates

(Karaboga and Basturk, 2007; Kar, 2016). ABC algorithms depends on the solution and the quality

of the solution, the fitness. In the ABC algorithm the colony consists of three groups, the employed

20

bees, the onlookers and the scouts. The random search for food sources is carried out by the scouts,

with the onlookers waiting to make the decision about the food source (Karaboga and Basturk,

2007). A candidate solution is the representation of a source of food, which is identified by the

employed bees and the quality of the solution, is the representation of the amount of nectar in that

source. For every newly discovered source of food, its fitness is computed to decide whether to

adopt or reject this new source, according to its fitness (Ghanem and Jantan, 2014; Kar, 2016). The

main steps of the algorithm are (Karaboga and Basturk, 2007):

• Intitialize
• REPEAT UNTIL [Requirements are met]

o Place the employee bees in the memory
o Place the onlooker bees in the memory
o Send the scouts to the search area to discover new food sources

3.6 Bacterial Foraging Optimization Algorithm (BFOA)

Bacterial foraging optimization algorithm (BFOA) is a global optimization algorithm, based on the

social foraging behavior of Es-cherichia coli bacteria. Bacteria search for food in a way that their

energy intake is maximized per unit time. The process in which an Individual Bacterium is

searching for food is called chemotaxis, which is the idea behind BFOA (Das et al., 2009). In BFOA,

an agent representing the bacterium, searches for a local suitable solution. The agent utilizes the

operators of chemotaxis, swarming, reproduction and elimination-dispersal to locate the global

optimum (Das et al., 2009; Kar, 2016). Das et al., (2009) and Kar (2016) report that while the

algorithm is easy to implement, it has a poor convergence capability for solving complex

optimization problems.

3.7 Cuckoo Search (CS)

Cuckoo Search (CS) mimics the breeding behavior of the cuckoo bird species. Cuckoos have a very

interesting and aggressive reproduction strategy. Instead of laying their eggs in their own nests,

they lay them on communal nests and sometimes they even remove the foreigners’ nest eggs to

increase the hatching probability their own eggs (Gandomi et al., 2011a). In the CS algorithm,

cuckoos are represented by the agents and the eggs are represented by the candidate solutions. A

cuckoo lays one egg at a time and dumps it in a random nest. The nests are discovered through Levy

21

flights. The best net, with the higher quality of eggs (optimal candidate solutions) will carry over to

the next generations. The number of available host nests is fixed and there is a probability that the

cuckoo’s egg is discovered by the host bird. In this case the host bird will either throw away the

foreign egg, or it will abandon the nest and build another nest, which will become a future potential

nest for the cuckoo (Gandomi et al., 2011a; Kar, 2016).

3.8 Firefly Algorithm (FA)

Firefly Algorithm (FA) mimics the social behavior of fireflies’ flashing characteristics. Fireflies use

flashing patterns to communicate, find mates or search for prey. FA follows three rules (Yang,

2010b; Gandomi et al., 2011b; Yang and He, 2013a):

• Fireflies are unisex and are attracted to each other, regardless of their sex

• Attractiveness is proportional to their brightness. A less bright firefly will move towards a

brighter one and if there isn’t a brighter one it will move randomly in space.

• The firefly’s brightness is related with the objective of the optimization problem.

The movement of a firefly I, attracted by a firefly j is computed using the equation (3) (Emary et al.,

2015).

3. 𝒙𝒙𝒊𝒊 = 𝒙𝒙𝒊𝒊 + 𝜷𝜷𝟎𝟎𝒆𝒆−𝜸𝜸𝒓𝒓𝒊𝒊𝒊𝒊
𝟐𝟐
�𝒙𝒙𝒋𝒋 − 𝒙𝒙𝒊𝒊 � + 𝜶𝜶(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓− 𝟎𝟎.𝟓𝟓) (3)

In equation (3), x represents the movement of a firefly i, which is attracted by a firefly j. α is the

randomization parameter, rand is a random number in [0,1] and (rand – 0.5) represents number

in [-0.5, 0.5], since variation can be positive or negative. 𝜷𝜷𝟎𝟎 is set to 1 and α is in [0,1] (Emary et al.,

2015).

Gandomi et al., (2011b) acknowledge the efficiency of FA, but also reports observations of

oscillatory behavior as the search process approaches the optimum design. The authors suggest a

gradually reduction of the randomization parameter as the optimization processes, to improve the

algorithm (Gandomi et al., 2011b).

22

3.9 Leaping Frog Algorithm

Leaping Frog Algorithm is based on frog foraging behavior and was developed to solve

unconstrained optimization problems but has been also used to solve constrained problems as well

(Snyman, 2000). The popular extension of the algorithm, Shaffled Frog-Leaping Algorithm (SFLA),

is a metaheuristic algorithm which combines the benefits of genetic-based memetic algorithm and

social behavior-based swarm optimization algorithms (Eusuff, Lansey and Pasha, 2006; Fang and

Wang, 2012). In SFLA an initial population of randomly generated virtual frogs, who represent

candidate solutions. is formed and then the population is partitioned into subsets, called

memeplexes. A subset of the memeplex is then constructed for each initial subset, based on

probability distributions. For each of the subsets of the memeplex, called sub-memeplex, the worst

frog will leap towards a food source, based on its own experience but also the experience from the

best frog of that sub-memeplex. If the new position is better than the old one, the frog repeats the

process, else the worst frog is replaced by a new randomly generated frog (Fang and Wang, 2012).

3.10 Bat Algorithm (BA)

Bat Algorithm, proposed by Yang (2010a) for solving optimization problems, mimics the behavior

of bats during the search for a prey or food, using their advanced capability of echolocation.

Echolocation is a type of sonar, used by bats to detect prey by avoiding obstacles and to locate their

roost. Each bat i flies with a velocity vi at position xi, representing the solution and use a fixed

frequency of fmin, a varying wavelength λ and loudness A0 to search for prey. During the

simulation of the bats’ movement in a d-dimensional search space, the position and velocity are

calculated using the equations (4), (5) and (6) (Yang, 2010a).

4. 𝒇𝒇𝒊𝒊 = 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 + (𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 − 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇) .𝜷𝜷 (4)

5. 𝒗𝒗𝒗𝒗𝒕𝒕 = 𝒗𝒗𝒗𝒗𝒕𝒕−𝟏𝟏 + (𝒙𝒙𝒙𝒙𝒕𝒕 − 𝒙𝒙∗).𝒇𝒇𝒊𝒊 (5)

6. 𝒙𝒙𝒙𝒙𝒕𝒕 = 𝒙𝒙𝒙𝒙𝒕𝒕−𝟏𝟏 + 𝒗𝒗𝒗𝒗𝒕𝒕 (6)

In equations (4), (5) β is a random vector in [0,1] and 𝒙𝒙∗ represents the current global best solution

among all virtual bats.

23

3.11 Flower Pollination Algorithm (FPA)

Flower Pollination Algorithm (FPA) is based on the pollination process of flower plants and was

developed to solve global optimization problems. During the pollination process, the agents, named

pollinators who represent the insects, wind and water, are employed to spread the flowers’ pollens

to another plant for reproduction. Pollination can be achieved by self-pollination, which represents

local optimization, in which process the involved flowers are from the same plant, or by cross

pollination, which represents global optimization, in which process the involved flowers are from

different plants. For simplicity the algorithm assumes that each plant has only one flower and each

flower produce a single pollen (Yang, 2012; Yang, Karamanoglu and He, 2013). Yang (2012)

acknowledges the efficiency of FPA due to long-distance pollinators and flower consistency.

3.12 Artificial Plant Optimization Algorithm (APOA)

Artificial Plant Optimization Algorithm (APOA), inspired by tree’s growing process, was developed

to address global optimization problems. The algorithm simulates the plant growing phenomenon,

by connecting the growing process with an optimization problem. Each new iteration represents

the plant’s growing period, global optimum represents the highest light intensity, fitness value

represents the light intensity, a point represents a branch and position update represents branch

growth. Each branch of the plant represents a potential solution to the optimization problem and

its fitness is calculated during the simulated process of photosynthetsis (Cui and Cai, 2013).

3.13 Ant Lion Optimizer (ALO)

Ant Lion Optimizer (ALO) is a bio-inspired optimization technique, inspired by the hunting

mechanism of ant lions in nature, developed to solve optimization problems. Antlions create small

cone-shaped traps in sand to catch their preys. After the creation of their traps they hide at the

bottom of the cone and wait for their preys to enter the trap. Once the prey is in the trap, the antlion

tries to catch it. It has been observed that the size of the trap is relevant with the level of hunger and

shape of the moon. Antlions tend to dig deeper traps when they are hungry. This foraging behavior

is the main inspiration of the ALO algorithm. ALO simulates five main steps of the antlions’ hunt

behavior (Mirjalili, 2015):

24

• Random walk of ants

• Building traps

• Entrapment of ants in traps

• Catching preys

• Re-building traps

3.14 Grey Wolf Optimizer (GWO)

Grey wolf Optimizer (GWO) is a Bio-Inspired optimization technique, which simulates the

leadership hierarchy and hunting behavior of grey wolves in nature. Grey wolves travel in packs of

five to twelve on average and they follow a strict social dominant hierarchy. The pack is led by the

alphas, a male and a female, who are making decisions such as time of hunting, deciding resting

place, etc. The betas, best candidates to be alphas, are next in rank and assist the alphas in the

decision-making process. The deltas follow orders from alphas and betas but dominate the omegas

who are last in the rank and follow orders of all other dominant wolves. In GWO social hierarchy’s

mathematical model, the fittest solution is called the alpha (α), with the second and third best

solutions named beta (β) and delta (δ), respectively. All the rest candidate solutions are assumed to

be omega (ω). The GWO hunting mathematical model is comprised of tracking, encircling and

attacking the prey. Hunting of a prey starts with the pack encircling. The equations (7), (8), (9), (10)

are used to mathematically model grey wolves’ encircling behavior (Mirjalili, Mirjalili and Lewis,

2014).

7. 𝑫𝑫 = | 𝑪𝑪 .𝑿𝑿𝑿𝑿(𝒕𝒕) − 𝑿𝑿(𝒕𝒕) | (7)

8. 𝑿𝑿(𝒕𝒕 + 𝟏𝟏) = 𝑿𝑿𝑿𝑿(𝒕𝒕) − 𝑨𝑨 .𝑫𝑫 (8)

9. 𝑨𝑨 = 𝟐𝟐𝟐𝟐 . 𝒓𝒓𝒓𝒓 − 𝒂𝒂 (9)

10. 𝑪𝑪 = 𝟐𝟐 . 𝒓𝒓𝒓𝒓 (10)

25

In Equations (7) and (8), t represents current iteration and A, C are the coefficient vectors. D is the

distance factor, Xp represents the position of the prey and X represents the position of a grey wolf.

A and C are calculated in equations (9), (10), where a is linearly decreased from 2 to 0 through the

number of iterations and r1, r2 are random vectors in [0,1] (Mirjalili, Mirjalili and Lewis, 2014). The

alphas guide the hunting process with the participation of betas and deltas. The alpha, beta and

delta, have better knowledge about the prey’s location and they represent the best three candidate

solutions. The rest search agents, including the omegas update their position according to the best

search agents. The equation (11) is used to update wolves’ position.

11. 𝑿𝑿(𝒕𝒕 + 𝟏𝟏) = 𝑿𝑿𝑿𝑿+𝑿𝑿𝑿𝑿+𝑿𝑿𝑿𝑿
𝟑𝟑

 (11)

12. 𝑿𝑿𝑿𝑿 = |𝑿𝑿𝑿𝑿 − 𝑨𝑨𝑨𝑨 .𝑫𝑫𝑫𝑫| (12)

13. 𝑿𝑿𝑿𝑿 = |𝑿𝑿𝑿𝑿 − 𝑨𝑨𝑨𝑨 .𝑫𝑫𝑫𝑫| (13)

14. 𝑿𝑿𝑿𝑿 = |𝑿𝑿𝜹𝜹 − 𝑨𝑨𝑨𝑨 .𝑫𝑫𝑫𝑫| (14)

15. 𝑫𝑫𝑫𝑫 = |𝑪𝑪𝑪𝑪 .𝑿𝑿𝑿𝑿 − 𝑿𝑿| (15)

16. 𝑫𝑫𝑫𝑫 = |𝑪𝑪𝑪𝑪 .𝑿𝑿𝑿𝑿 − 𝑿𝑿| (16)

17. 𝑫𝑫𝑫𝑫 = |𝑪𝑪𝑪𝑪 .𝑿𝑿𝑿𝑿 − 𝑿𝑿| (17)

 The parameters X1, X2 and X3 in equation (11), are defined in equations (12), (13) and (14),

respectively, where Xα, Xβ and Xδ represent the first three best candidate solutions in the swarm

at a given iteration A1, A2 and A3 respectively. Dα, Dβ and Dδ are defined in equations (15), (16)

and (17), respectively.

The attack or exploitation phase of the prey comes when the prey stops moving. The mathematical

representation of the grey wolf approaching the prey, is done by decreasing the value of a over the

course of iterations. By decreasing a, A calculated by equation (9) is also decreased.

3.15 Comparison of Bio-Inspired Models

26

Not all Bio-Inspired algorithms have similar performance on a specific real-world problem.

Furthermore, each algorithm has its advantages and disadvantages as reported in literature and

presented in Table 2.

Algorithm Advantages Disadvantages

Neural Networks (NN) Can be combined with other

algorithms to improve the

predicting capabilities of the

system (Kar, 2016)

Cannot reach an optimum

performance in non-linear

problems (Garro, Sossa and

Vazquez, 2009)

Genetic Algorithm (GA) Easy of operations, minimal

requirements, global

perspective (Sivanandam and

Deepa, 2008).

Efficiency, extraordinary

robustness regarding input

data (Meyer-Baese and

Schmid, 2014).

Intuitiveness, ease of

implementation (Hassan,

Cohanim, de Weck and Venter,

2005).

Reduced performance when

applied to very complex and

high dimensional problems

(Kar, 2016).

Poor local search ability

(Karaboga and Basturk,

2007).

A precise knowledge of the

basics and the context is

crucial for any problem

solution (Meyer-Baese and

Schmid, 2014).

Expensive computation cost

(Hassan, Cohanim, de Weck

and Venter, 2005), have

drawbacks in dealing with

multimodal optimization

problems (Yang and He,

2013b)

27

Particle Swarm Optimization

(PSO)

Extremely simple algorithm,

effective on optimizing a wide

range of functions (Kennedy

and Eberhart, 1995).

Effectively on solving large-

scale nonlinear optimization

problems (del Valle et al.,

2008). Calculation of PSO is

simple (Bai, 2010)

Suffers from partial optimism

(Bai, 2010), have drawbacks

in dealing with multimodal

optimization problems (Yang

and He, 2013b)

Ant Colony Optimization

(ACO)

Strong global search ability,

can be easily combined with

other algorithms, strong

robustness (Wang, 2018)

Large number of parameters,

slow convergence speed

(Wang, 2018)

Artificial Bee Colony (ABC) Easy to understand and

implement (Ghanem and

Jantan, 2014).

Strong robustness, fast

convergence, high flexibility,

few parameters to configure

(Yan, 2011)

Premature convergence (Yan,

2011)

Bacterial Foraging

Optimization Algorithm

(BFOA)

Easy to implement (Das et al.,

2009; Kar, 2016).

Poor convergence capability

for solving complex

optimization problems. (Das

et al., 2009; Kar, 2016).

Cuckoo search Few parameters to be fine-

tuned (Gandomi et al., 2011a).

Slow convergence (Wang,

2018)

28

Strong global search ability

(Wang, 2018)

Local search is not careful

(Wang and Li, 2019)

Firefly Algorithm Automatically subdivision,

ability to deal with

multimodality (Yang and He,

2013a)

Oscillatory behavior as the

search process approaches

the optimum design

(Gandomi et al., 2011b)

Leaping Frog Algorithm High search precision (Wang

and Li, 2019)

Slow convergence velocity,

falling easily to local optimum

(Wang and Li, 2019)

Bat Algorithm Simplicity and flexibility, very

quick convergence (Yang and

He, 2013b)

Convergence slows down

after early stage (Yang and He,

2013b)

Flower Pollination Algorithm

(FPA)

Explores large search space

(Yang, 2012).

Simplicity and Flexibility

(Yang, Karamanoglu and He,

2013)

Premature convergence, poor

exploitation ability (Cui and

He, 2018)

Artificial plant optimization Self-organization, self-

learning (Cui and Cai, 2013)

New algorithm – further

exploration and research is

needed (Kar, 2016)

Ant Lion Optimizer (ALO) High exploitation and

convergence rate (Mirjalili,

2015)

Long run time due to the

random walking process Kilic,

Yuzgec and Karakuzu, 2018

29

Grey Wolf Optimizer (GWO) Easy to implement, Faster

convergence, Avoidance of

local optima, high

performance in unknown

challenging search spaces

(Mirjalili, Mirjalili and Lewis,

2014).

Low computational cost

(Darwish, 2018), high search

precision (Wang and Li, 2019)

New algorithm – further

exploration and research is

needed (Wang and Li, 2019)

Table 2: Bio-Inspired algorithms comparison table

3.16 Selection of Bio-Inspired Models

For the purpose of this M.Sc. dissertation we decided to employ three algorithms and test their

performance on feature selection optimization. Particle Swarm Optimization (PSO) and Genetic

Algorithm (GA) are similar population-based search algorithms, but according to Hassan, Cohanim,

de Weck and Venter (2005) PSO has superior computation efficiency compared to GA. PSO, GA, ACO

and NN have been implemented in many studies in literature (Kar, 2016), so we decided to choose

only one of this group of algorithms and compare it with algorithms that have not been explored on

a similar level. Khurma et al. (2020) reports that the binary version of PSO, BPSO, has the highest

stability in error rate results on feature selection optimization and that makes it a perfect candidate

algorithm for our approach. Khurma et al. (2020) also reports that BBAT optimizer, the binary

version of Bat Algorithm, was the fastest optimizer on all the authors’ tests, compared with all the

other optimizers. Kar (2016) suggests the application of Bat algorithm for further exploration, so

we decided to use this algorithm as well. Lastly, we chose an algorithm from the “zone of theory

development” (Kar, 2016), GWO, that reports high performance with low computation cost.

30

3.17 Summary

In this chapter we presented an overview of Swarm Intelligence and Bio-Inspired computing and

presented the most popular and well-known algorithms, such as Neural Networks, Genetic

Algorithm, PSO and ACO, but also more recent developed algorithms in Bio-Inspired computing,

such as BA, GWO, FA and CS. We presented advantages and disadvantages of each algorithm as

reported in literature and selected three (3) Bio-Inspired models to utilize in our approach.

.

31

Chapter 4
Methodology

In chapter 2 we reviewed literature focused on machine learning based insider threat detection and

the need to improve the performance of such models. In this chapter we present the methodology

on building a Machine Learning model-based insider threat detection and improving its

performance by utilizing Swarm Intelligence algorithms.

4.1 Overview

In real-world environments, a security system is in place to collect and store log data for further

processing. Such system is a Security Information and Evet Monitoring (SIEM) system, designed to

collect log data from various type of systems, such as domain controllers, web and application

servers, databases, network and security devices, email systems, etc. Since each device uses a

different format for their log data, log parsing is mandatory after the collection of log data. The logs

are then combined in a way that data related to a specific security incident can be correlated, to help

a security analyst to escalate the incident. Log data contain an enormous number of features, such

32

as user id, computer name, ip address, mac address, data, time and many features related with the

source device, such as policy id, service information, action, etc. and many of these features are

irrelevant with security incidents and are just creating noise. Feature selection optimization comes

a solution to this kind of problems.

Our insider threat detection approach uses Swarm Intelligence Algorithms to automate feature

selection optimization and eliminate unnecessary features before fitting the log data to a machine

learning algorithm. Feature Selection or variable selection is the process of selecting the most

relevant features for a specific problem and omit unneeded or irrelevant and redundant features,

to improve a model’s prediction performance, reduce resource requirements, processing and

utilization times (Guyon and Elisseeff, 2003).

We start by consolidating the log data from a synthetic dataset into a single data frame by parsing

specific data such as the date into a more meaningful and useful data chunks, so our algorithms can

be more efficient with. An automatic feature selection optimization, which is described in section

4.3, is then applied on the generated data frame to produce the optimum subset of features. In

Figure 2 we illustrate the components of our proposed system and the flow of data between them.

Since we are measuring the performance of three (3) different Swarm Intelligence algorithms for

feature selection optimization, we now have several results of subset selections to fit into the

Machine learning model, described in section 4.4, for detecting insider threats.

Figure 2: Diagram of proposed method

33

4.2 Dataset

Data is an essential element in threat detection models and plays a crucial role on the detection of

security incidents (Sun et al., 2019). In order to avoid legal and privacy issues we are using a publicly

available synthetic dataset. The synthetic datasets contain logs generated specific for insider threat

research and each data set contains a small number of insider threat incidents in regard with the

dataset’s accompanied scenario (Glasser and Lindauer, 2013).

We need to parse records from the log data and extract data element values in a way that our model

can use and make accurate predictions from the given data.

4.3 Feature Selection Optimization using Swarm

Intelligence Algorithms

For the purpose of this M.Sc. dissertation, we decided to use EvoloPy-FS framework and measure

the performance of three (3) popular Swarm Intelligence algorithms on the feature selection

optimization problem.

EvoloPy-FS, an easy to use Python framework, developed by its authors to researchers in solving

optimization problems using Swarm intelligence algorithms. The main component of the

framework is the Optimizer, where we setup our experiment along with the initial configurations.

In the optimizer we define the dataset to use, the optimizers, number of runs and number of

iterations. For each implementation of the included optimizers there is a separate Python script,

since the framework is Open Source and all included components are transparent (Faris et al., 2016;

Aljarah et al., 2018; Faris et al., 2018; Mafarja et al., 2018; Faris et al., 2020; Khurma et al., 2020).

In our approach, for feature selection optimization we selected Binary Particle Swarm Optimization

(BPSO), Binary Gray Wolf Optimizer (BGWO) and Binary Bat Algorithm (BBAT), as optimizers. The

source for obtaining the source code of the framework is presented in Appendix Α, section A.2.

4.4 Utilizing Machine Learning for Outlier detection

34

As stated in section 1.3, Machine learning is applied in several applications and one of them is

anomaly detection. Several approaches, reported in the literature, utilize Machine learning as an

effective method for detecting anomalies. For the purpose of this M.Sc. dissertation we developed a

Machine learning system, focused on user-centered analysis to distinguish malicious activities from

the legitimate ones. The system utilizes the Local Outlier Factor (LOF), to detect the outlier or rare

instances from the given data. LOF is fitted to the subset data frame, generated after feature

selection optimization, to detect the outliers. For every detected outlier, the system marks the

corresponding insider as malicious. The system marks an outlier based on the entire subset data

frame, based on the selected features and not based on CERT’s accompanied scenarios. The

Machine learning system is presented in full detail in chapter 5.

Local Outlier Factor (LOF), is an unsupervised anomaly detection algorithm, which uses a score to

determine if a certain point is an anomaly. Each data point is assigned this score, which is the result

of the computation of local density deviation of the given data point with respect to its neighbor

data points. If a given data point has a substantially lower density than its neighbors, then it is a

considered as an outlier (Breunig et al., 2000). LOF algorithm is considered as an efficient method

to detect outliers in high dimensional datasets. In our system we employed

sklearn.neighbors.LocalOutlierFactor from scikit-learn module, which utilizes K-nearest

neighbours to compute the local density of a data point. LOF score value is determined from the

ratio of the average local density of the observation’s neighbors and its own local density

(Pedregosa et al., 2011)

4.5 Technology and Libraries

For the purpose of this M.Sc. dissertation we used and utilized Python programming language along

with several open source libraries. Python was installed with the use of Anaconda, the most popular

Python distribution.

4.5.1 Anaconda

Anaconda is an open source Python distribution used to perform data science and build machine

learning models (Anaconda Software Distribution, 2019). We used Anaconda to automatically

install Python and several other libraries including Pandas, Jupyter and scikit-learn.

35

4.5.2 Python

Python is a high-level platform independent programming language, quick and easy to learn.

Python is the most popular programming language in the Machine learning domain and can be

used to create and run a Machine learning model on a single machine (Python Software Foundation.

2019). All processing steps of our system are implemented in Python.

4.5.3 Jupyter

Jupyter notebook is an open source interactive computing notebook environment which supports

over 40 programming languages, including Python. Jupyter is very popular in the data science

domain, since it combines code, narrative text and visualizations (Project Jupyter, 2020). Jupyter

was used to develop the proposed Insider Threat detection model in this M.Sc. dissertation, due to

its capability of reproducing research results and the flexibility of using multiple cells and running

slices of code, which makes it easy to work with data analysis.

4.5.4 Pandas

Pandas is a powerful and high-performance data analysis and manipulation tool, developed for

Python, and used for working with large data frames. With Pandas we can easily read data from a

variety of formats, including csv (McKinney, 2010; The pandas development team, 2020).

4.5.5 Numpy

Numpy is a fundamental Python library which adds support for multi-dimensional arrays and

matrices, along with high-level mathematical functions (Oliphant, 2006).

4.5.6 EvoloPy-FS

As stated in the section 4.3, EvoloPy-FS is Python optimization framework that includes several

swarm intelligence algorithms and provide solutions for feature selection optimization problems.

4.5.7 Scikit-learn

36

Scikit-learn is an open source machine learning Python module, which integrates supervised and

unsupervised algorithms into Python for building machine learning models (Pedregosa et al.,

2011). The Machine Learning algorithms are employed by utilizing scikit-learn module.

4.6 Performance Metrics

In order to measure the performance of the subset dataset, generated after feature selection

optimization, we followed Ferreira, C. Le and Zincir-Heywood’s (2019) performance metrics’

method, who used insider detection rate and insider detection precision. As mentioned in section

4.4, the subset dataset is fitted to LOF to detect anomalies and we measure the performance of the

results for each subset dataset tested, to find the optimal subset. The subset dataset that produce

the best precision will be selected as the optimal one. Insider detection rate (DR) and precision can

be determined by using the equations (17) and (18) (Ferreira, C. Le and Zincir-Heywood, 2019):

18. 𝑫𝑫𝑫𝑫 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

 (17)

19. 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

 (18)

In equations (17) and (18) TP, short for True Positive, represents the number of true malicious

users detected, FP, short for False Positive, represents the number of normal users that were

detected as malicious and FN, short for False Negative, represents the malicious users that were not

detected as malicious, but falsely considered as normal users.

4.7 Summary

In this chapter we presented the methodology we used to undertake our research and build a

Machine Learning model-based insider threat detection, while improving its performance by

utilizing Swarm Intelligence algorithms.

37

Chapter 5
Machine Learning Model

In this chapter we present the Machine Learning Model that was implemented and used for the

purpose of this M.Sc. dissertation. Our system is focused on Feature Selection and detects malicious

insiders by utilizing unsupervised learning method.

5.1 System Overview

In Figure 2 we illustrate an overview of our proposed system for malicious behavior detection. In

the first step we collect the data from the various sources as well the user information. Data Pre-

processing takes place in the next step along with all relevant log parsing. In the third step, feature

selection optimization is performed to generate the optimal subset. In the fourth step we fit the

anomaly detection algorithm into the generated subset to detect outliers. In the final step we

analyze results and measure the algorithms performance.

38

5.2 Data Collection and Pre-Processing

For the evaluation of our system we have used publicly available synthetic dataset that has no

privacy constrains or legal issues.

5.2.1 Dataset Overview

The synthetic dataset that we evaluated in our Machine Learning Model is a release from the Insider

Threat Test Dataset collection, generated from Carnegie Mellon University Division. This dataset is

“free of privacy and restriction limitations” (Glasser and Lindauer, 2013) to allow researchers to

experiment with it and evaluate algorithms. There are various datasets to choose from, with most

of them having once instance of each scenario, depending on the creation time. We chose the release

r4.2, the “dense needle” dataset, since it includes many instances of each scenarios with multiple

users involved in each scenario. The r4.2 dataset is split up in seven (7) different parts as shown in

Table 3. We are not going to employee the data of psychometric.csv in our system, since it contains

personality data and we want to avoid any privacy or legal issues regarding this in a real-life

scenario. Psycometric.csv provides personality scores for each user, based on big five personality

traits. Since the used dataset is a synthetic one and there are no privacy or legal constraints on using

this dataset’s personality scores, we could add these features as well to experiment with. On the

contrary, the scope of this work is intended to be used by organizations which might not have this

kind of data. In addition to this, psychometric data is usually recorded by Human Resources (HR)

and it will be difficult or even impossible to include scores for all internal actors, such as consultants,

contractors, partners or even personnel from subsidiaries.

File Description

device.csv Log of user’s activity regarding connecting and

disconnecting a thumb drive

email.csv Log of user’s e-mail communication

file.csv Log of user’s activity regarding copying files to

removable media devices

39

http.csv Log of user’s internet browsing history

logon.csv Log of user’s workstation logon and logoff

activity

psychometric.csv Users’ psychometric scores based on big five

personality traits

ldap A set of eighteen (18) files regarding the

organizations’ users and their roles

Table 3: Insider Threat Dataset r4.2 files’ description

5.2.2 Scenarios

The Insider threat dataset r4.2 contains three (3) attack scenarios (Glasser and Lindauer, 2013):

1. A user who did not previously use removable drives or work after hours, begins logging in

after hours, using a removable drive and uploading data to wikileaks.org. The same user

leaves the organization shortly thereafter.

2. A use begins surfing job websites and soliciting employment from a competitor. Before

leaving the company, the user uses a thumb drive to steal data.

3. A system administrator becomes disgruntled, downloads a keylogger and uses a thumb

drive to transfer it to his supervisor’s machine. The next day he uses the collected

credentials to log in as his supervisor and send out an alarming mass email causing panic in

the organization. He leaves the organization immediately after this event.

5.2.3 Log Files Structure

Table 4 shows the log file structure for each file component of the dataset. As mentioned, in section

5.2.1, we are not going to collect data from “Psychometric.csv” file and we are also dropping other

40

unnecessary features, to avoid overhead processing and develop a simple to use model.

Furthermore, we followed Rashid, Agrafiotis and Nurse (2016) approach and chose features that

can be used to model user behavior across several different domains.

File Column Datatype

Device.csv Id

Date

User

Pc

activity

Object

Object

Object

Object

Object

Email.csv Id

Date

User

Pc

To

Cc

Bcc

From

Size

Attachments

Object

Object

Object

Object

Object

Object

Object

Object

Int64

Int64

41

Content Object

File.csv Id

Date

User

Pc

Filename

Content

Object

Object

Object

Object

Object

Object

http.csv Id

Date

User

Pc

url

content

Object

Object

Object

Object

Object

Object

Logon.csv Id

Date

User

Pc

Activity

Object

Object

Object

Object

Object

42

Psychometric.csv Employee_name

User_id

O

C

E

A

N

Object

Object

Int64

Int64

Int64

Int64

Int64

LDAP (files) Employee_name

User_id

Email

Role

Business_unit

Functional_unit

Department

Team

Supervisor

Object

Object

Object

Object

Int64

Object

Object

Object

Object

Table 4: Insider Threat Dataset r4.2 files’ structure

5.2.4 Sample Data

43

We have sampled a portion of the data to start with, to experiment the system with smaller sizes of

data frames in the process of building our model. When working with large datasets it is much

easier to use smaller samples of the data, to troubleshoot functions and fix any errors in the code.

After we have everything working with this sample data, we can use our model with the full dataset.

A sample of the data, the first five (5) rows of each log files is shown in Table 5 for device.csv, Table

6 for file.csv, Table 7 for email.csv, Table 78for http.csv, Table 9 for login.csv.

 id date User pc activity

0 {J1S3-L9UU75BQ-7790ATPL} 01/02/2010 07:21:06 MOH0273 PC-6699 Connect

1 {N7B5-Y7BB27SI-2946PUJK} 01/02/2010 07:37:41 MOH0273 PC-6699 Disconnect

2 {U1V9-Z7XT67KV-5649MYHI} 01/02/2010 07:59:11 HPH0075 PC-2417 Connect

3 {H0Z7-E6GB57XZ-1603MOXD} 01/02/2010 07:59:49 IIW0249 PC-0843 Connect

4 {L7P2-G4PX02RX-7999GYOY} 01/02/2010 08:04:26 IIW0249 PC-0843 Disconnect

Table 5: Sample of device.csv log

id date user pc filename content

0 {L9G8-J9QE34VM-
2834VDPB}

01/02/2010
07:23:14 MOH0273 PC-

6699 EYPC9Y08.doc D0-CF-11-E0-A1-B1-1A-
E1 during difficulty over...

1
{H0W6-

L4FG38XG-
9897XTEN}

01/02/2010
07:26:19 MOH0273 PC-

6699 N3LTSU3O.pdf
25-50-44-46-2D

carpenters 25 landed
strait dis...

2
{M3Z0-

O2KK89OX-
5716MBIM}

01/02/2010
08:12:03 HPH0075 PC-

2417 D3D3WC9W.doc
D0-CF-11-E0-A1-B1-1A-

E1 union 24 declined
impo...

3 {E1I4-S4QS61TG-
3652YHKR}

01/02/2010
08:17:00 HPH0075 PC-

2417 QCSW62YS.doc
D0-CF-11-E0-A1-B1-1A-

E1 becoming period
begin ...

44

id date user pc filename content

4 {D4R7-E7JL45UX-
0067XALT}

01/02/2010
08:24:57 HSB0196 PC-

8001 AU75JV6U.jpg FF-D8

Table 6: Sample of file.csv log

id date user pc to cc bcc from size

a
t
t
a
c
h
m
e
n
t
s

content

0

{R3I
7-

S4T
X96
FG-
821

9JW
FF}

01/0
2/20

10
07:1
1:45

LAP
033

8

PC-
5758

Dean.Flynn.Hines
@dtaa.com;Wade
_Harrison@lockh

e...

Nathaniel.H
unter.Heath
@dtaa.com

NaN

Lynn.
Aden
a.Pra
tt@dt
aa.co

m

258
30 0

middle f2
systems

4 july
techniqu

es
powerful

d...

1

{R0
R9-

E4G
L59I

K-
290

7OS
WJ}

01/0
2/20

10
07:1
2:16

MO
H02

73

PC-
6699

Odonnell-
Gage@bellsouth.

net
NaN NaN

MOH
68@

opton
line.n

et

299
42 0

the
breaking

called
allied

reservati
ons

former...

2

{G2
B2-

A8X
Y58
CP-
284
7ZJ
ZL}

01/0
2/20

10
07:1
3:00

LAP
033

8

PC-
5758

Penelope_Colon
@netzero.com NaN NaN

Lynn
_A_P
ratt@
earthl
ink.n

et

287
80 0

slowly
this

uncinus
winter

beneath
addition

ex...

3

{A3
A9-
F4T
H89
AA-
831

8GF
GK}

01/0
2/20

10
07:1
3:17

LAP
033

8

PC-
5758

Judith_Hayden@
comcast.net NaN NaN

Lynn
_A_P
ratt@
earthl
ink.n

et

219
07 0

400
other

difficult
land

cirrocum
ulus

powered
...

45

id date user pc to cc bcc from size

a
t
t
a
c
h
m
e
n
t
s

content

4

{E8
B7-

C8F
Z88
UF-
294

6RU
QQ}

01/0
2/20

10
07:1
3:28

MO
H02

73

PC-
6699

Bond-
Raymond@verizo
n.net;Alea_Ferrell

@msn.com;...

NaN

Odo
nnell

-
Gag
e@b
ellso
uth.
net

MOH
68@

opton
line.n

et

173
19 0

this kmh
october
holliswo

od
number
advised

unu...

Table 7: Sample of email.csv log

id date user pc url content

0

{V1Y4-
S2IR20QU

-
6154HFXJ

}

01/02/20
10

06:55:16

LRR01
48

PC-
427

5

http://msn.com/The_Human_Centipede_First
_Seque...

remain
representati

ves
consensus

concert
altho...

1

{Q5R1-
T3EF87U

E-
2395RWZ

S}

01/02/20
10

07:00:13

NGF01
57

PC-
605

6

http://urbanspoon.com/Plunketts_Creek_Loya
lsoc...

festival off
northwards

than
congestion

partne...

2

{X9O1-
O0XW52V

O-
5806RPH

G}

01/02/20
10

07:03:46

NGF01
57

PC-
605

6

http://aa.com/Rhodocene/rhodocenium/fhaav
atqrf...

long away
reorganized

baldwin seth
business

18...

3

{G5S8-
U5OG04T

E-
5299CCT

U}

01/02/20
10

07:05:26

IRM093
1

PC-
718

8

http://groupon.com/Leonhard_Euler/leonhard/
tne...

among
german
schwein

experimental
becomes

prev...

4
{L0R4-

A9DH29V
P-

01/02/20
10

07:05:52

IRM093
1

PC-
718

8

http://flickr.com/Inauguration_of_Barack_Oba
ma...

kate criteria j
2008 highest

12 include
books ...

46

id date user pc url content

4553AUW
M}

Table 8: Sample of http.csv log

id date user pc activity

0 {X1D9-S0ES98JV-5357PWMI} 01/02/2010 06:49:00 NGF0157 PC-6056 Logon

1 {G2B3-L6EJ61GT-2222RKSO} 01/02/2010 06:50:00 LRR0148 PC-4275 Logon

2 {U6Q3-U0WE70UA-3770UREL} 01/02/2010 06:53:04 LRR0148 PC-4124 Logon

3 {I0N5-R7NA26TG-6263KNGM} 01/02/2010 07:00:00 IRM0931 PC-7188 Logon

4 {D1S0-N6FH62BT-5398KANK} 01/02/2010 07:00:00 MOH0273 PC-6699 Logon

Table 9: Sample of logon.csv log

5.2.5 Initial Feature Selection

Since the dataset we employed to evaluate our system comes with specific scenarios, mentioned in

section 5.2.2, we initially collected features based on these scenarios:

• For scenario #1, we need to detect an internal actor who logs on after hours, uses a

removable device and uploads data to wikileaks.org. To detect the insider threat, we need

specific features from device.csv, logon.csv, file.csv and http.csv.

• For scenario #2, we need to detect an internal actor who uses a thumb drive to steal data

before leaving the company and join a competitor. To detect this insider threat, we need

specific features from device.csv, file.csv and http.csv.

• For scenario #3, we need to detect a disgruntled system administrator, who downloads a

keylogger and uses a thumb drive to transfer it to his supervisor’s machine. He collects his

supervisor’s credentials and uses them to send an alarming email to cause panic in the

organization. To detect this insider threat, we need specific features from all csv files.

47

We have dropped features, which we believe are unnecessary in the detection of the above threats.

Table 10 presents the selected features from the csv files, along with the scenarios used for each

feature.

File Column Datatype Scenarios Used

Device.csv Date

User

Pc

activity

Object

Object

Object

Object

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

Email.csv Date

User

Pc

Object

Object

Object

3

3

3

File.csv Date

User

Pc

Object

Object

Object

1, 2, 3

1, 2, 3

1, 2, 3

http.csv Date

User

Pc

url

Object

Object

Object

Object

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

Logon.csv Date Object 1, 2, 3

48

User

Pc

Activity

Object

Object

Object

1, 2, 3

1, 2, 3

1, 2, 3

Table 10: Selected Features based on dataset release’s scenarios

Date values were collected as they were, but we had to split and encode the date feature into two

features, day and time, since our system must detect outliers based on work after hours. Machine

Learning algorithms understand only integer numbers, so we had to convert the date and time into

numbers and the other features as well, such as the activity. The activity feature’s initial values

correspond to user actions, such as logon to a system, logoff, connect thumb drive, disconnect, send

an e-mail, process a file or access the internet. Since we have seven (7) different actions for the

activity feature, we can replace each action with an integer, logon is 1, logoff is 2, etc. Our system’s

initial selected features are presented in Table 11, along with their value space.

Feature Possible Values

Day 0, 1, 2, 3, 4, 5, 6

Time 1, 2, 3, 4, …, 24

User String type

PC String type

Activity 1, 2, 3, 4, 5, 6, 7

Table 11: Encoded Features

The values for the activity feature presented in Table 11, correspond to the user’s activities, such

as logon, logoff, connect disconnect, http, file and e-mail. An example dataset comprised of the

beforementioned features is shown in Table 12.

49

Day Time User PC Activity

5 2 4512 4512 3

Table 12: Example Dataframe

We encoded categorical features using the One-Hot Encoding scheme at a later stage, since Machine

Learning algorithms are more effective in prediction when working with datasets encoded using

this scheme. In this scheme, we create a binary column for each category, based on the unique value

of each feature. We transformed the “Activity” and generated seven (7) different features, shown in

Table 13, with two possible values, 0 and 1. 0 indicates the absence of the specific activity and 1

indicates the presence of the same activity (sklearn.preprocessing.OneHotEncoder, 2020; What is

One Hot Encoding? Why And When do you have to use it?, 2020). Finally, we joined all data into a

pandas data frame and sorted it based on timestamp.

Feature Possible Values

Day 0, 1, 2, 3, 4, 5, 6

Time 1, 2, 3, 4, …, 24

User -

PC -

Logon 0, 1

Logoff 0, 1

Connect 0, 1

Disconnect 0, 1

email 0, 1

50

File 0, 1

http 0, 1

Table 13: One-Hot Encoding

5.3 Feature Selection using Bio-Inspired algorithms

In EvoloPy-FS framework we defined the optimizers used by setting their flag in the main

configuration to “True”. In the main configuration, shown in Figure 3, we enabled PSO, GWO and

BAT optimizers which correspond to Binary Particle Swarm Optimization, Binary Gray Wolf

Optimizer and Binary Bat Algorithm, respectively. We also set the population size to 20 and

iteration to 20 as well.

Figure 3: EvoloPy-FS main configuration, “main.py”.

5.4 Anomaly Detection (LOF)

51

As mentioned in section 4.4, out system utilizes the Local Outlier Factor (LOF), to detect the outlier

or rare instances from the given data. In LOF we need to define the values of n_neighbors,

contamination and n_jobs (Pedregosa et al., 2011):

• n_neighbors: the number of neighbors to take into consideration to detect the outliers. If the

value is larger than the number of provided samples then all samples will be used.

• contamination: the proportion of outliers in the data set. Contamination is used to define

the threshold on the scores of the samples we fit LOF to.

• n_jobs: number of parallel jobs to run or neighbors search. “-1” value uses all available

processors.

We fit LOF to the “candidate” optimal subset data frame to detect outliers. Python coding for

Anomaly detection presented in Appendix Α, section A.3.

5.5 Summary

In this chapter we presented our proposed system in detail, we described the data that was used

and explained all relevant steps, from data collection, to data pre-processing, then to feature

selection optimization and finally the malicious behavior detection.

52

Chapter 6
Findings and Analysis

In this chapter we present the experiments along with the various scenarios we executed to test the

model and measure the performance of the utilized swarm intelligence algorithms for feature

selection optimization. We compare our model’s performance with other approaches.

6.1 Experimental Setup

All data processing tasks for this M.Sc. dissertation are performed using a PC with Intel Core ™ i5

4200M @ 2.5GHz CPU and 16.0 GB Dual-Channel DDR @798MHz RAM. All algorithms are tested

using Anaconda’s Python distribution version 2019.07. The global settings are the same for all

Swarm Intelligence algorithms in order to have fair comparisons. Population size is set to 50 search

agents and the number of iterations is set to 20.

53

6.2 Testing the Model

The objective of the test is to improve the performance of the Machine learning model by obtaining

the optimal subset before Local Outlier Factor (LOF) algorithm to it and determine the outliers.

We started the experiment by fitting the Machine learning model to the synthetic dataset described

in subsection 5.2.1. We loaded the full dataset at the beginning of the experiments, as shown in

Figure 4, but due to high memory usage we dropped these dataframes and created samples of the

first 50000 rows from the dataset, as shown in Figure 5, to work with a smaller portion of it.

Figure 4: Load full dataset into pandas dataframes

Figure 5: create samples from the dataset

Data collection and data pre-processing code execution takes place in order to prepare the

dataframe with all selected features and fit the feature selection optimization to it. All relevant

Python coding for Data collection and data pre-processing is presented in Appendix Α, section A.1.

We fitted the feature selection optimization framework on the first thousand (1000) rows of the

generated data with the results shown in Table 14. The three columns represent the results for

each optimizer from the selected, PSO, GWO and BAT. Time taken is in seconds is about the same

54

for all three optimizers. Train and testing accuracy is computed based on the sliced part for each

value, as shown in Figure 6 and against the complete dataset. For each iteration run, we have a

resulting objective fitness function which is the error rate and the number of selected features.

 PSO GWO BAT

Time taken

(seconds)

14.1658384799957 12.1430022716522 13.4572482109069

Train

Accuracy

0.993939393939393 1 0.809090909090909

Test

Acuracy

1 1 0.835294117647058

Iter1 0.01315 7 0.0075 6 0.0075 6

Iter2 0.0075 6 0.0075 6 0.0075 6

Iter3 0.0075 8 0.0075 6 0.0075 6

Iter4 0.0075 6 0.0075 6 0.0075 6

Iter5 0.00625 5 0.0075 6 0.0075 6

Iter6 0.00625 4 0.0075 6 0.0075 6

Iter7 0.00625 7 0.0075 6 0.0075 6

Iter8 0.00625 6 0.0075 6 0.0075 5

Iter9 0.00625 4 0.0075 6 0.0075 3

Iter10 0.00625 6 0.0075 6 0.0075 5

55

Iter11 0.00625 4 0.0075 6 0.0075 3

Iter12 0.00625 6 0.0075 6 0.0075 4

Iter13 0.00625 4 0.0075 6 0.0075 3

Iter14 0.00625 4 0.0075 6 0.0075 2

Iter15 0.00625 6 0.0075 6 0.0075 1

Iter16 0.00625 5 0.0075 6 0.0075 1

Iter17 0.00625 6 0.0075 6 0.0075 1

Iter18 0.00625 7 0.0075 6 0.0075 1

Iter19 0.00625 7 0.0075 6 0.0075 1

Iter20 0.00625 6 0.0075 6 0.0075 1

Table 14: Feature Selection Optimization Results.

Figure 6: Training % and Testing %

The results of Table 14 show that BPSO registered the minimum error rate, compared to the other

two optimizers. In order to test the feature selection output results if they generate an optimal

subset, we need to fit LOF to the subset generated after the feature selection. The performance can

be measured by comparing time taken for insider threat detection along with the detection rate and

precision, as mentioned in section 4.6. Precision is the ratio of True Positives, to the total number of

positive results, Precision = TP / (TP + FP), with 1 being the best value and 0 the worst.

The first measurement is done by selecting all features (Figure 7) as generated after the data pre-

processing phase and see the results without feature selection optimization. Following we run

56

more experiments based on the results of feature selection optimization. The results of the

experiments are presented in Table 15.

Figure 7: All Features Selected

Experiment Features Time_Taken TP FP FN DR Precision

1 1.0 9.0 8.604782 70.0 918.0 0.0 1.000000 0.070850

2 2.0 5.0 6.609488 69.0 910.0 1.0 0.985714 0.070480

3 3.0 4.0 5.928126 62.0 774.0 8.0 0.885714 0.074163

4 4.0 7.0 7.686987 70.0 918.0 0.0 1.000000 0.070850

5 5.0 6.0 6.994491 69.0 919.0 1.0 0.985714 0.069838

Table 15: LOF results with feature optimization. N_neighbours = 20 and contamination = auto

The first results show high detection rate, but very low precision, since we have a high number of

FP. We can experiment with the parameters of LOF algorithm and change n_neighbors and

contamination values to see whether we can get improved precision results. In order to get the

results in Table 14, n_neighbours value was set to 20 and contamination set to auto. As mentioned

in section 5.4, contamination represents the proportion of outliers in the data set.

We changed the contamination value to 0.1, to get similar results when contamination was set to

auto (results are shown in Table 16). The optimal subset remains the same, but precision value is

still very low.

Experiment Features Time_Taken TP FP FN DR Precision

1 1.0 9.0 11.854724 70.0 925.0 0.0 1.000000 0.070352

2 2.0 5.0 6.610281 69.0 923.0 1.0 0.985714 0.069556

57

Experiment Features Time_Taken TP FP FN DR Precision

3 3.0 4.0 5.990587 65.0 837.0 5.0 0.928571 0.072062

4 4.0 7.0 7.884163 70.0 925.0 0.0 1.000000 0.070352

5 5.0 6.0 8.453545 70.0 927.0 0.0 1.000000 0.070211

 Table 16: LOF results with feature optimization. N_neighbours = 20 and contamination = 0.1

By changing the contamination value to 0.01 we got slightly different results (shown in Table 17),

compared with the previous two cases and in this case the better precision value is produced by the

experiment #2, with a subset dataset of five (5) features. This subset dataset was produced by both

PSO and BAT algorithms.

Experiment Features Time_Taken TP FP FN DR Precision

1 1.0 9.0 9.417012 59.0 658.0 11.0 0.842857 0.082287

2 2.0 5.0 6.663487 56.0 573.0 14.0 0.800000 0.089030

3 3.0 4.0 5.407866 55.0 645.0 15.0 0.785714 0.078571

4 4.0 7.0 8.115871 58.0 654.0 12.0 0.828571 0.081461

5 5.0 6.0 7.711550 56.0 730.0 14.0 0.800000 0.071247

Table 17: LOF results with feature optimization. N_neighbours = 20 and contamination = 0.01

In all above cases, a portion of the original dataset was used in order to detect outliers.

6.3 Performance Results

The findings of section 6.2, show that after feature selection optimization, one of the resulted

subsets is a near-optimal subset, since it performs better of the original once, when measured with

precision. This near-optimal subset was generated after feature selection optimization by using

BPSO and BBAT optimizers. and by fitting the LOF algorithm to it, a detection of 62 True Positive

malicious insiders is a good result.

58

Five iterations of BPSO with minimum error rate and one of BBAT resulted with four (4) number

of selected features. These results acknowledge that Swarm intelligence algorithms have high

performance on feature selection optimization problems and can be used to enhance Machine

learning models.

6.4 Testing more Bio-Inspired models

In section 4.3 we mentioned the selection of three (3) optimizers, BPSO, BGWO and BBAT, based

on our initial decision, mentioned in section 3.16, of employing and testing three (3) Bio-Inspired

algorithms for feature selection optimization. In section 3.16 we justify our selection for the

selection of the specific algorithms, taking into our concern the tests run by Khurma et al. (2020) on

various datasets and the reported performance of the specific algorithms, but also the popularity

and exploration for each algorithm in literature.

Since EvoloPy-FS framework contains additional models we can use them as well and test their

performance on or dataset.

We enabled MVO, MFO, WOA, and FFA models, which corresponds to Multi-Verse Optimizer, Moth-

Flame Optimization, Whale Optimization Algorithm and Firefly Algorithm, respectively (Figure 8

displays the change on the Framework’s configuration).

59

Figure 8: EvoloPy-FS main configuration, “main.py” – test more models.

We fitted the feature selection optimization framework, configured with the additional optimizers,

on the first thousand (1000) rows of the generated data with the results shown in Table 18. We

run a number of tests, since EvoloPy-FS recommends multiple executions to obtain meaningful

results. All four additional tested optimizers had similar results regarding the number of selected

features, with a selection of five (5) features. Additionally, the number of four (4) features selected

by all four (4) optimizers on a few iterations, two for MVO, one for MFO, one for WOA and three for

FFA. These results show that the near-optimal subset can be generated by using these optimizers

as well and proves the effectiveness of Bio-Inspired models on solving optimization problems.

 MVO MFO WOA FFA

No. of
features
selected
on most
tests and
iterations

5 features 5 features 5 features 5 features

60

No. of
Iterations
we had
four
selected
features

2 Iterations 1 iteration 1 iteration 3 Iterations

Table 18: Feature Selection Optimization Results – Additional Models.

6.5 Performance Comparison with Other Approaches

We compared our approach with approaches that used Hidden Markov Models (HMM), Damerau–

Levenshtein (DL) Distance, Cosine Distance, and Jaccard Distance techniques (Table 18 reports the

performance of each approach based on TP/FP detection rate).

Rashid, Agrafiotis and Nurse (2016), used HMM and reported an 85% identification rate with a

false positive rate of 20%. Lo et al. (2018) acknowledge that during the training phase of HMM the

computational time can be quite slow as the number of features increases. Lo et al. (2018), used

HMM and distance measurement techniques and reported a detection rate of 69% and 80&

(aggregate score), respectively. The authors reported that HMM took more than 24 hours to

process all data, in opposition with distance measurements that took minutes to process. While the

authors report that the combination of the three distance measurements techniques has the

potential of raising a high number of FP, they do not mention the number of FP of their results.

While our approach reports high number of FP, it also reports better TP identification rate

compared with other approaches as reported in Table 19.

Author Approach TP FP

This M.Sc. dissertation Exp. 3 Table 15 93% 90%

This M.Sc. dissertation Exp. 3 Table 16 88.5% 83%

Rashid, Agrafiotis and

Nurse (2016)

HMM 85% 20%

61

Lo et al. (2018) DL 39%

Lo et al. (2018) Jaccard 36%

Lo et al. (2018) Cosine 47%

Lo et al. (2018) DL, Jaccard & Cosine

aggregate score

80%

Lo et al. (2018) HMM 69%

Table 19: Comparison with other approaches

6.6 Summary

In this chapter we presented our experiments’ results along with our proposed model’s

performance and a comparison with other approaches. Our model reports a high number of FP,

compared with other approaches, but also reports better TP identification rate than the compared

approaches.

62

Chapter 7
Conclusion

In this M.Sc. dissertation we introduce the use of bio-inspired computing in machine learning

models for mitigating insider threats and we improve the model by automating the feature

selection optimization process. We evaluate three swarm intelligence algorithms and our results

show that swarm intelligence algorithms should be employed to improve accuracy and speed in

detecting malicious behavior in large data sets.

An optimal subset with reduced features has similar or better performance from the original one

and can improve the performance of a machine learning model.

The employment of labeled data and addition of extra features, such as indication of visits to

employment websites, social networking sites and cloud storage services, where an internal actor

can share confidential information to others will improve the performance of our system on the

detection of malicious insiders and reduce FP rate. These additional indicators must be transparent

to all internal actors who must be clearly informed about all their log activity, according to

63

regulations of General Data Protection Regulation (GDPR) and California Consumer Privacy Act

(CCPA). The collection of employee’s private data in an organization, might raise several issues and

concerns and eventually reduce productivity.

The usage of unsupervised ML technique to detect anomalies using unlabeled data, not only

protects the privacy of legitimate internal actors, but also detect anomalies in behavior of malicious

insiders with no previous logged history, since no prior training is needed for unsupervised

learning.

7.1 Limitations

The process of detecting malicious insiders by detecting significant changes, or anomalies from a

user’s normal behavior, might be inconsistent in several circumstances, such as a team of

employees working overtime on a project with a strict deadline, or another team resolving a system

failure during work after hours. Regarding after hours, certain employees might work on a rotating

shift schedule, thus detecting outliers based on normal and after-hours’ activity does not work for

them.

7.2 Future Research

For future work, we can fit our proposed system to other existing or future releases of CERT’s

datasets, experiment with other Bio-Inspired models, such as cuckoo search (CS) and firefly

algorithm (FFA) and compare their performance with the Bio-Inspired models we experiment with

in this M.Sc. dissertation.

In future works, similar systems should be developed and evaluate hybrid algorithms or explore

the possibility of detecting anomalies with the use of Bio-Inspired computing.

64

Bibliography

[01] Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H., Zhang, Y. and Mirjalili, S. (2018). Asynchronous

accelerating multi-leader salp chains for feature selection. Applied Soft Computing, 71,

pp.964-979.

[02] Alpaydin, E. (2014). Introduction to Machine Learning. 3rd ed.

[03] Anaconda Software Distribution. Computer software. Vers. 3.0. Anaconda (2019). Available

at <https://anaconda.com>

[04] Axelrad, E.T., Sticha, P.J., Brdiczka, O. and Shen, J., (2013). A Bayesian network model for

predicting insider threats. In 2013 IEEE Security and Privacy Workshops (pp. 82-89). IEEE.

[05] Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and

information science, 3(1), 180.

[06] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J. (2000). LOF: identifying density-based

local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on

Management of data (pp. 93-104).

[07] Brown, C.R., Watkins, A. and Greitzer, F.L., (2013). Predicting insider threat risks through

linguistic analysis of electronic communication. In 2013 46th Hawaii International

Conference on System Sciences (pp. 1849-1858). IEEE.

[08] Chakraborty, A. and Kar, A. (2017). Swarm Intelligence: A Review of Algorithms. Nature-

Inspired Computing and Optimization, pp.475-494.

[09] Cui, Z. and Cai, X. (2013). Artificial Plant Optimization Algorithm. Swarm Intelligence and

Bio-Inspired Computation, pp.351-365.

[10] Cui, W. and He, Y. (2018). Biological Flower Pollination Algorithm with Orthogonal Learning

Strategy and Catfish Effect Mechanism for Global Optimization Problems. Mathematical

Problems in Engineering, 2018, pp.1-16.

65

[11] Darwish, A. (2018). Bio-inspired computing: Algorithms review, deep analysis, and the

scope of applications. Future Computing and Informatics Journal, 3(2), pp.231-246.

[12] Das S., Biswas A., Dasgupta S., Abraham A. (2009) Bacterial Foraging Optimization

Algorithm: Theoretical Foundations, Analysis, and Applications. In: Abraham A., Hassanien

AE., Siarry P., Engelbrecht A. (eds) Foundations of Computational Intelligence Volume 3.

Studies in Computational Intelligence, vol 203. Springer, Berlin, Heidelberg

[13] del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J. and Harley, R. (2008).

Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power

Systems. IEEE Transactions on Evolutionary Computation, 12(2), pp.171-195.

[14] Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a new meta-

heuristic. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406) (Vol. 2, pp. 1470-1477). IEEE..

[15] Dictionary.cambridge.org. (2019). MITIGATE | meaning in the Cambridge English

Dictionary. [online] Available at:

https://dictionary.cambridge.org/dictionary/english/mitigate [Accessed 6 Sep. 2019].

[16] Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical

Computer Science, 344(2-3), pp.243-278.

[17] Eldardiry, H., Bart, E., Liu, J., Hanley, J., Price, B. and Brdiczka, O. (2013). Multi-Domain

Information Fusion for Insider Threat Detection. 2013 IEEE Security and Privacy

Workshops, pp. 45-51.

[18] Emary, E., Zawbaa, H., Ghany, K., Hassanien, A. and Parv, B. (2015). Firefly Optimization

Algorithm for Feature Selection. Proceedings of the 7th Balkan Conference on Informatics

Conference - BCI '15,.

[19] Emary, E., Zawbaa, H. and Hassanien, A. (2016a). Binary ant lion approaches for feature

selection. Neurocomputing, 213, pp.54-65.

[20] Emary, E., Zawbaa, H. and Hassanien, A. (2016b). Binary grey wolf optimization approaches

for feature selection. Neurocomputing, 172, pp.371-381.

66

[21] Muzaffar Eusuff, Kevin Lansey & Fayzul Pasha (2006) Shuffled frog-leaping algorithm: a

memetic meta-heuristic for discrete optimization, Engineering Optimization, 38:2, 129-

154.

[22] Fang, C. and Wang, L. (2012). An effective shuffled frog-leaping algorithm for resource-

constrained project scheduling problem. Computers & Operations Research, 39(5), pp.890-

901.

[23] Faris, H., Aljarah, I., Mirjalili, S., Castillo, P.A. and Guervós, J.J.M. (2016). EvoloPy: An Open-

source Nature-inspired Optimization Framework in Python. In IJCCI (ECTA) (pp. 171-177).

[24] Faris, H., Mafarja, M.M., Heidari, A.A., Aljarah, I., Ala’M, A.Z., Mirjalili, S. and Fujita, H. (2018).

An efficient binary salp swarm algorithm with crossover scheme for feature selection

problems. Knowledge-Based Systems, 154, pp.43-67.

[25] Faris, H., Heidari, A.A., Ala’M, A.Z., Mafarja, M., Aljarah, I., Eshtay, M. and Mirjalili, S. (2020).

Time-varying hierarchical chains of salps with random weight networks for feature

selection. Expert Systems with Applications, 140, p.112898.

[26] Ferreira, P., C. Le, D. and Zincir-Heywood, N., (2019). Exploring Feature Normalization and

Temporal Information for Machine Learning Based Insider Threat Detection. 2019 15th

International Conference on Network and Service Management (CNSM)

[27] Gandomi, A., Yang, X. and Alavi, A., (2011a). Cuckoo search algorithm: a metaheuristic

approach to solve structural optimization problems. Engineering with Computers, 29(1),

pp.17-35.

[28] Gandomi, A., Yang, X. and Alavi, A. (2011b). Mixed variable structural optimization using

Firefly Algorithm. Computers & Structures, 89(23-24), pp.2325-2336.

[29] Garro, B., Sossa, H. and Vazquez, R. (2009). Design of artificial neural networks using a

modified Particle Swarm Optimization algorithm. 2009 International Joint Conference on

Neural Networks,.

67

[30] Ghanem, W. and Jantan, A. (2014). Swarm intelligence and neural network for data

classification. 2014 IEEE International Conference on Control System, Computing and

Engineering (ICCSCE 2014),.

[31] Glasser, J. and Lindauer, B. (2013). Bridging the Gap: A Pragmatic Approach to Generating

Insider Threat Data. 2013 IEEE Security and Privacy Workshops (pp. 98-104). IEEE.

[32] Greitzer, F.L., Strozer, J., Cohen, S., Bergey, J., Cowley, J., Moore, A. and Mundie, D. (2014).

Unintentional insider threat: contributing factors, observables, and mitigation strategies.

In 2014 47th Hawaii International Conference on System Sciences (pp. 2025-2034). IEEE.

[33] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal

of machine learning research, pp.1157-1182.

[34] Hackernoon.com. 2020. What Is One Hot Encoding? Why And When Do You Have To Use

It?. [online] Available at: <https://hackernoon.com/what-is-one-hot-encoding-why-and-

when-do-you-have-to-use-it-e3c6186d008f> [Accessed 22 March 2020].

[35] Hassan, R., Cohanim, B., de Weck, O. and Venter, G. (2005). A Comparison of Particle Swarm

Optimization and the Genetic Algorithm. 46th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conference,.

[36] Jupyter.org. (2020). Project Jupyter. [online] Available at: <https://jupyter.org/> [Accessed

3 May 2020].

[37] Kar, A. (2016). Bio inspired computing – A review of algorithms and scope of

applications. Expert Systems with Applications, 59, pp.20-32.

[38] Karaboga, D. and Basturk, B., (2007). A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization,

39(3), pp.459-471.

[39] Kennedy, J. and Eberhart, R., (1995). Particle swarm optimization (PSO). In Proc. IEEE

International Conference on Neural Networks, Perth, Australia (pp. 1942-1948)

https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://jupyter.org/

68

[40] Kennedy, J., (2006). Swarm intelligence. In Handbook of nature-inspired and innovative

computing (pp. 187-219). Springer, Boston, MA.

[41] Khurma R.A., Aljarah I., Sharieh A., Mirjalili S. (2020) EvoloPy-FS: An Open-Source Nature-

Inspired Optimization Framework in Python for Feature Selection. In: Mirjalili S., Faris H.,

Aljarah I. (eds) Evolutionary Machine Learning Techniques. Algorithms for Intelligent

Systems. Springer, pp.131-173.

[42] Kilic, H., Yuzgec, U. and Karakuzu, C. (2018). A novel improved antlion optimizer algorithm

and its comparative performance. Neural Computing and Applications, 32(8), pp.3803-

3824.

[43] Kolias, C., Kambourakis, G. and Maragoudakis, M. (2011). Swarm intelligence in intrusion

detection: A survey. Computers & Security, 30(8), pp.625-642.

[44] Koutsouvelis, V., Shiaeles, S., Keltoum, G., and Ghita, B. (2020). Detection of Insider Threats

using Artificial Intelligence and Visualisation. In 2020 IEEE Conference on Network

Softwarization (NetSoft). IEEE.

[45] Krishnanand, K.R., Nayak, S.K., Panigrahi, B.K. and Rout, P.K. (2009). Comparative study of

five bio-inspired evolutionary optimization techniques. In 2009 World Congress on Nature

& Biologically Inspired Computing (NaBIC) (pp. 1231-1236). IEEE.

[46] Le, D.C. and Zincir-Heywood, A.N., (2019). Machine learning based insider threat modelling

and detection. In 2019 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM) (pp. 1-6). IEEE.

[47] Li X., Clerc M. (2019) Swarm Intelligence. In: Gendreau M., Potvin JY. (eds) Handbook of

Metaheuristics. International Series in Operations Research & Management Science, vol

272. Springer, Cham, pp.353-384.

[48] Liu, L., De Vel, O., Han, Q., Zhang, J. and Xiang, Y. (2018). Detecting and Preventing Cyber

Insider Threats: A Survey. IEEE Communications Surveys & Tutorials, 20(2), pp.1397-

1417.

69

[49] Lo, O., Buchanan, W., Griffiths, P. and Macfarlane, R. (2018). Distance Measurement Methods

for Improved Insider Threat Detection. Security and Communication Networks, 2018, pp.1-

18.

[50] Mafarja, M., Aljarah, I., Heidari, A.A., Faris, H., Fournier-Viger, P., Li, X. and Mirjalili, S. (2018).

Binary dragonfly optimization for feature selection using time-varying transfer

functions. Knowledge-Based Systems, 161, pp.185-204.

[51] McKinney, W. (2010). Data structures for statistical computing in python. In Proceedings of

the 9th Python in Science Conference (Vol. 445, pp. 51-56).

[52] Meyer-Baese, A. and Schmid, V. (2014). Genetic Algorithms. Pattern Recognition and Signal

Analysis in Medical Imaging, pp.135-149.

[53] Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014). Grey wolf optimizer. Advances in engineering

software, 69, pp.46-61.

[54] Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software, 83, pp.80-

98.

[55] Mohemmed, A., Zhang, M. and Browne, W. (2010). Particle swarm optimisation for outlier

detection. Proceedings of the 12th annual conference on Genetic and evolutionary

computation - GECCO '10,.

[56] Nakamura, R., Pereira, L., Costa, K., Rodrigues, D., Papa, J. and Yang, X. (2012). BBA: A Binary

Bat Algorithm for Feature Selection. 2012 25th

[57] Nurse, J.R., Buckley, O., Legg, P.A., Goldsmith, M., Creese, S., Wright, G.R. and Whitty, M.,

(2014), May. Understanding insider threat: A framework for characterising attacks. In 2014

IEEE Security and Privacy Workshops (pp. 214-228). IEEE.

[58] Oliphant, T.E. (2006). A guide to NumPy (Vol. 1, p. 85). USA: Trelgol Publishing.

[59] Papadaki. M. and Shiaeles. S. (2018). “Insider Threat: The forgotten, yet formidable foe”,

Chapter in Human Computer Interaction in Cyber-Security Handbook, CRC-Press, Taylor &

Francis Group.

70

[60] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J. (2011). Scikit-learn: Machine

learning in Python. the Journal of machine Learning research, 12, pp.2825-2830.

[61] Pfleeger, C. and Pfleeger, S. (2002). Security in Computing, Third Edition. Prentice Hall.

[62] Python Software Foundation (2019). Python Language Reference, version 3.7.3. Available

at https://python.org

[63] Rashid, T., Agrafiotis, I. and Nurse, J. (2016). A New Take on Detecting Insider

Threats. Proceedings of the 2016 International Workshop on Managing Insider Security

Threats - MIST '16,.

[64] Saka, M., Doğan, E. and Aydogdu, I. (2013). Analysis of Swarm Intelligence–Based

Algorithms for Constrained Optimization. Swarm Intelligence and Bio-Inspired

Computation, pp.25-48.

[65] Salem M.B., Hershkop S., Stolfo S.J. (2008) A Survey of Insider Attack Detection Research. In:

Stolfo S.J., Bellovin S.M., Keromytis A.D., Hershkop S., Smith S.W., Sinclair S. (eds) Insider

Attack and Cyber Security. Advances in Information Security, vol 39. Springer, Boston, MA

[66] Sarle, W.S. (1994). Neural networks and statistical models.

[67] Scikit-learn.org. 2020. Sklearn.Preprocessing.Onehotencoder. [online] Available at:

<https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html>

[Accessed 20 March 2020].

[68] Schultz, E. (2002). A framework for understanding and predicting insider

attacks. Computers & Security, 21(6), pp.526-531.

[69] Sivanandam, S.N. and Deepa, S.N. (2008). Genetic algorithm optimization problems.

In Introduction to genetic algorithms (pp. 165-209). Springer, Berlin, Heidelberg.

[70] Snyman, J. (2000). The LFOPC leap-frog algorithm for constrained optimization. Computers

& Mathematics with Applications, 40(8-9), pp.1085-1096.

https://python.org/

71

[71] Srinoy, S. (2007). Intrusion Detection Model Based On Particle Swarm Optimization and

Support Vector Machine. 2007 IEEE Symposium on Computational Intelligence in Security

and Defense Applications, pp. 186-192.

[72] Sun, N., Zhang, J., Rimba, P., Gao, S., Zhang, L. and Xiang, Y. (2019). Data-Driven Cybersecurity

Incident Prediction: A Survey. IEEE Communications Surveys & Tutorials, 21(2), pp.1744-

1772.

[73] Theis, Michael., Trzeciak, Randall., Costa, Daniel., Moore, Andrew., Miller, Sarah., Cassidy,

Tracy., & Claycomb, William. (2019). Common Sense Guide to Mitigating Insider Threats,

Sixth Edition (CMU/SEI-2018-TR-010). Retrieved February 09, 2020, from the Software

Engineering Institute, Carnegie Mellon University website:

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=540644

[74] The pandas development team (2020). pandas-dev/pandas: Pandas ver. latest. Available at

<https://doi.org/10.5281/zenodo.3509134>

[75] Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N. and Robinson, S. (2017). Deep learning for

unsupervised insider threat detection in structured cybersecurity data streams.

In Workshops at the Thirty-First AAAI Conference on Artificial Intelligence

[76] Tzu, S. (2007). The Art of War. Filiquarian Pub.

[77] Verizon Enterprise, (2017). Verizon Data breach investigations repor 10th edition. [online]

Available: https://www.verizonenterprise.com/verizon-insights-lab/dbir/ [Accessed 30

August. 2019]

[78] Verizon Enterpise, (2019). Verizon Data Breach Investigations Report 12th edition. [online]

Available: https://www.verizonenterprise.com/verizon-insights-lab/dbir/ [Accessed 30

August. 2019]

[79] Wang, G. (2018). A Comparative Study of Cuckoo Algorithm and Ant Colony Algorithm in

Optimal Path Problems. MATEC Web of Conferences, 232, p.03003.

[80] Wang, J. S., & Li, S. X. (2019). An improved grey wolf optimizer based on differential

evolution and elimination mechanism. Scientific reports, 9(1), 1-21.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=540644
https://doi.org/10.5281/zenodo.3509134
https://www.verizonenterprise.com/verizon-insights-lab/dbir/
https://www.verizonenterprise.com/verizon-insights-lab/dbir/

72

[81] S. Widup, M. Spitler, D. Hylender, G. Bassett, (2018). Verizon Data Breach Investigations

Report 11th edition. [online] Available: https://www.verizonenterprise.com/verizon-

insights-lab/dbir/ [Accessed 9 Feb. 2019]

[82] Xiao, L., Shao, Z. and Liu, G. (2006). K-means Algorithm Based on Particle Swarm

Optimization Algorithm for Anomaly Intrusion Detection. 2006 6th World Congress on

Intelligent Control and Automation, pp. 5854-5858.

[83] Yan, G. (2011). An Effective Refinement Artificial Bee Colony Optimization Algorithm Based

On Chaotic Search and Application for PID Control Tuning.

[84] Yang X.S. (2010a) A New Metaheuristic Bat-Inspired Algorithm. In: González J.R., Pelta D.A.,

Cruz C., Terrazas G., Krasnogor N. (eds) Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin,

Heidelberg

[85] Yang, X.S. (2010b). Firefly algorithm, stochastic test functions and design

optimisation. arXiv preprint arXiv:1003.1409.

[86] Yang XS. (2012). Flower Pollination Algorithm for Global Optimization. In: Durand-Lose J.,

Jonoska N. (eds) Unconventional Computation and Natural Computation. UCNC 2012.

Lecture Notes in Computer Science, vol 7445. Springer, Berlin, Heidelberg

[87] Yang, X. and He, X. (2013a). Firefly algorithm: recent advances and

applications. International Journal of Swarm Intelligence, 1(1), p.36.

[88] Yang, X. S., and He, X. (2013b). Bat algorithm: literature review and

applications. International Journal of Bio-inspired computation, 5(3), 141-149.

[89] Yang, X., Karamanoglu, M. and He, X. (2013). Flower pollination algorithm: A novel

approach for multiobjective optimization. Engineering Optimization, 46(9), pp.1222-1237.

[90] Yuan F., Cao Y., Shang Y., Liu Y., Tan J., Fang B. (2018) Insider Threat Detection with Deep

Neural Network. In: Shi Y. et al. (eds) Computational Science – ICCS 2018. ICCS 2018.

Lecture Notes in Computer Science, vol 10860, pp.43-54. Springer, Cham.

https://www.verizonenterprise.com/verizon-insights-lab/dbir/
https://www.verizonenterprise.com/verizon-insights-lab/dbir/

73

[91] Zhan, Z., Zhang, J., Li, Y. and Chung, H. (2009). Adaptive Particle Swarm Optimization. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6), pp.1362-1381.

Α-1

Appendix A
Python Code

Α.1 Data Collection & Data Pre-Processing

#import pandas data analysis library

import pandas as pd

#import numpy library to use for large arrays and mathematical functions

import numpy as np

#import time library for time access and conversions

import time as t

#The datetime.datetime class is the most commonly-used class from the datetime module

from datetime import datetime, date, time

#create samples for our experiment

sampleLogins = pd.read_csv('d:\\master\\r4.2\\logon.csv', low_memory=False, nrows=50000)

sampleLogins.to_csv('d:\\master\\r4.2\\sample-logon.csv', index=False)

Α-2

sampleDevices = pd.read_csv('d:\\master\\r4.2\\device.csv', low_memory=False, nrows=50000)

sampleDevices.to_csv('d:\\master\\r4.2\\sample-device.csv', index=False)

sampleFiles = pd.read_csv('d:\\master\\r4.2\\file.csv', low_memory=False, nrows=50000)

sampleFiles.to_csv('d:\\master\\r4.2\\sample-file.csv', index=False)

sampleFiles = pd.read_csv('d:\\master\\r4.2\\http.csv', low_memory=False, nrows=50000)

sampleFiles.to_csv('d:\\master\\r4.2\\sample-http.csv', index=False)

sampleFiles = pd.read_csv('d:\\master\\r4.2\\email.csv', low_memory=False, nrows=50000)

sampleFiles.to_csv('d:\\master\\r4.2\\sample-email.csv', index=False)

#load sample files into dataframes

#load logins.csv into a pandas DataFrame

logins = pd.read_csv('d:\\master\\r4.2\\sample-logon.csv', usecols=['date', 'user', 'pc', 'activity'])

#load devices.csv into a pandas DataFrame

devices = pd.read_csv('d:\\master\\r4.2\\sample-device.csv', usecols=['date', 'user', 'pc',

'activity'])

#load files.csv into a pandas DataFrame

files = pd.read_csv('d:\\master\\r4.2\\sample-file.csv', usecols=['date', 'user', 'pc'])

#load http.csv into a pandas DataFrame

http = pd.read_csv('d:\\master\\r4.2\\sample-http.csv', usecols=['date', 'user', 'pc'])

#load email.csv into a pandas DataFrame

email = pd.read_csv('d:\\master\\r4.2\\sample-email.csv', usecols=['date', 'user', 'pc'])

#create activity columns for the files, http and email dataframes

files['activity'] = 6 #create activity column for files

http['activity'] = 7 #create activity column for http

email['activity'] = 5 #create activity column for http

Α-3

#Log Aggregate

#Merge dataframes into one large dataframe

frames = [devices, files, logins, http, email]

df = pd.concat(frames)

#del initial data frames to save resources

del files, logins, devices, http, email

#convert all acticities in the dataset to integers

#Logon - 1

#Logoff - 2

#Connect - 3

#disconnect - 4

#email 5

#file - 6

#http 7

activities = ['Logon', 'Logoff', 'Connect', 'Disconnect']

i = 1

for activity in activities:

 df['activity'].replace(activity,i, inplace=True)

 i = i + 1

 del activity

del i, activities

#Perform One Hot Encoding

df['Logon'] = 0

df['Logoff'] = 0

df['Connect'] = 0

df['Disconnect'] = 0

df['email'] = 0

df['file'] = 0

Α-4

df['http'] = 0

#Perform One Hot Encoding

df.loc[df.activity == 1,"Logon"] = 1

df.loc[df.activity == 2,"Logoff"] = 1

df.loc[df.activity == 3,"Connect"] = 1

df.loc[df.activity == 4,"Disconnect"] = 1

df.loc[df.activity == 5,"email"] = 1

df.loc[df.activity == 6,"file"] = 1

df.loc[df.activity == 7,"http"] = 1

#convert date column to day and time https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.to_datetime.html

df['date'] = pd.to_datetime(df['date'],infer_datetime_format=True)

#Split date column in day and time | #PARSE the date from strings

days , times = zip(*[(d.date().weekday(), float((d.time().minute/60)+d.time().hour)) for d in

df['date']])

df = df.assign(day = days , time = times)

del days, times #save resources

#load the usernames of the malicious insiders according to the scenarios

insiders = ["AAM0658", "AJR0932", "BDV0168", "BIH0745", "BLS0678","BTL0226", "CAH0936",

"DCH0843", "EHB0824", "EHD0584", "FMG0527","FTM0406", "GHL0460", "HJB0742",

"JMB0308", "JRG0207", "KLH0596","KPC0073", "LJR0523", "LQC0479", "MAR0955", "MAS0025",

"MCF0600","MYD0978", "PPF0435", "RAB0589", "RGG0064", "RKD0604",

"TAP0551","WDD0366", "AAF0535", "ABC0174", "AKR0057", "CCL0068", "CEJ0109","CQW0652",

"DIB0285", "DRR0162", "EDB0714", "EGD0132", "FSC0601","HBO0413", "HXL0968", "IJM0776",

"IKR0401", "IUB0565", "JJM0203","KRL0501", "LCC0819", "MDH0580", "MOS0047", "NWT0098",

"PNL0301","PSF0133", "RAR0725", "RHL0992", "RMW0542", "TNM0961",

"VSS0154","XHW0498", "BBS0039", "BSS0369", "CCA0046", "CSC0217", "GTD0219","JGT0221",

"JLM0364", "JTM0223", "MPM0220", "MSO0222"]

#create the column malicious to indicate if a user is malicious or not

Α-5

df['malicious'] = 0

#if the user is malicious set feature to 1

df.loc[(df['user'].isin(insiders)),"malicious"] = 1

#sort dataset by date

#(https://www.geeksforgeeks.org/python-pandas-dataframe-sort_values-set-1/)

df.sort_values('date', axis=0, inplace=True)

Α-6

Α.2 Feature Selection Optimization

#create samples of the first 1000 rows of the dataframe for FS optimization

header = ["day", "time", "Logon", "Logoff", "Connect", "Disconnect", "email", "file", "http"]

df_first_1000_rows = df.head(1000)

#export pandas dataframes to csv to load into the FS optimization framework

df_first_1000_rows.to_csv('df_first_1000_rows.csv', columns = header, header = False, index=False)

Latest EvoloPy-FS Framework code used for feature selection optimization can be obtained from

https://github.com/aljarrahcs/EvoloPy-FS

https://github.com/aljarrahcs/EvoloPy-FS

Α-7

Α.3 Anomaly Detection

#import LOF from scikit-learn

from sklearn.neighbors import LocalOutlierFactor

#import LOF from scikit-learn

from sklearn.neighbors import LocalOutlierFactor

#experiment 1 - select all features

selected_features = ['day', 'time', 'Logon', 'Logoff', 'Connect', 'Disconnect', "email", "file", "http"]

#experiment 2

selected_features = ['day', 'time', 'Logon', 'Connect', 'file']

#experiment 3

selected_features = ['day', 'time', 'Logon', 'Connect']

#experiment 4

selected_features = ['day', 'time', 'Logon', 'Logoff', 'Connect', 'Disconnect', "email"]

#experiment 5

selected_features = ['day', 'time', 'Logon', 'Logoff', 'Connect', 'Disconnect']

#start timer

start_lof = t.time()

clf = LocalOutlierFactor(n_neighbors=10, contamination="auto", n_jobs=-1)

df['outlier'] = clf.fit_predict(df[selected_features])

#calculate execution time

end_lof = (t.time()-start_lof)

#select all features

selected_features = ['day', 'time', 'Logon', 'Logoff', 'Connect', 'Disconnect', "email", "file", "http"]

Α-8

#selected features are based on the results of feature selection optimization

#start timer

start_lof = t.time()

#Predict outliers based on selected features

clf = LocalOutlierFactor(n_neighbors=20, contamination="auto", n_jobs=-1)

df['outlier'] = clf.fit_predict(df[selected_features])

#calculate execution time

end_lof = (t.time()-start_lof)

#LOF results

lof_results = df[df['outlier'] == -

1].groupby(['user','malicious']).size().reset_index(name='frequency').sort_values('frequency',

ascending=False)

#True Positive

predicted_insiders = lof_results[lof_results['malicious'] == 1].shape[0]

#False Positive

false_insiders = lof_results[lof_results['malicious'] == 0].shape[0]

Α-9

Α.4 Performance Metrics

#Table with performance metrics

#initialize columns

columns = ['Experiment','Features', 'Time_Taken', 'TP', 'FP', 'FN', 'DR', 'Precision']

performance_metrics = pd.DataFrame(columns=columns)

#append experiment results to table

performance_metrics.loc[experiment] = [experiment, len(selected_features), end_lof,
predicted_insiders, false_insiders, (70-predicted_insiders), (predicted_insiders / 70),
(predicted_insiders / (predicted_insiders + false_insiders))]

#show performance metrics table

performance_metrics

	Introduction
	1.1 Mitigating Insider Threats
	1.2 Bio-Inspired Computing
	1.3 Machine Learning
	1.4 Problem Statement
	1.5 Chapters’ Overview

	Literature Review
	2.1 Techniques and Measures to Mitigate the Insider Threat
	2.2 Computation Intelligence inspired by Nature
	2.3 Summary

	Swarm Intelligence and Bio-Inspired Computing
	3.1 Neural Networks (ΝΝ)
	3.2 Genetic Algorithm (GA)
	3.3 Particle Swarm Optimization (PSO)
	3.4 Ant Colony Optimization (ACO)
	3.5 Artificial Bee Colony (ABC)
	3.6 Bacterial Foraging Optimization Algorithm (BFOA)
	3.7 Cuckoo Search (CS)
	3.8 Firefly Algorithm (FA)
	3.9 Leaping Frog Algorithm
	3.10 Bat Algorithm (BA)
	3.11 Flower Pollination Algorithm (FPA)
	3.12 Artificial Plant Optimization Algorithm (APOA)
	3.13 Ant Lion Optimizer (ALO)
	3.14 Grey Wolf Optimizer (GWO)
	3.15 Comparison of Bio-Inspired Models
	3.16 Selection of Bio-Inspired Models
	3.17 Summary

	Methodology
	4.1 Overview
	4.2 Dataset
	4.3 Feature Selection Optimization using Swarm Intelligence Algorithms
	4.4 Utilizing Machine Learning for Outlier detection
	4.5 Technology and Libraries
	4.5.1 Anaconda
	4.5.2 Python
	4.5.3 Jupyter
	4.5.4 Pandas
	4.5.5 Numpy
	4.5.6 EvoloPy-FS
	4.5.7 Scikit-learn
	4.6 Performance Metrics
	4.7 Summary

	Machine Learning Model
	5.1 System Overview
	5.2 Data Collection and Pre-Processing
	5.2.1 Dataset Overview
	5.2.2 Scenarios
	5.2.3 Log Files Structure
	5.2.4 Sample Data
	5.2.5 Initial Feature Selection
	5.3 Feature Selection using Bio-Inspired algorithms
	5.4 Anomaly Detection (LOF)
	5.5 Summary

	Findings and Analysis
	6.1 Experimental Setup
	6.2 Testing the Model
	6.3 Performance Results
	6.4 Testing more Bio-Inspired models
	6.5 Performance Comparison with Other Approaches
	6.6 Summary

	Conclusion
	7.1 Limitations
	7.2 Future Research
	Bibliography

	Appendix A
	Α.1 Data Collection & Data Pre-Processing
	Α.2 Feature Selection Optimization
	Α.3 Anomaly Detection
	Α.4 Performance Metrics

