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Περίληψη	

Οι αυθεντικοποιημένοι κρυπτογραφικοί αλγόριθμοι έχουν προσελκύσει την προσοχή της 

κρυπτογραφικής κοινότητας τα τελευταία χρόνια. Η ανάπτυξη τέτοιων αλγορίθμων και η μελέτη 

τους έχουν αυξηθεί κατακόρυφα λόγω της υψηλής ασφάλειας που προσφέρουν. Προκειμένου 

λοιπόν η διατριβή να συμβαδίζει με την εποχή και να συνεισφέρει στην κρυπτογραφική 

κοινότητα, επιλέχθηκε να μελετηθεί η ασφάλεια των αυθεντικοποιημένων κρυπτογραφικών 

αλγόριθμων ροής. 

Στη διατριβή αναλύονται αρχικά οι αυθεντικοποιημένοι κρυπτογραφικοί αλγόριθμοι ροής. 

Έπειτα περιγράφεται μια πρόσφατα ανεπτυγμένη τεχνική για την εύρεση προσεγγίσεων λογικών 

συναρτήσεων, η οποία μπορεί να ενισχύσει γνωστές κρυπταναλυτικές επιθέσεις. Η εν λόγω 

τεχνική αναλύεται διεξοδικά ώστε να μπορεί να έχει το καλύτερο δυνατό αποτέλεσμα. Στη 

συνέχεια περιγράφονται τρεις αυθεντικοποιημένοι κρυπτογραφικοί αλγόριθμοι ροής, οι 

συναρτήσεις των οποίων υποβάλλονται στην τεχνική που προαναφέρθηκε. 

Η συνεισφορά της διατριβής μπορεί εν συντομία να συνοψιστεί σε τρία σημεία. Πρώτον, 

καταγράφεται η ανάλυση της ασφάλειας τριών αυθεντικοποιημένων κρυπτογραφικών 

αλγορίθμων ροής, οι δύο εκ των οποίων  έχουν απασχολήσει αρκετά την ερευνητική κοινότητα τα 

τελευταία χρόνια, ενώ ο τρίτος είναι πολύ πρόσφατος και δεν έχει ακόμη μελετηθεί εκτενώς. 

Δεύτερον, στη διατριβή αυτή γίνεται ανάλυση μιας πρόσφατης τεχνικής εύρεσης προσεγγίσεων, 

με απόδειξη νέων αποτελεσμάτων που επιτρέπουν πιο αποτελεσματική εφαρμογή αυτής. Η 

τεχνική εύρεσης προσεγγίσεων μπορεί να αποτελέσει εργαλείο για κατασκευή ισχυρών 

κρυπτογραφικών συναρτήσεων που να είναι ανθεκτικές σε προσεγγίσεις αλλά και να 

χρησιμοποιηθούν σε συνδυασμό με άλλες τεχνικές κρυπτανάλυσης για τη δημιουργία επιθέσεων 

εναντίων κρυπτογραφικών αλγορίθμων. Τέλος, η τεχνική αυτή εφαρμόζεται στους τρεις 

αλγορίθμους οι οποίοι αναφέρονται προηγουμένως με τα αποτελέσματα να δίνουν αρκετές 

πληροφορίες για τη δραστικότητα της. 
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Summary	

Authenticated stream ciphers have attracted great attention of the cryptographic community last 

years. The development of such ciphers and their study have increased dramatically due the high 

level of security they offer. Therefore, this thesis studies the security of authenticated ciphers, as a 

contemporary research topic. 

Initially, authenticated stream ciphers are analysed in the thesis. After this, a recently developed 

method for approximating cryptographic functions is described, which can be subsequently used 

to enhance known cryptanalytic attacks. This technique is further analysed so as to be improved in 

terms of efficiency. Subsequently, three authenticated stream ciphers are being studied, as case 

studies for exploring the strengthness of this technique. 

The contribution of this thesis can be summarized in three points. Firstly, a security analysis of three 

authenticated stream ciphers is performed, whereas two of them have been greatly studied by the 

research community during the last years and the third is a recent cipher, not having yet studied 

and evaluated to a great extent. Secondly, an approximation technique is analysed, with the aim to 

reach conclusions that allow an increase of its effectiveness. The approximation technique can be 

used as a tool for the construction of cryptographic functions that are resistant to approximations 

and also be combined with other cryptanalytic techniques for the creation of attacks against 

ciphers. Finally, the technique is applied to the three ciphers that are mentioned before and the 

results provide us with information about its potency. 
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Chapter	1	
Introduction	

Authenticated ciphers have been around only for the last decades but there is already a massive 

amount of research that concerns them due to their necessity. So, this thesis will not examine these 

ciphers’ s security from a surface level because it has been done. Instead, it will focus on a specific 

kind of authenticated ciphers and it will present how and why these ciphers react to a newly 

developed approximation technique[1]. Specifically, the authenticated stream ciphers will be 

examined and the technique that will be used is able to find approximation functions that depend 

on less variables. Taking advantage of the opportunity, I would like to thank my supervisor because 

this thesis wouldn’t be possible without his help. In the next paragraphs, there is a short description 

of how authenticated stream ciphers came to be, a paragraph that summarizes the work done in 

this thesis regarding the approximation technique and in the last paragraph is stated what is 

included in the following chapters. 

The world of cryptography has vastly expanded the last decades, although it has been around for 

centuries. New ciphers are being designed nonstop because of the swift increase of the resources 

in computer systems and the new cryptanalysis methods that are being exposed (to the public). So, 

algorithms are needed that can provide resistance to at least conventional known attacks like 

algebraic, distinguishing or cube attacks. From this perspective higher security is the purpose. 
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There are also ciphers that aim for speed. Another reason for the necessity of new ciphers are the 

low resources devices. Most electronic devices these days are connected to the internet and there 

must be a secure channel through encryption. So, ciphers that utilize fewer resources are designed. 

This large amount of ciphers has been divided in some categories. 

In general, the modern ciphers are being categorised to symmetric and asymmetric with the 

symmetric being divided to block and stream ciphers. There are of course more subcategories 

depending on the features and operation of each cipher. One of those, are the authenticated stream 

ciphers and their security is the main subject of this thesis. 

Stream ciphers are very common and important in the world of cryptography. The reasons behind 

this are their speed, simplicity and ease of implementation on hardware. That’s why stream ciphers 

are preferred in specific sectors, like GSM. In stream ciphers, typically plaintexts bits are encrypted 

through an operation (usually XOR) one at a time with the corresponding keystream generator’s 

bits, resulting in ciphertext bits – in the contrary to block ciphers that work on fixed blocks of bits. 

The keystream of an ideal stream cipher would be random, but because the sequences of each 

cipher are produced from the same operations, the keystream can’t be absolutely random and is 

called pseudorandom. These operations are typically shift registers that use random unique initial 

values which are called seeds. The same values are also used in the decryption process. This in a 

way is the philosophy behind stream ciphers.  

From that point, each stream cipher has different designs and specifications. Of course, each cipher 

has its own flaws too. Some known attacks on stream ciphers are the reused key, the bit-flipping 

and the chosen-𝐼𝑉 attacks. In response to the attacks, there are counter measures and as concerns 

the bit-flipping attack, it can be prevented with a message authentication code (MAC). Surely, that’s 

not the only reason a MAC is used, because nowadays message authentication is an integral part of 

all modern cryptosystems and not just to stream ciphers. 

Message authentication is a property that increases security because it ensures that the data of the 

message has not been modified during transit (integrity) and that the receiving entity can verify the 

sending one. This is typically achieved by using authenticated encryption (AE), message 

authentication codes (MACs), and digital signatures, with the latest being used for asymmetric 

ciphers. Stream ciphers use MACs as mentioned before. At first the encryption and the generation 

of the MAC were entirely different processes and this was the source for some problems which are 

described in Chapter	2. So, the need for the unification of these processes popped up. As a result, we 
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have the authenticated encryption which simultaneously assures the confidentiality and the 

authentication of the data. This kind of structure to a cipher, led to the creation of authenticated 

stream ciphers.   

In this thesis, a new method for analysing weaknesses in cryptographic Boolean functions is being 

studied, with emphasis on analysing relevant cryptographic properties in authenticated ciphers 

lying in the class of stream ciphers. More precisely, the thesis focus on a very recent technique to 

find out, in an efficient way, how well a cryptographic function can be approximated by another 

function with fewer number of variables. Such approximations could possibly be the starting point 

for subsequently mounting successful attacks and, thus, they are of high importance. The 

aforementioned technique is based on appropriately using a known algorithm for computing the 

error linear complexity spectrum of sequences, namely the Lauder-Paterson algorithm, via 

uniquely associating each truth table of a Boolean function on 𝑛 variables with a well-determined 

sequence of period 2௡. Since this technique strongly depends on a proper ordering of the input 

variables in the function, the thesis also further elaborated towards proving results that allow for 

efficiently choosing the optimal such ordering – i.e. the ordering that is the most probable to reveal 

whether the corresponding function is weak or not, under this cryptographic criterion. 

The thesis is organised as follows. In Chapter	2 there is a detailed analysis of the authenticated 

stream ciphers. Later on, in Chapter	3 the Error Linear Complexity Spectrum is explained, followed 

by an analysis of Boolean functions. At the end of the chapter, a link is established between the two 

that forms the base of the approximation technique [1] alongside an examination of how the 

technique works and how the technique can be used in the most favourable way. In Chapter	4, an 

overview of the ciphers that will be used to test the approximation technique and in Chapter	5 the 

technique applied to the ciphers and the results are presented. For the end, Chapter	6 includes the 

conclusions and suggests new studies that can be conducted based on this thesis.  
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Chapter	2	
Authenticated	Stream	Ciphers	

Before analysing authenticated stream ciphers, it is required to make a reference separately for 

stream ciphers and authenticated encryption. For both of them a detailed analysis follows that 

present how the stream ciphers that offers AE emerged and developed. 

2.1	Stream	Ciphers	

Modern stream ciphers are designed to be computationally – and not unconditionally – secure. That 

means that if an attacker had infinite resources to attack the cipher, it would break. The 

unconditional security means that even if the attacker had infinite resources, the cipher would be 

unbreakable. The inspiration for creating stream ciphers was given by an unconditionally secure 

cipher, the one-time pad (OTP).  

2.1.1	Foundations	
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The OTP, also known as Vernam cipher [2], was basically a stream cipher, in which the random 

secret key is the same size, or longer than the message and is generated by a true random number 

generator (TRNG). The key is securely distributed to the legitimate parties. Note that it is necessary 

for the key stream to be truly random or else the cipher is not perfectly secure. Thus, we have a 

perfect cipher but we can see that is not used in modern technology. That’s because the OTP is 

impractical. The reasons are the need of TRNG, which most PCs and smartphones don’t have, the 

secure transport of the keystream from the one party to the other and the most important is the 

need of one key bit for each plaintext bit. These problems led to the creation of the modern practical 

stream ciphers which replaced the truly random keystream with a pseudorandom keystream that 

uses a key as a seed. 

Stream ciphers are symmetric-key algorithms that are used to provide confidentiality, which 

ensures that the message is only disclosed to authorized entities.  In order to do this, they produce 

a sequence of elements over the finite field 𝐺𝐹 ሺ2ሻ  ൌ  ሼ0,1ሽ that depends on the secret key. For 

the encryption process, a group operation combines each plaintext symbol with the corresponding 

keystream symbol and the ciphertext is computed. This ciphertext is transmitted to the receiver via 

insecure channels and with the use of the secret key the receiver decrypts it. Stream ciphers are 

superior in speed compared to block ciphers due to their lower hardware complexity, but if used 

incorrectly, they are susceptible to serious security problems. 

2.1.2	Random	Number	Generators	

The number generators play a major role in the modern stream ciphers. The security of the ciphers 

highly depends on the randomness of the numbers that are generated. The number generators can 

be truly random or pseudorandom. The main feature of the TRNGs is the uniqueness in each 

sequence it produces. This happens because the generator depends on physical processes, like 

semiconductor noise. This feature makes TRNGs ideal for producing session keys in cryptography, 

but impractical in generating a keystream, because two parties will not be able to generate the same 

keystream. On the other hand, pseudorandom number generators (PRNGs) initially take a seed 

value and through computations, having the seed as a starting point, sequences of numbers are 

generated. Cryptographically good PRNGs are those having good statistical properties, which 

means that their outcome is close to the one of a true random number generator. However, these 

number generators can’t be used because even with a small part of the plaintext the ciphertext can 

be decrypted very easy with a simple attack [3]. 
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The ones that can be used in stream ciphers are a special type of PRNGs, the cryptographically 

secure pseudorandom number generators (CSPRNGs), which have the feature of being 

unpredictable. That means that given 𝑛 number of bits of the sequence, it isn’t possible to compute 

the following or the preceding bits with better chance of success than 50%. These deterministic 

number generators are suitable for the generation of keystreams in stream ciphers. 

2.1.3	Feedback	Shift	Registers	

The right theoretical framework was found, but the practical one was missing. There was the 

problem of how the stream ciphers will generate such sequences with few CPU instructions for 

software implementation and easily adapt on hardware operations for hardware implementation. 

There are many proposals in the literature, but the most prominent is the shift registers with 

feedback. They are being used in stream cipher designs because they offer large periods, efficiency 

and good statistical properties. 

The pseudorandom sequences that will be generated in stream ciphers must have certain 

properties. Linear Feedback Shift Registers (LFSRs) are widely used and studied [4] in 

cryptography because of their useful properties in generating pseudorandom sequences. Since 

their mathematical properties are well-understood to the research community, it is easy to find 

LFSRs that produce max period 2௡ , given 𝑛 . Although LFSRs produce sequences with good 

statistical properties, they are cryptographically weak because they are completely linear. If 2𝑐ሺ𝑠ሻ 

(where 𝑐ሺ𝑠ሻ is the linear complexity) of the output are leaked, the sequence can be computed using 

the Berlekamp-Massey algorithm [5]. Therefore, the stream ciphers need to have high nonlinearity 

to avoid this weakness.  

Nonlinearity is the criterion that determines the minimum distance of a function 𝑓  from any 

affine/linear function. There were many design attempts to add nonlinearity to ciphers. Some 

attempts were based only on LFSRs, like using a nonlinear function to combine outputs of LFSRs or 

with a nonlinear filter of the LFSR state [6]. However, these types of approaches don’t always offer 

the desired security level to the cipher [7]. There are limitations to the LFSRs, in contrast with the 

Nonlinear Feedback Shift Registers (NFSRs), which are used in most cases of recently designed 

stream ciphers [8], [9]. Consequently, NFSRs can offer high nonlinearity, but there are not well-

understood like LFSRs. For example, there is not an efficient way to find such functions with a 

maximum period 2௡. Golomb [4] presented a method of creating maximum period NFSRs but their 

corresponding feedback functions have low nonlinearity and they can be approximated with affine 
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functions. Someone can find more on the properties of the NFSRs in these studies [10], [11]. The 

optimum solution to the construction of a stream cipher for security, is considered to be the use of 

both LFSRs and NFSRs. 

2.1.4	Synchronous	and	Asynchronous	

In the design of a stream cipher there are two essential procedures. The one is the update of the 

state of the cipher and the other is the interaction of the plaintext with the state that creates the 

ciphertext. The latter is mostly a bit-wise exclusive-or of the function of the state (keystream) and 

the plaintext. The former is a little more complicated and it divides the stream ciphers into two 

types, synchronous and asynchronous.   

If the state is updated independently, without the use of the plaintext or the ciphertext, then the 

stream cipher is called synchronous. Since the state isn’t affected, the corruption of one bit in the 

ciphertext will not affect the next ciphertext bits. As a result, the cipher has no error‐propagation. 

This seems to be desirable, but it has its drawbacks, such as the possibility of an attacker that will 

make controlled changes to some bits of the ciphertext, knowing well the corresponding plaintext. 

From a practical perspective, it is important for encryption and decryption units to be in step 

because the encrypt and decrypt processes must be synchronized. To accomplish this, marker	

positions are usually used in the transmission.  

On the opposite, the asynchronous stream ciphers compute the next state using previously 

generated ciphertext bits. This way, if the synchronization between the encryption and the 

decryption is lost, the decryption process is resumed correctly. This type of stream cipher has 

limited error propagation. If a bit is incorrect, then the following bits that are affected by that bit 

may be incorrect. This may seem as an advantage considering the attack that was described in the 

previous paragraph, but Rueppel [12] managed to deliver two disadvantages when using self-

synchronizing stream ciphers. The first is that an attacker can identify some of the variables that 

are being used by the generator and the second is the inability to fully analyse those generators 

because the keystream depends on the plaintext.  

2.1.5	Design	
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Until this point, it was remarked that stream ciphers need high nonlinearity, but that’s not the only 

consideration that the designers keep in mind. A very important factor is the period, which must be 

of great length. If the period is short, then some identical parts of the plaintext may be encrypted in 

the same way. It is not stated in the literature the exact length that is required for a period, but it 

would be optimum if the same part of the keystream is not reused during the encryption. It is also 

necessary for the sequences of stream ciphers to have good statistical properties. This can happen 

by following Golomb’ s randomness postulates [4]. Of course, these alone are not enough to offer 

good pseudorandom sequences and there are various statistical tests [12]–[14] that can be applied 

to sequences to assess the randomness. Another important consideration is the complexity of the 

sequence, which needs to be high. The complexity indicates how hard the sequence can be 

reproduced. The most popular technique to measure that complexity is the linear complexity [15]. 

Thus, the design and the construction of stream ciphers must be based on these considerations or 

else the cipher will be cryptographically weak.  

2.1.6	Initialization	Vector	

Almost all stream ciphers nowadays have two and not one inputs: a secret key 𝑘  and the 

initialization vector 𝐼𝑉. The secret key is used for the encryption and decryption, like in all other 

symmetric cryptosystems. The 𝐼𝑉, which takes a new value for each encryption process, is used as 

a randomizer. Arbitrary numbers that are used once, like the values of 𝐼𝑉, are called nonces in 

cryptography. The primary purpose of 𝐼𝑉  is to ensure that an attacker can’t reuse old 

communications in replay attacks. In brief, replay attacks can be done when an attacker has the 

plaintext of an encryption and he can compute the corresponding keystream. If another encryption 

uses the same keystream, then the attacker can easily decipher the ciphertext. It is also important 

to note about the 𝐼𝑉, that it doesn’t have to be secret like the key.  
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Figure	2.1: Stream cipher 

2.2	Authenticated	Encryption	

Most people think that the most important goal in cryptography is confidentiality (or privacy as it 

is usually called), but usually message authentication has a more significant role. Just thinking about 

it, it’s not always of great significance for the message to stay private, but it’s always essential to 

know the source of the message. This is being done through message authentication, by detecting 

a message that has been modified en route from the sender to the receiver. It is important to note 

that the detection is not absolutely certain. Data integrity is also a property of message 

authentication. This means that the message is received by the authorized party as it was sent out, 

without any modification. This significance of message authentication gave birth to the idea of 

creating authenticated encryption schemes that would provide both confidentiality and 

authenticity. Authenticated encryption is the process of transforming plaintext to ciphertext by an 

encryption algorithm and attaching an authentication tag that was generated by an authentication 

algorithm. 

2.2.1	Early	work	

The idea of creating algorithms that combine message authentication and confidentiality was first 

introduced by Bellare and Namprempre [16]. They described the beneficial conditions of a 

symmetric encryption scheme combined with a MAC algorithm and identified the security notions 

for a generic scheme of Authenticated Encryption (AE). In the same paper, there are also various 

definitions, including the ones of privacy and authenticity. About a year later, Katz and Yung also 

published a study on AE [17]. The latter also describes parametres and identify security notions of 

a generic scheme of AE that combine a symmetric encryption with a MAC algorithm. Based on both 



10 

previously mentioned papers [16], [17], this new scheme needs two keys to function, one for each 

algorithm. The construction of this kind of scheme has a major drawback. The data need to pass 

from an algorithm twice, one time for confidentiality and another for authenticity and this is a major 

problem for efficiency. This would be the initial point of many design attempts to build a secure and 

efficient authenticated encryption scheme. 

Some early design attempts to create cryptosystems that provided confidentiality and authenticity 

did not meet the expectations of the security standards. Specifically, Gligor and Linsday [18] 

proposed a mechanism that was based on various cryptographic techniques and data redundancy. 

The authentication in this mechanism can be achieved with a signature and it is stated in the study 

that «The	more	redundant	bits	 included	 in	 the	 signature,	 the	more	reliable	 is	 the	authentication	

procedure». A similar cryptographic technique that only provides authenticity is also found in the 

literature [19]. It is based on cryptographic check digits which can be likened with data redundancy 

to the message. These proposals were found vulnerable to chosen plaintext and chosen ciphertext 

attacks due to the redundancy [20]. This was a major weakness for the mechanisms that were 

based on data redundancy, so the designers decided to construct new mechanisms that would 

provide authenticated encryption without security flaws. 

2.2.2	Schemes	

AE schemes had been studied for more than 20 years, but only recently there is so much interest, 

due to the recognition of the significance of AE [16], [17], [21]. This happened because problems 

were emerging from the combination of privacy-only encryption and message authentication code 

(MAC) [16], [22], [23] leading to the creation of the first class of AE schemes [24], [25]. All of the 

schemes can have efficient constructions and offer sufficient security. These are shared-key 

mechanisms that through processing transform a message 𝑀 into a ciphertext 𝐶 that can be sent 

safely to the receiver because both confidentiality and authenticity are protected. Each one of them 

has important practical applications. As it was mentioned in the introduction, message 

authentication in asymmetric cryptography is done with digital signatures. In the case of symmetric 

ciphers, the sender shares a secret key with the receiver to authenticate their message. So, the 

following approaches to message authentication are based on a shared key relationship between 

the sender and the receiver. 

There are three approaches that will be described in brief:  
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1. Let’s suppose that a sender 𝑆 has encrypted a message 𝑀 and sent it to the receiver 𝑅. For 

the 𝑅  to be able to authenticate 𝑀 , 𝑆  has encrypted the key 𝐾  with some encryption 

algorithm 𝐸 and its outcome is concealed in the ciphertext 𝐶. The 𝐶 is transmitted to 𝑅, but 

because the transmission channel is insecure, 𝑅 will receive the ciphertext 𝐶΄. 𝑅 will apply 

the decryption algorithm 𝐷 to 𝐶΄. There are two possible outcomes from the decryption: 

(a) the message 𝑀΄  which is the original 𝑀  or (b) an indication ⊥ , that indicates that 

𝐶΄wasn’t authentic. This approach of message authentication is based on an encryption 

process. This encryption is not obligated to protect the privacy of the message. Sometimes 

the term authenticated	encryption is used for this method. 

2. Privacy is not necessary for a message to be authenticated. So, for this method a ciphertext 

𝐶 is transmitted from the sender to the receiver and it includes the message 𝑀 with a tag 𝑇. 

𝑇 is generated by a tag-generation algorithm 𝑇𝐺 using a key 𝐾 and 𝑀, 𝑇 ← 𝑇𝐺௄ሺ𝑀ሻ. 𝑇𝐺 

can be probabilistic or stateful. When the ciphertext is received, 𝑀΄ and 𝑇΄ are run in a tag-

verification algorithm with the key 𝐾 and a bit 𝐵 is produced, 𝐵 ← 𝑇𝑉௄ ሺ𝑀΄, 𝑇΄ሻ. If the bit 

is 1, then 𝑀΄ is accepted as the original message, but if the bit is 0, then 𝑀΄is rejected. Due 

to the form of the ciphertext, this mechanism is called message-authentication scheme. 

3. The most common approach is when the tag-generation algorithm 𝑇𝐺  is stateless and 

deterministic. In this case, the whole scheme is called message authentication code, or just 

MAC. The process starts with the sender computing the tag – that is 𝑇 ൌ 𝑀𝐴𝐶௄ሺ𝑀ሻ. It is 

important to mention that when MAC is used, there is no need for a tag-verification 

algorithm, because the receiver after the receipt of ciphertext 𝐶΄, which contains 𝑀΄and 𝑇΄, 

can compute 𝑇΄΄ ൌ 𝑀𝐴𝐶௄ሺ𝑀΄ሻ. If 𝑇΄΄ equals 𝑇΄, then 𝑀΄ is authentic; if not, the message is 

disregarded. 

One other way to classify AE schemes is the order in which the processes of encryption and 

authentication are performed. These two processes are very important for these primitives, so a 

different order can cause massive changes. There are three compositions which are analysed in the 

literature: Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), MAC-then-Encrypt (MtE). These 

three compositions were named and studied first by Bellare and Namprempre [16] and because of 

their cryptographic value are also studied (sometimes with different names) in later studies [23]. 

The following paragraph describes in brief how each composition works and the security it offers. 
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In the Encrypt-and-MAC scheme, the plaintext and the key are the inputs to the encryption and MAC 

algorithms. The MAC tag and the ciphertext are the outputs of the two algorithms and they are sent 

together to the receiver. This scheme lacks in security compared to the other two [23]. The Encrypt-

then-MAC scheme computes firstly the ciphertext which is used as an input in the MAC algorithm. 

Then the MAC is attached to the ciphertext and they are sent together. Between the three 

compositions, this is the one that can reach the highest level of security. The reverse procedure 

happens in the MAC-then-Encrypt, where the MAC is produced first and then the MAC tag is 

attached to the plaintext and they are together used as input in the encryption algorithm. The 

ciphertext is sent alone in this case. For this approach, it is proven that the security is not guaranteed 

[23].  

 
Figure	2.2: EtM, E&M, MtE from Top to Bottom Respectively	

2.2.3	MAC	

Message Authentication Code (MAC) has a major role in the cryptographic world. It is also referred 

to as a cryptographic	checksum or a keyed	hash	function. MAC is similar to digital signature because 
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both of them provide message authentication and message integrity. The difference lies to the use 

of symmetric-key schemes from MACs and asymmetric-key schemes from digital signatures. It is 

also important to mention that MACs don’t provide non-repudiation, unlike digital signatures 

(since, in MACs, there are two parties that can generate the same "signature", that is the same MAC; 

namely, two parties sharing the same secret key). The advantage of MACs is their speed because 

they are based on hash functions or block ciphers. The input of a MAC algorithm is a message of 

arbitrary length and it produces a fixed-size authentication tag that is cryptographically secure and 

it is attached to the message. A secret key is necessary between the two legitimate parties, since 

MACs are based on symmetric schemes. For a MAC to be considered as unforgeable and thus 

secure, it shouldn’t be computationally possible to compute the generated MAC of a message 

without knowing the key. 

An option for building MACs, as it was mentioned in the previous paragraph, is with the use of hash 

functions as building blocks. There are two approaches to the construction of hash-based MAC, the 

secret	 prefix MAC and the secure	 prefix MAC. Both of them generate strong cryptographic 

checksums, but have weaknesses [3]. A very popular among all the types of constructions of hash-

based MAC is the HMAC [3] that was introduced in 1996, because it doesn’t show the weaknesses 

of both approaches. Except that being provable secure, HMAC is also efficient and that’s way is being 

used in the Transport Layer Security (TLS) and the IPsec protocol suite. In 1999 UMAC was 

proposed [26] and the designers aimed to achieve extreme speed and guarantee security. UMAC 

can achieve them because it uses NH, which is a universal hash-function family. These are the 

prominent MACs of this kind, but there are even more new similar MACs in the literature.  

2.2.4	Block	Ciphers	

It is worth mentioning that a huge step into authenticated encryption was first made with the use 

of block ciphers to build MACs. Jutla presented in 2001 the Integrity Aware CBC which does not 

require two passes to provide authenticated encryption [24]. Instead, this mode of operation 

requires 𝑚 ൅ 2 block encryptions, assuming that the message has a length of 𝑚 blocks. In the same 

study, a highly parallelizable mode (IAPM) for encryption and message integrity is introduced. 

IAPM was used as a base scheme for the construction of OCB [25]. The latter was a refined scheme 

of the former and has additional features. Other important block cipher modes that provide 

authenticated encryption is the Counter with CBC-MAC mode [27] and Galois /Counter mode 

(GCM) [28]. These ciphers paved the way for the following block and stream ciphers offering AE. 
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2.2.5	AEAD	and	DAE(AD)	

Studies of the first AE schemes shown that there are some data that don’t need to be encrypted. So, 

it was decided that for better results in efficiency a mixture of encrypted and unencrypted data 

would be optimum. This of course is not supposed to decrease the security of the cryptosystem. For 

this new scheme, privacy is necessary for the encrypted data and authenticity for all the data. This 

scheme is called authenticated-encryption with associated-data (AEAD) [29]. The unencrypted 

data are called associated data. It is very useful in the case of network packets because their header 

doesn’t have to be encrypted, in contrast to the payload. Both of them though need authentication. 

Later works [30]–[32] describe methods to provide AE and simultaneously authenticate the 

associated data.  

A special kind of AE schemes is the Deterministic Authentication Encryption (DAE) [33]. The main 

difference with the other schemes is that DAE doesn’t use a nonce. DAE can be used with associated 

data (DAEAD), thus there is also a header used in the cryptosystem. Security of these schemes is 

determined as for other AE schemes. In other AE schemes the same nonce can’t be used twice, but 

in the case of DAE schemes the same messages can’t be used twice. This is a drawback for DAE 

schemes because they lack in efficiency because of that.  

2.3	Stream	Ciphers	providing	AE	

Authenticated stream cipher is a stream cipher algorithm that can provide both authenticity and 

confidentiality. This kind of primitives have been designed and developed relatively recently. This 

means that their security is not absolutely guaranteed because not enough time has passed for 

getting scrutiny from the research community. That’s why there are not enough studies in the 

literature related to the security of authenticated stream ciphers. Of course, these primitives are 

most probably checked with known attacks like algebraic and are able to withstand them. 

However, because this is a new field, maybe there are some other attacks that can be applied only 

to authenticated stream ciphers and specifically to those primitives. In the following years, some 

primitives will be proved to be secure and some won’t.   

 The construction of an authenticated stream cipher is a mixture of the constructions of stream 

cipher and authenticated encryption. As in stream ciphers, a secret key 𝑘 is shared to the legitimate 

parties and most times it is combined with an initialization vector (𝐼𝑉). At first, a plaintext 𝑃 is 
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inserted into the authenticated stream cipher algorithm and the output is the ciphertext and a MAC 

tag (𝛭𝛵). The way the 𝑀𝑇 is going to be combined with the ciphertext depends on the order in 

which the MAC and encryption process are being done like it is described in subchapter 2.2.2. The 

encrypted message 𝐸𝑀  is then transmitted over the insecure channel from the sender to the 

receiver. The latter gets the encrypted message 𝐸𝑀΄ which is the input data to the authenticated 

stream algorithm that computes the decrypted message 𝑃΄ with the corresponding MAC tag 𝛭𝛵΄. 

If the values of 𝑀𝑇 and 𝑀𝑇΄are the same then the integrity of the message is validated and the 

message is show, otherwise the message is considered as falsified and is disregarded. 

 
Figure	2.3: Authenticated Stream Cipher	

The stream ciphers providing AE attract the attention of the cryptographers and the designers. 

That’s why there are many submitted designs of constructions of such algorithms. Some examples 

of such ciphers are SOBER-128[34], Helix [35] and Phelix [36], ZUC [37], Grain-128a [38]. ZUC is 

the only one (of the mentioned ciphers), that was designed for telephony application. It was 

considered to be secure until it was found susceptible to timing attacks [39]. SOBER-128 is one of 

the SOBER family of ciphers and it was designed with a built-in MAC. Many attacks were tried on 

this cipher, but the one that’s staying on top of them and it indicates a weakness of SOBER-128 is 

the MAC forgery attack [40] .Phelix is an advanced version of the Helix cipher. Both of them were 

found vulnerable to differential attacks – Helix to a differential attack published by Muller [41] and 

Phelix to a differential attack if the nonces are reused published by Wu and Preneel [42]. In contrast, 

Grain-128a, which is of the Grain family of ciphers, is showing good results against known attacks 

and it will be used later in this study. 
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Authenticated stream ciphers have some similarities in their construction except from the standard 

parts of a stream cipher. They usually depend on LFSRs that interact with NFSRs or non-linear 

functions to generate the keystream and the MAC tag. It’s also very common to use an Initialization 

Vector (𝐼𝑉) and associate data to strengthen the security. In general, authenticated stream ciphers 

use techniques that don’t require much resources because except from encryption this cipher is 

also designed to authenticate the message too.  

Apart from the stream ciphers that were built from the start to provide authentication, there are 

the cases where a stream cipher can be reformed to provide authentication. This can happen by 

combining the stream cipher with a MAC like it was previously described. A common MAC that is 

combined with stream ciphers is Poly1305 provided by Bernstein [43]. The problem is that there is 

not enough research on the optimum way to combine a stream cipher with a MAC algorithm. 

Another way of making stream ciphers provide authentication is by using an initialisation vector 

(𝐼𝑉 ) [33]. In general, the study describes «a	 systematic	 framework	 for	using	a	 stream	 cipher	

supporting	an	initialisation	vector	(𝐼𝑉)	to	perform	various	tasks	of	authentication	and	authenticated	

encryption». The big advantage of the constructions based on this study is a keyed hashed function 

that it was proven to have low collision and differential probabilities. Both methods are widely used 

to stream ciphers that have proved their security. Of course, security must be preserved and after 

the reform of the cipher. 

2.4	Caesar	Competition	

The significance of the authenticated stream ciphers can be seen in the ongoing competition 

CAESAR (Competition for Authenticated Encryption: Security, Applicability and Robustness)1. The 

organisers of the competition are asking cryptographic designers to submit shared secret-key 

authenticated ciphers that have better features over AES-GCM and are suitable for widespread 

application. The specific requirements of the ciphers are provided in the competition’s website2. 

At the first round, there were 57 ciphers that were put to test for security and efficiency. As a result, 

the ciphers that were not qualified to the standards of the competition were withdrawn. This 

happened at each round with more requirements as the number of the rounds was increasing. At 

present, the competition is at round 4 with 7 ciphers. The three main types of ciphers that were 

                                                           
1 https://competitions.cr.yp.to/caesar.html 
2 https://competitions.cr.yp.to/caesar-call.html 
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submitted are block, stream and sponge. Of the 7 finalists two are authenticated stream ciphers, 

ACORN [44] and MORUS [45]. Both of them showed good results in all the known attacks and 

efficient tests. A bit more interesting is the ACORN cipher, that will be used later in the study.  
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Chapter	3	
Approximation	technique	

The approximation techniques can used in combination with other cryptanalytic techniques to 

compromise a cipher. The approximations are until now useful in attacks against combination and 

filter functions. However, the approximation technique that is described in this Chapter is also 

applied to feedback functions in Chapter 5. This is done for two reasons: 1) Evaluation of the 

strengthness of the approximation technique 2) for future use in case a cryptanalytic technique is 

developed that can use approximations of feedback functions. 

In the beginning of this chapter the Error Linear Complexity Spectrum (ELCS) is explained and 

analysed. Later on, there is a detailed analysis on the Boolean functions and after that, the 

relationship between binary sequences and Boolean functions is explained. The latter leads to the 

conclusion that the ELCS can be useful in finding approximations of Boolean functions. The method 

of finding approximations is analysed and it is also mentioned how it is possible to achieve the best 

possible approximations in some cases. 

3.1	Error	Linear	Complexity	Spectrum	
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Stream ciphers produce keystreams that are combined with the plaintext to create the ciphertext. 

These produced keystreams are binary sequences that must have good pseudorandomness 

properties like complexity [6], [46]. The most common way to measure the complexity of a 

sequence	𝑠 with period	𝑁 is via its linear	complexity	𝑐ሺ𝑠ሻ, which is the length of the shortest LFSR 

that is able to generate 𝑠. A strong-secure sequence must have high 𝑐ሺ𝑠ሻ. Nevertheless, the linear 

complexity is not the only cryptographic criterion that is being used to evaluate the 

pseudorandomness properties of a sequence.  

The notion of pseudo-random sequences [4] refers to a periodic binary sequence that satisfies three 

randomness postulates. These postulates, that are proposed by Golomb, correspond to the 

properties that need to be satisfied by a sequence to resemble a random one. However, despite their 

importance, these Golomb’s pseudorandomness criteria are not sufficient and thus, a cryptosystem 

is not secure only by applying these postulates to create a cryptographic sequence. For example, 

the linear complexity of a sequence is not being explicitly described by Golomb but it constitutes an 

important cryptographic criterion since 2𝑐ሺ𝑠ሻ of consecutive bits are needed by an attacker to fully 

determine the whole sequence. This can happen by using the Berlekamp – Massey algorithm that 

takes advantage of the low linear complexity of the sequence. The algorithm needs up to 𝒪ሺ𝑁ଶሻ 

operations to be completed, for 𝑁 being the known part of the sequence. This algorithm computes 

the linear complexity but also the feedback polynomial of the shortest LFSR that generates the 

sequence; this minimum-length LFSR is unique if and only if the linear complexity of the sequence 

is less than the half of the length of the whole sequence (that’s why knowledge of 2𝑐ሺ𝑠ሻ consecutive 

bits is adequate). 

In the case that period 𝑁 equals 2௡ , then there is a more efficient way to compute the linear 

complexity of a sequence. The Games-Chan algorithm (GCA) [47] can compute 𝑐ሺ𝑠ሻ using 𝒪ሺ𝑁ሻ 

operations but it has the drawback that it needs the whole period of the sequence (whilst the 

Berlekamp-Massey requires 2𝑐ሺ𝑠ሻ bits). Thus, this algorithm is not applicable to modern ciphers 

that have large periods, but it reveals properties that can be used to construct sequences with 

specific properties [48], [49]. 

In short, the GCA works by performing the following steps: 

Let 𝑐ሺ𝑠ሻ ൌ 0. At first, the sequence 𝑠 that has length 𝑙, is decomposed in 𝐿 ൌ ሺ𝑠ଵ, … 𝑠௟/ଶሻ and 𝑅 ൌ

ሺ𝑠೗
మ

ାଵ
, … , 𝑠௟ሻ, which are the left are right halves of the sequence respectively. If the two halves are 

not identical (𝐿 ⨁ 𝑅 ് 0), then 𝑐ሺ𝑠ሻᇱ ൌ  𝑐ሺ𝑠ሻ ൅ 𝑙/2 and 𝑠ᇱ ൌ 𝐿 ⊕ 𝑅. Otherwise, 𝑐ሺ𝑠ሻᇱ ൌ  𝑐ሺ𝑠ሻ 
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and 𝑠ᇱ ൌ 𝐿 . After that in both cases 𝑙ᇱ ൌ 𝑙/2  and the process starts again from the point of 

decomposition. When 𝑙 ൌ 1, 𝑐ሺ𝑠ሻᇱ ൌ 𝑐ሺ𝑠ሻ ൅ 1 if 𝑠 ൌ 1 and 𝑐ሺ𝑠ሻᇱ ൌ 𝑐ሺ𝑠ሻ if 𝑠 ൌ 0. The value of 

𝑐ሺ𝑠ሻ is equal to the linear complexity of 𝑠. 

Linear complexity is valuable as a measure for the randomness of finite sequences. Rueppel noticed 

this and introduced linear	complexity	profile [50], which describes the growth of linear complexity 

as the length of the sequence increases. Moreover, criteria to evaluate the randomness of generated 

sequences are analysed. This profile is an important tool for the assessment of finite binary 

sequences such as the keystreams of stream ciphers. 

It was previously stated that sequences must have high linear complexity for security. Except that, 

the sequence also needs to keep its linear complexity at a high level even if some of bits are changed 

to be cryptographically strong. If this doesn’t hold, then the knowledge of some consecutive bits of 

a keystream can lead to the creation of a sequence that closely approximates the original. This 

observation is of high cryptographic value and led to the introduction of the k‐error	 linear	

complexity of sequence [51]. As the definition implicates, it is related with the variation of linear 

complexity depending on the number of changed bits. Specifically, as it is stated in the last 

mentioned paper, the k-error linear complexity (denoted as 𝑐௞ሺ𝑠ሻ) of a sequence 𝑠 that has period 

𝑁 and linear complexity 𝑐ሺ𝑠ሻ, is defined as the lowest possible 𝑐ሺ𝑠ሻ of 𝑠 when 𝑘 or fewer bits are 

changed in every period of the sequence. 

The Error Linear Complexity Spectrum (ELCS) is based on the k-error linear complexity and it 

indicates how linear complexity decreases as the number of the changed bits increases. This means 

that when we have 0 errors the linear complexity of 𝑠 is 𝑐ሺ𝑠ሻ and when 𝑘 equals 𝑤𝑡ሺ𝑠ሻ then 𝑐ሺ𝑠ሻ’ 

equals 0. Besides these 2 points, any pair ሺ𝑘, 𝑐௞ሺ𝑠ሻሻ for any 𝑘 lies in the aforementioned spectrum. 

ELCS is defined as k-error linear complexity profile by Martin and Stamp [51]. It is highlighted that 

the same definition was also given by Niederreiter [52] with the difference on the way the linear 

complexity changes. Etzion [53] presented a formula of the minimum 𝑘 that is needed to reduce 

the 𝑐ሺ𝑠ሻ of sequences with 𝑁 ൌ 2௡ and is shown as an explicit function of the Hamming weight of 

𝑐ሺ𝑠ሻ. There are also several other properties of the ELCS that are studied and proved in other works 

[54]. 

Based on the Games-Chan algorithm, Martin and Stamp managed to create an efficient algorithm 

that is able to compute, for any fixed 𝑘, the linear complexity 𝑐ሺ𝑠ሻ for a binary periodic sequence of 

period 𝑁 ൌ 2௡ . The algorithm [51] computes the entire ELCS using 𝒪ሺ𝑁ଶ𝑙𝑜𝑔𝑁ሻ  operations. 
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Subsequently, Lauder and Paterson [55] created a generalized version of the algorithm to compute 

the entire ELCS of sequences. This algorithm can also be used as a soft-decoding method for a 

specific class of linear subcodes of Reed – Muller binary codes [56]. 

The Lauder and Paterson algorithm (LPA) takes as input a sequence 𝑠 of period 𝑁 ൌ 2௡ and the 

output presents the points where there is a decrease of the linear complexity along with the number 

of bits that need to be changed for that decrease. These points are called critical	points (CPs), the 

number of bits is denoted by 𝑘 and the linear complexity of the sequence with 𝑘 changed bits is 

denoted by 𝑐௞ሺ𝑠ሻ. Clearly, the critical points constitute a subset of ELCS and is being called Critical 

Error Linear Complexity Spectrum (CELCS). In the output, the critical points are presented as 𝐶𝑃 ∶

ሺ𝑘, 𝑐௞ሺ𝑠ሻ). All sequences have at least 2 CPs, which are the points ሺ0, 𝑐ሺ𝑠ሻሻ and ሺ𝑤𝑡ሺ𝑠ሻ, 0ሻ. The 

values of the in between CPs (if there are any) depend on each sequence. For any given 𝑘, a critical	

error	 sequence, which is denoted by 𝑒 , is a sequence with period 𝑁  and weight 𝑘  for which 

𝑐ሺ𝑠 ⊕ 𝑒ሻ ൌ 𝑐௞ሺ𝑠ሻ. 

As stated above, given a binary sequence 𝑠 of period 𝑁 ൌ 2௡, the Games-Chan algorithm requires 

the full sequence to compute its linear complexity, while Berlekamp-Massey algorithm requires 

only 2𝑐ሺ𝑠ሻ of bits. A modified version of the Games-Chan algorithm [57], was designed that needs 

only 2𝑐ሺ𝑠ሻ of bits to compute the complexity. In the same article, the Lauder-Paterson algorithm is 

also modified, so for a given constant 𝑐, it computes the minimum number of errors and their 

position needed for bringing the complexity below 𝑐 over a period. 

3.2	Boolean	Functions	

Boolean functions are one of the most important tools in cryptography. They are used in various 

ways and have the most times a prominent role in the efficiency and the security of cryptosystems. 

Their most important applications rest with their usage as building blocks in symmetric 

cryptosystems. Specifically, they are used in the analysis and design of s-boxes in block ciphers and 

for the construction of filter or combining functions in stream ciphers [6]. The widespread use of 

Boolean functions is mainly attributed to their simplicity in hardware and software application and 

because when they are properly used in cryptosystems, they can withstand various known 

cryptanalytic attacks.	

3.2.1	Nonlinearity	
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It was mentioned in the previous chapter, that just using an LFSR with good statistical properties 

and high linear complexity as a pseudorandom bit generator, is not adequate in terms of security 

because of the Berlekamp-Massey algorithm (even if using an LFSR of huge size with adequately 

high linear complexity that can resist to Berlekamp-Massey, the system that would use such an 

LFSR would be impractical). A solution to this problem is to use a nonlinear Boolean function in the 

process of generating the sequence. The nonlinearity of a function 𝑓  can prevent linear 

cryptanalysis attacks [58] and best affine approximation attacks [59]. Thus, a Boolean function of 

high nonlinearity must be used for the generation of the sequence or a system that can increase 

nonlinearity at a sufficient level. 

Such systems are the nonlinear combination generators and the nonlinear filter generators. The 

former takes the outputs of 𝑛 LFSRs and use them as inputs in an 𝑛-vector nonlinear Boolean 

function 𝑓ሺ𝑥ଵ, 𝑥ଶ … . 𝑥௡ሻ . The function 𝑓  then generates a sequence of bits that serves as the 

keystream. For the latter, a nonlinear function 𝑓 is required to be used at a fixed number of stages 

of the outputs of a single LFSR. Both of them are widely used in modern stream ciphers. More on 

these generators can be found in the literature [60]. 

 
Figure	3.1: Nonlinear Combination Generator (Top) and Nonlinear Filter Generator (Bottom)	

3.2.2	Properties	
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Let  𝐹ଶ ൌ  ሼ0,1ሽ  and 𝐵௡ be the set of all Boolean functions that consist of 𝑛 variables. From the 

previous assumptions, it is considered that 𝑓 ∈ 𝐵௡  and 𝑓: 𝐹ଶ
௡ →  𝐹ଶ. The most common way to 

express 𝑓 is by a multivariate polynomial, called algebraic	normal	form (ANF) and it’s given by: 

𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ  ෍ a௜𝑥ଵ
௜భ … 𝑥௡

௜೙   𝑎௜ ∈
୧ ∈ ிమ

೙

𝐹ଶ  

where sum (𝛴) is performed modulo 2. Each monomial of a polynomial is composed by a number 

of variables.  

The algebraic	degree of 𝑓 , denoted by 𝑑𝑒𝑔ሺ𝑓ሻ, is the maximum number of variables that are 

presented in one of the monomials with a nonzero coefficient. In case that degሺ𝑓ሻ ൌ 1, then the 

function 𝑓 is affine. Furthermore, if the constant term in the ANF is zero, the f is linear. The value of 

the degree affects the weight of 𝑓 [61]. If the Boolean functions have only terms with the same 

degree, then they are called homogeneous. The opposite function or complement of function f is 𝑓ᇱ; 

thus,𝑓ᇱ ൌ 𝑓 ⊕ 1. It is important to mention that cryptosystems shouldn’t use Boolean functions 

with maximal degree because their output distribution is biased. 

Another important representation of a Boolean function is its truth	table, which present the values 

of each element in 𝐹ଶ
௡ and the value vector of 𝑓. For example, Table 3.1 illustrates the truth table of 

the Boolean function 𝑓 ൌ 𝑥ଵ ൅ 𝑥ଶ𝑥ଷ. A Boolean function can be identified and it is defined by its 

value vector. McWilliams and Sloane [62] describe a method to build the ANF of a Boolean function 

𝑓 by its truth table.  

𝑥ଵ 0 1 0 1 0 1 0 1 

𝑥ଶ 0 0 1 1 0 0 1 1 

𝑥ଷ 0 0 0 0 1 1 1 1 

𝑥ଵ ൅ 𝑥ଶ𝑥ଷ 0 1 0 1 0 1 1 0 

Table	3.1: N Truth table of 𝑓 ൌ xଵ ൅ xଶxଷ	

The hamming weight of a function 𝑓, denoted by 𝑤𝑡ሺ𝑓ሻ, is the number of 1’𝑠 in the truth table of 𝑓. 

If 𝑤𝑡ሺ𝑓ሻ ൌ  2௡ିଵ, then the 𝑓 is called balanced.  

Balanced functions are used by most cryptosystems because they offer better randomness 

compared to unbalanced functions. The latter have an unbalanced distribution of binary digits or a 
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statistical bias as it’s called and they are subject to various cryptanalysis attacks like correlation 

attacks [63]. However, almost balanced functions may also be acceptable, if they simultaneously 

satisfy other cryptographic criteria. 

Hamming distance is the number of differences in the truth tables of two functions. It is defined as:  

𝑑ሺ𝑓, 𝑔ሻ  ൌ  𝑤𝑡ሺ𝑓 ⊕  𝑔ሻ 

regarding that 𝑓, 𝑔 ∶  V𝑛 →  F2. Thus, the hamming distance of a function 𝑓 to all affine/linear 

functions is its nonlinearity. 

Let 𝑓, 𝑔 ∈ 𝐵௡, 𝐴 be a non-singular matrix (𝑛 ൈ 𝑛ሻ over 𝐹ଶ and 𝑏 an 𝑛-vector over 𝐹ଶ . It is said that 

𝑓ሺ𝑥ሻ and 𝑔ሺ𝑥ሻ functions in 𝑛 variables are affine	equivalent if 𝑔ሺ𝑥ሻ  ൌ  𝑓ሺ𝐴𝑥 ⊕ 𝑏ሻ. When two 

Boolean functions are affine equivalent, then 𝑤𝑡ሺ𝑓 ሻ  ൌ  𝑤𝑡ሺ𝑔ሻ and 𝑁𝐿௙ ൌ 𝑁𝐿௚, The weight (𝑤𝑡) 

and nonlinearity (𝑁𝐿) are affine invariant cryptographic properties of Boolean functions.	

The Walsh transform (also called the Hadamard transform) is of great importance for Boolean 

functions and therefore for cryptography. It is a generalized class of Fourier transforms and it 

performs a symmetric, orthogonal, involutive, linear operation on 2௡ real numbers. By using the 

Walsh transform the nonlinearity of a function 𝑓 can be easily computed [64], like many other 

properties of Boolean functions. 

The bias or correlation or imbalance of a Boolean function 𝑓 is denoted by ℇ is and can be calculated 

by:  

ℇሺ𝑓ሻ ൌ  ෍ ሺെ1ሻ௙ሺ௫ሻ

௫∈ிమ
೙

ൌ 2௡ െ 2𝑤𝑡ሺ𝑓ሻ 	

It is understood that a function 𝑓 is balanced only if ℇሺ𝑓ሻ ൌ 0.  

The Walsh spectrum of 𝑓 ∶  𝐹ଶ
௡ →  𝐹ଶ is computed by: 

ℱሺ𝑓 ൅ 𝜙௔ሻ ൌ  ෍ ሺെ1ሻ௙ሺ௫ሻା௔∗௫

௫∈ிమ
೙

, 𝑎 ∈ 𝐹ଶ
௡ 	
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where 𝜙௔  is the linear function 𝑥 ↦ 𝛼 ∗ 𝑥 ( ∗ indicates the inner product). Thus, the hamming 

distance of 𝑓 to ሼ𝜙௔ ൅ 𝜀, 𝛼 ∈  𝐹ଶ
௡, 𝜀 ∈  𝐹ଶሽ, which is the nonlinearity of 𝑓 can by computed by:  

𝑁𝐿௙ ൌ  2௡ିଵ െ 
1
2

ℒሺ𝑓ሻ ൌ  2௡ିଵ െ m𝑎𝑥
௔

|ℱሺ𝑓 ൅ 𝜑ఈሻ|	

A useful property of Boolean function is the Strict	Avalanche	Criterion (SAC), which was first 

introduced by Webster and Tavares in a study dedicated to the design of S-boxes [65]. A Boolean 

function 𝑓ሺ𝑥ሻ of 𝑛 variables that satisfies SAC means that changing one bit of the input 𝑥 will result 

to the change of exactly half of the 2௡ିଵ vectors to the output of the function. SAC can be used in 

various cryptographic applications [66]. It is widely used because of the big change to the output 

that occurs even in case of a slight change in the input. This way, a Boolean function input is more 

difficult to be computed by its output, which is essential for cryptosystems. More details on the SAC 

and how to construct SAC functions are described by Cusick and Stanica [67]. 

When the values of 𝑓 ∈ 𝐵௡  are statistically independent of a subset of 𝑘 variables (1 ൑ 𝑘 ൑ 𝑛), 

then the Boolean function 𝑓 is correlation	immune	of	order	k. Namely, if the subset of 𝑘 variables is 

called 𝑊 and 𝑊 ൌ ሼ 𝑥௜భ
, … , 𝑥௜ೖ

ሽ, then:  

𝐼 ሺ 𝑓ሺ𝑥ሻ|𝑊ሻ ൌ 0 

Correlation immunity determines the minimum number of LFSRs that must be used in a 

correlation attack on a combination generator, which is 𝑘 ൅ 1 [61]. However, there is a trade-off 

between several desired cryptographic properties. It is indicated [68] that even with the 

introduction of one bit of memory into the generator, the trade-off of degree and correlation 

immunity can be avoided. In case that a k‐th	order	correlation	immune function is balanced, is called 

k‐resilient [69].  

Another important cryptographic property that a Boolean function needs to possess is that it 

should not be well approximated by another function with fewer number of variables. Not many 

results are currently known on this criterion. For 𝑡-resilient functions it is possible to compute the 

minimum distance of an approximation function with less variables. Let 𝑓 ∈ 𝐵௡  be a 𝑡-resilient 

function. Then, the hamming distance 𝑑ுሺ𝑓, 𝐵௡ሺ𝑘ሻሻ  of 𝑓  from the set 𝐵௡ሺ𝑘ሻ  of all functions 

depending on 𝑘 input variables satisfies [70]: 
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𝑑ுሺ𝑓, 𝐵௡ሺ𝑘ሻሻ ൒ 2௡ିଵ ℒሺ𝑓ሻ

2
ቌ ෍ ൬

𝑘
𝑖

൰

ଵ
ଶ

௞

௜ୀ௧ାଵ

ቍ  

Let us consider a Boolean function 𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ  depending on 𝑛  variables. An important 

representation of Boolean functions is the Boole’s expansion or as it is also called, the Shannon’s 

expansion, which is defined, for any input variable 𝑥௜, 𝑖 ൌ 1, … , 𝑛 as follows: 

𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ ሺ1 ൅ 𝑥௜ሻ𝑓଴ሺ𝑥ଵ, … , 𝑥௜ିଵ, 𝑥௜ାଵ, … , 𝑥௡ሻ ൅ 𝑥௜𝑓ଵሺ𝑥ଵ, … , 𝑥௜ିଵ, 𝑥௜ାଵ, … , 𝑥௡ሻ 

where both functions 𝑓଴, 𝑓ଵ depend on 𝑛 െ 1 variables (actually on all variables except 𝑥௜). More 

precisely, 𝑓଴ (resp. 𝑓ଵ) is the function determined by the initial function 𝑓 if we fix the value of 𝑥௜ 

being equal to 0 (resp. 1). 

Example:	

Recalling the previous example with the function 𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ 𝑥ଵ ൅ 𝑥ଶ𝑥ଷ , the Shannon’s 

Expansion Formula for each of the three variables are given as follows: 

𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ ሺ1 ൅ 𝑥ଵሻሺ𝑥ଶ𝑥ଷሻ ൅ 𝑥ଵሺ1 ൅ 𝑥ଶ𝑥ଷሻ (for the variable 𝑥ଵ ) 

 (indeed, by setting 𝑥ଵ ൌ 0, f becomes 𝑥ଶ𝑥ଷ , whereas by setting 𝑥ଵ ൌ 1, 𝑓 becomes 1+𝑥ଶ𝑥ଷ) 

𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ ሺ1 ൅ 𝑥ଶሻሺ𝑥ଵሻ ൅ 𝑥ଶሺ𝑥ଵ ൅ 𝑥ଷሻ (for the variable 𝑥ଶ ) 

𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ ሺ1 ൅ 𝑥ଷሻሺ𝑥ଵሻ ൅ 𝑥ଷሺ𝑥ଵ ൅ 𝑥ଶሻ (for the variable 𝑥ଷ ) 

3.2.3	Special	Types	

Boolean functions are called symmetric if their outputs depend only on the Hamming weights of 

their inputs. This means that any permutation of the input bits will not result in any change of the 

function’s value. An extensive study on Symmetric Boolean Functions and specifically their 

cryptographic properties is given by Canteaut and Videau [71]. Except that, there is also a detailed 

analysis of symmetric functions of even variables with maximum algebraic immunity [72]. 

(1) 
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A bent function is another special type of Boolean functions [73]. The feature that separates bent 

functions from all other is that they have maximum difference (or distance) from all linear and 

affine functions – i.e. they achieve the maximum possible nonlinearity. This feature is desirable in 

cryptography because it makes them hard to approximate. That’s the reason they are widely used 

and studied [74]. However, bent functions have some drawbacks: i) they exist only for an even 

number of variables, ii) they are non-balanced. 

3.3	Relationship	between	Binary	Sequences	and	Boolean	

Functions	

The relationship of binary sequences and Boolean functions can be found in many studies in the 

literature. It is proved [75] that there exists an 1 െ 1 correspondence between binary sequences of 

period 2௡  and Boolean functions of 𝑛  variables. However, a slightly different approach to the 

relationship [1], that leads to some desirable conclusions, is used in this thesis. 

If 𝑠 ൌ ሺ𝑠ଵ, … , 𝑠ଶ೙ሻ is a periodic binary sequence of period 2௡, there is a Boolean function 𝑓 of 𝑛 

variables, whose truth table denoted by 𝑠௙ ൌ ሺ𝑠ଵ, … , 𝑠ଶ೙ሻ  corresponds to 𝑠, 𝑠 ↔  𝑠௙. Thus, for any 

𝑓𝜖𝐵௡  of 𝑛  variables, there is a 2௡  periodic sequence 𝑠  that 𝑠 ↔  𝑠௙ . This definition makes the 

Boolean function 𝑓𝜖𝐵௡  subject to all cryptographic criterions that can be applied to the binary 

sequence 𝑠. This means that as for the sequence 𝑠, the linear complexity and the ELCS can also be 

calculated for 𝑠௙. 

3.3.1	Computation	of	Approximation	Functions	

It is proved [1] that for a 2௡periodic binary sequence 𝑠 with linear complexity 𝑐ሺ𝑠ሻ that 2௡ି௟ିଵ ൏

𝑐ሺ𝑠ሻ ൑ 2௡ି௟  for some 1 ൑ 𝑙 ൏ 𝑛 െ 1 , if the Boolean function 𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ  depends only on 

𝑥ଵ, … , 𝑥௡ି௟. This proposition establishes a relationship between the linear complexity of sequence 

𝑠  with the number of variables of the corresponding Boolean function 𝑓 . Thus, if the 𝑐ሺ𝑠ሻ  is 

decreased enough, the number of variables of the corresponding function is decreased too. This 

leads to the conclusion that by reducing 𝑐ሺ𝑠ሻ , we can compute approximation functions that 

depends on fewer number of variables.  
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Approximating a Boolean function 𝑓 with another that depends on fewer variables falls into the 

category of correlation	attacks and can also be considered as divide-and-conquer algorithm. The 

attack that is presented by Siegenthaler [63] can be prevented by using correlation-immune 

functions [69]. It is highlighted that correlation immunity is an affine invariant criterion. Canteaut 

[70] describes how an approximation function can be used for cryptanalysis. 

The LPA can be useful in computing approximations of functions with fewer variables. This is 

because LPA like it was previously described, finds the ELCS of a sequence, which includes the 

points where the 𝑐ሺ𝑠ሻ is decreased. This approach is described in the following paragraph: 

Let 𝑠 be a binary sequence of period 2௡ with a CP ሺ𝑘, 𝑐௞ሺ𝑠ሻሻ satisfying 2௡ି௟ିଵ ൏ 𝑐ሺ𝑠ሻ ൑ 2௡ି௟ for 

𝑙 ൒ 1 and 𝑓 be a Boolean function for which 𝑠௙ ↔ 𝑠. It is proved [1, Theorem 2] that the function 

ℎ that can be built by the sequence  𝑠௙ ⨁ 𝑒 depends on the first 𝑛 െ 𝑙 variables and there are no 

other sequences for which 𝑤𝑡 ൏ 𝑘 and can lead to the creation of functions that depend on the first 

𝑛 െ 𝑙 െ 1 variables. It is also stated that if 𝑘 is the least possible of all the values of 𝑘 in CPs in the 

spectrum of 2௫ ൏ 𝑐ሺ𝑠ሻ ൑ 2௫ାଵ  then there are no other sequences whose weight 𝑤𝑡  satisfies 

𝑤𝑡 ൏ 𝑘 and can lead to the creation of functions that depend on the first 𝑛 െ 𝑙 variables. 

As it was previously mentioned, the LPA always finds two CPs for all sequences. However, only the 

in between CPs have cryptographic value for the purpose of finding approximations of functions 

and from these (in between CPs) only the ones with the least 𝑘 for a certain number of variables 

are used. Thus, we will call these CPs, Significant	Critical	Points (SCPs). It should be stated that the 

algorithm doesn’t present in the output the appropriate changes that need to be made to the 

sequence for each CP. The algorithm can be appropriately modified to also compute the critical 

error vectors [55]. This modification is needed in the process of building the approximation 

function. It is also important to mention that the LPA doesn’t compute the best approximations of 

functions with functions of fewer variables, but at least it sets the upper bound limits [1].  

It seems preferable for sequences to have only two CPs, so that they don’t have any approximations. 

However, this kind of sequences lack of cryptographic strength [54]. A brief description of the 

weakness follows: 

Let the truth table of function 𝑓 be a sequence that have only two CPs be represented as 𝑠௙ ൌ ሾ𝐿 𝑅ሿ 

with 𝐿 representing the left half of 𝑠௙ and 𝑅 the right half. These sequences have one of the two 

following form and it is explained beneath of each form why they lack of cryptographic strength: 
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i) 𝐿 ൌ 𝑅 ൌ 𝑠̂  𝑂𝑅  𝐿 ⊕ 𝑅 ൌ 0 

In case the (i) implies, then the truth table of 𝑓  is of the form 𝑠௙ ൌ 𝑠̂‖𝑠̂  (where ‖  indicates 

concatenation), which means that the 𝑠௙  of function 𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ  doesn’t depend on the last 

variable 𝑥௡. Immediately, since the 𝑠௙ depends only on 𝑥ଵ, … , 𝑥௡ିଵ, 𝑥௡ is not taken into account. 

Consequently, we can calculate approximations of the function using the sequence 𝑠̂, which uses 

one less variable that the sequence 𝑠௙. 

ii) 𝐿 ൌ 𝑅 ⨁ 1 ൌ 𝑠̂  𝑂𝑅  𝐿⨁𝑅 ൌ 𝟏 

In case that (ii) implies, it means that the truth table of 𝑓 is of the form 𝑠௙ ൌ 𝑠̂‖𝑠̂⨁1(where ‖ 

indicates concatenation). It is well known that the value of the last variable 𝑥௡ is 0 in the first half of 

the truth table and 1 in the second half of the table. Thus, this kind of sequences can be produced by 

a Boolean function whose ANF includes the variable 𝑥௡ in a monomial of degሺ𝑓ሻ ൌ 1. This leads to 

the conclusion that:  

𝑠௙ሺ𝑥ଵ, … 𝑥௡ሻ ൌ  𝑠̂ሺ𝑥ଵ, … , 𝑥௡ିଵሻ‖𝑠̂ሺ𝑥ଵ, … , 𝑥௡ିଵሻ⨁𝑥௡ ൌ 𝑠̂ሺ𝑥ଵ, … , 𝑥௡ିଵሻ‖𝑠̂ሺ𝑥ଵ, … , 𝑥௡ିଵሻ⨁1 

The previous shows that again, the variable 𝑥௡ is not taken into account.  

Theorem 3 [1] is an extension of Theorem 2 and it includes all the permutations matrices of Boolean 

function 𝑓 over 𝐹ଶ, which is denoted by 𝑃௡. A Boolean function have 𝑛! possible matrices and they 

should be used to find approximations with fewer variables. This means that better approximations 

can be found by using the LPA. It is also stated that Theorem 3 is applicable to functions that are 

affine	equivalent to 𝑓  and not only to the functions that are obtained by permuting the input 

variables.  

It is proved [1] that for a Boolean function 𝑓 of deg ሺ𝑓ሻ, the LPA can be used to efficiently compute 

approximations of degree lower than deg ሺ𝑓ሻ. As it was previously mentioned, the LPA computes 

the ELCS of a sequence and it can also present the corresponding critical error sequences. This was 

used to create an algorithm in the same paper for the computation of lower degree approximations 

of functions. Although, it is not ensured that the algorithm always computes the best low degree 

approximations, experiments indicate that in some cases, such approximations are indeed 

efficiently computed. 
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3.3.2	Analysis	of	the	Computation	Method	

As it was stated, the LPA can compute CPs that can lead to approximations of function 𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ 

with fewer variables. The approximation functions depend on 𝑛 െ 𝑥 variables for 1 ൑ 𝑥 ൑ 𝑛 െ 2. 

The way the variables are reduced is from the latter (𝑥௡) to the first (𝑥ଵ).  

Let 𝑠 ൌ ሾ𝐿 𝑅ሿ be a sequence of period 2௡ with 𝐿 representing the left half of 𝑠 and 𝑅 the right half. 

A simple way of explaining how the LPA works is that it compares 𝐿 and 𝑅 and it finds the bits that 

need to be changed in one of them, to make them identical. If the approximation function depends 

on 𝑛 െ 1 variables, then a number of bits must be changed so that 𝑠 ൌ ሾ𝑠ሶ  𝑠ሶሿ. If the approximation 

depends on 𝑛 െ 2 variables, then 𝑠 ൌ ሾ𝑠ሶ 𝑠ሶ  𝑠ሶ  𝑠ሶሿ and so on. 

Based on the properties of the LPA, a way to compute higher approximations through proper 

permutation is examined. For this, the notion of ℬ𝒜 is introduced. The bits affected in the truth 

table by a variable is denoted by ℬ𝒜. The ℬ𝒜 of a variable 𝑥 depends on the positions of 𝑥 in the 

polynomial. This means that the monomials that include 𝑥 should be taken into account to measure 

ℬ𝒜. The basic factors that determine ℬ𝒜 are 1) the degree of the monomials and 2) the other 

variables that are included in each monomial.  

More precisely, the ℬ𝒜 is given by the following: 

Theorem 1  

Let 𝑓଴, 𝑓ଵ be the sub-functions (depending on 𝑛 െ 1 variables) obtained by applying the Shannon 

Expansion Formula to 𝑓 with respect to the variable 𝑥௜ for any 𝑖. Then the ℬ𝒜 for  𝑥௜ is equal to the 

weight of the function 𝑓଴ ൅  𝑓ଵ (being considered as functions on 𝑛 െ 1 variables). 

Proof:	

Since 𝑓଴ equals to 𝑓 under the assumption that 𝑥௜ ൌ 0 and 𝑓ଵ  equals to 𝑓 under the assumption 

that 𝑥௜ ൌ 1, we get that 𝑥௜  affects an output of 𝑓  if and only if, 𝑓଴ሺ𝑣ሻ  ്  𝑓ଵሺ𝑣ሻ, where 𝑣  is the 

corresponding input vector on 𝑛 െ 1 variables (all except 𝑥௜ ). Hence, the claim follows. 

Example:	

Let 𝑓 be a Boolean function for which the ANF is: 
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𝑓ሺ𝑥ଵ, … , 𝑥ହሻ ൌ 𝑥ଵ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଷ𝑥ସ𝑥ହ 

The 𝑠௙ of the above function is: 01000100010001000100010001001011 

1st half:   0100010001000100 

2nd half: 0100010001001011 

Recalling the properties of Boolean functions, the difference between the two halves is made by the 

variable 𝑥ହ, which means that ℬ𝒜௫ఱ
ൌ 4.  

ℬ𝒜௫ఱ
 can be calculated using the Shannon expansion formula: 

𝑓ሺ𝑥ଵ, … , 𝑥ହሻ ൌ 𝑥ହሺ𝑥ଵ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଷ𝑥ସሻ ൅ ሺ1 ൅ 𝑥ହሻሺ𝑥ଵ ൅ 𝑥ଵ𝑥ଶሻ 

The ℬ𝒜௫ఱ
 equals the 𝑤𝑡ሺሻ of the sum of 𝑓଴ሺ𝑥ሻ 𝑎𝑛𝑑 𝑓ଵሺ𝑥ሻ: 

ℬ𝒜௫ఱ
ൌ 𝑤𝑡ሺ𝑓଴ሺ𝑥ሻ ൅ 𝑓ଵሺ𝑥ሻሻ 

ℬ𝒜௫ఱ
ൌ 𝑤𝑡ሺሺ𝑥ଵ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଷ𝑥ସሻ ൅ ሺ𝑥ଵ ൅ 𝑥ଵ𝑥ଶሻሻ 

ℬ𝒜௫ఱ
ൌ 𝑤𝑡ሺ𝑥ଷ𝑥ସሻ 

ℬ𝒜௫ఱ
ൌ 4 

It is also understood that if variables 𝑥ଷ, 𝑥ସ  were last, they would also affect 4 of the 32 bits in 

contrast with the other two that affect more bits. The variables have different ℬ𝒜 values because 

they exist in monomials of different degrees.  

Corollary 1  

Let	𝑓 be a Boolean function depending on 𝑛 variables 𝑥ଵ, 𝑥ଶ, … 𝑥௡. Then the ℬ𝒜 for 𝑥௜ for any 𝑖, is 

equal to the weight of 𝑓௫೔
, where 𝑓௫೔

 denotes all the monomials in the ANF of 𝑓 that contain 𝑥௜. 

Proof:	
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The proof is straightforward from Theorem 1, since – with the notation therein - 𝑓௫೔
 is equal to 𝑥௜ ∗

ሺ𝑓଴ ൅  𝑓ଵሻ. 

The ℬ𝒜 of a variable 𝑥௜ has a crucial role in determining how well a function can be approximated 

by a function with the same number of variables minus 𝑥௜ (i.e. with one less variable). Indeed, the 

ℬ𝒜  provides direct information on the existence of a function with 𝑛 െ 1  variables whose 

hamming distance from the initial function is equal to ℬ𝒜; this approximation is the function that 

is obtained by 𝑓 by simply removing all the monomials in the ANF that depend on the variable 𝑥௜ 

(the weight of these monomials equals ℬ𝒜). Consequently, the smallest value of ℬ𝒜 amongst all 

the possible variables constitutes the best choice to compute the highest possible approximation 

for a function that depends on 𝑛 െ 1 variables. 

The ℬ𝒜 can be trivially obtained for some cases. For example, we prove the following result. 

Proposition 1 

If a variable 𝑥௜ lies only in one monomial in the ANF of 𝑓, with degree 𝑑𝑒𝑔ሺ𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙ሻ, then the 

ℬ𝒜  is 2௡ିௗ௘௚ሺ௠௢௡௢௠௜௔௟ሻ ; therefore, there exists an approximation on 𝑛 െ 1  variables that 

approximates 𝑓  ቀ1 െ ଵ

ଶౚ౛ౝሺ೘೚೙೚೘೔ೌ೗ሻቁ ൈ 100% . This implies that the highest possible 

approximation that can be calculate by LPA for a function that depends on 𝑛 െ 1 variables equals 

ቀ1 െ ଵ

ଶౚ౛ౝሺ೑ሻቁ ൈ 100%; this is the upper bound limit of approximations that are calculated by LPA. 

Moreover, if all the variables in this monomial are also present only once in the ANF of 𝑓, that is they 

do not appear to any other monomial, then again there exists an approximation depending on 𝑛 െ

𝑑𝑒𝑔ሺ𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙ሻ variables that approximates 𝑓 ቀ1 െ ଵ

ଶౚ౛ౝሺ೘೚೙೚೘೔ೌ೗ሻቁ ൈ 100%. 

Proof:	

Amongst the 2௡ rows in the truth table of 𝑓, there exist 2௡ିௗ௘௚ሺ௠௢௡௢௠௜௔௟ሻ rows in which all the 

variables in the monomial have the value “1”; recalling the definition of ℬ𝒜 as well as Corollary 1, 

the first claim follows. Clearly, if we remove this monomial from the ANF of 𝑓, we get another 

function on 𝑛 െ 𝑑𝑒𝑔ሺ𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙ሻ  variables whose Hamming weight from 𝑓  is also 

2୬ିୢୣ୥ ሺ௠௢௡௢௠௜௔௟ሻ  and, thus, the second claim also follows. 

Example:	
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𝑓ሺ𝑥ሻ ൌ 𝑥ଵ⨁𝑥ଶ𝑥ଷ⨁𝑥ଵ𝑥ଷ⨁𝑥ସ𝑥ହ⨁𝑥ଵ𝑥ଶ𝑥ଷ 

It is observed that variables 𝑥ସ 𝑎𝑛𝑑𝑥ହ, which are the last variables in the function only exist once 

in the same monomial. Since the monomial of the last variables (𝑥ସ 𝑎𝑛𝑑 𝑥ହ) is of degree 2 the 

function that depends on two less variables approximates 𝑓ሺ𝑥ሻ  by 75%. The approximation 

function is 𝑥ଵ⨁𝑥ଶ𝑥ଷ⨁𝑥ଵ𝑥ଷ⨁𝑥ଵ𝑥ଶ𝑥ଷ. 

Therefore, if a variable appears only once, its ℬ𝒜 is trivially obtained. However, the same ℬ𝒜 can 

be also computed even if the variable 𝑥௡ exists more than once in the polynomial, as is shown in the 

next example. In case that 𝑥௡ exists only in one monomial, the LPA will yield an approximation 

whose distance from 𝑓  is exactly 2୬ିୢୣ୥ ሺ௠௢௡௢௠௜௔௟ሻ ; this is an important result which is 

subsequently proved. 

Example:	

𝑓ሺ𝑥ଵ, … , 𝑥ହሻ ൌ 𝑥ଵ⨁𝑥ଶ𝑥ଷ⨁𝑥ଵ𝑥ସ⨁𝑥ଷ𝑥ହ⨁𝑥ଷ𝑥ସ𝑥ହ 

In the function 𝑓  the highest approximation that can be calculated by LPA for 4  variables is 

computable if the last variable is 𝑥ହ. This is because it’s in a monomial whose degree equals deg ሺ𝑓ሻ 

and it’s in another monomial with the variable 𝑥ଷ that already exists in the previously mentioned 

monomial. It is easy to compute by using Shannon formula the ℬ𝒜 and see that ℬ𝒜௫ర
ൌ 2 ൈ

ℬ𝒜௫ఱ
. Thus, if 𝑥ସwas used as the last variable, the approximation function will not be as good. 

These are verified by the LPA. Therefore, indeed we get the best result through LPA by putting as 

last – under a permutation of variables – the variable with the smallest ℬ𝒜. 

Corollary 2 

If the variable 𝑥௡ has a corresponding value ℬ𝒜, then the LPA will yield an approximation of 𝑓 with 

𝑛 െ 1 variables whose distance from 𝑓 is exactly ℬ𝒜. 

Proof:	

The ℬ𝒜 of 𝑥௡ is given, according to Theorem 1, by the weight of ሺ𝑓଴ ൅  𝑓ଵሻ where these are the sub-

functions on 𝑛 െ 1 variables obtained by applying the Shannon Expansion formula to 𝑓. Recalling 

how the Lauder-Paterson works, this weight is the minimum number of bits required to be changed 
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in order to reduce the linear complexity of the corresponding sequence below 2௡ିଵ (since 𝑓଴ and 

𝑓ଵ correspond to the left L and right half R of the sequence respectively). Hence, the claim follows. 

Note that, in some cases, the value of ℬ𝒜 is trivially computed and, thus, we may know exactly 

which the approximation that we could get by the LPA. For example, if 𝑥௡  appears only in one 

monomial with degree 𝑑𝑒𝑔ሺ𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙ሻ, then its ℬ𝒜 is 2୬ିୢୣ୥ ሺ௠௢௡௢௠௜௔௟ሻ . Actually, in such cases 

there is no need to execute the LPA to compute approximations on 𝑛 െ 1 variables.  

Therefore, towards computing the best possible approximations, is seems that putting – under a 

permutation of variables - as last the variable with the less ℬ𝒜 is the right option to get the best 

approximation results with the LPA. Such an observation is of high practical importance, since 

restrict the entire space of all possible permutations on variables that can be applied is restricted.  

In case that 𝑥௡ exists in a monomial of 𝑑𝑒𝑔 ൒ 2 but also in another monomial of degree 1, then it 

is questionable whether 𝑥௡  is the best choice in order to find out the best approximations 

depending on 𝑛 െ 1 variables. That’s because the ℬ𝒜௫೙
 is equal to 2௡ିଵ െ 2௡ିௗ௘௚. For instance, if 

we have 𝑥ଵ ൅ 𝑥ଵ𝑥ଶ𝑥ଷ, then 𝑥ଵ affects 2௡ିଵ െ 2௡ିଷ bits in the truth table and it doesn’t lead to such 

a good approximation if 𝑥ଵ is placed last, compared to the case that 𝑥ଷ or 𝑥ଶ are put last. 

As the number of the excluding variables increases, then the relationship between the ℬ𝒜 and the 

outputs of the LPA gets more complicated. For approximations that depends on less than 𝑛 െ 1 

variables things get more complicated and the interaction of the ℬ𝒜 by the excluding variables 

should also be taken into account. 

Proposition 2 

When variables exist only once in the polynomial and they are in monomials of degree 1, then they 

don’t contribute to the process of computing approximating functions and they can be ignored.  

Example:	

𝑓ሺ𝑥ሻ ൌ 𝑥ଵ⨁𝑥ଶ⨁𝑥ଷ⨁𝑥ସ𝑥ହ⨁𝑥଺𝑥଻⨁𝑥ସ𝑥଺𝑥଼ 

The SCPs of 𝑓ሺ𝑥ሻ are (32,97), (64,25), (96,5) which correspond to the approximations 87,5%, 75%, 

62,5% respectively. 
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The approximations of function 𝑓ሺ𝑥ሻ can be computed without the use of variables 𝑥ଵ, 𝑥ଶ, 𝑥ଷ. Thus, 

the remaining part of the function will be used: 

𝑥ସ𝑥ହ⨁𝑥଺𝑥଻⨁𝑥ସ𝑥଺𝑥଼ 

The CPs for this function are (0,22), (4,13), (8,4), (12,0). A reference to all CPs is done because the 

last one, even if its not a SCP, is used for the approximation of 𝑓ሺ𝑥ሻ. The CP (4,13) correspond to an 

approximation of 87,5%, (8,4) to a 75% approximation and (12,0) to a 62,5% approximation. The 

approximations are the same but the distance is different. To calculate the distance of the 

approximations for 𝑓ሺ𝑥ሻ 𝑘 is multiplied by 2௫,where 𝑥 is the number of variables that are ignored. 

This subchapter provides us details on the limits of the approximations found by LPA, where the 

algorithm is not necessary and how it is possible to find better approximations through the 

permutation of variables. 
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Chapter	4	
Overview	of	the	Authenticated	

Stream	Algorithms	

In this chapter, there is a brief description of the algorithms that are used in the next Chapter to test 

the approximation technique that was explained in Chapter 3. Alongside that, there is also a security 

analysis for each authenticated stream algorithm. 

4.1	ACORN	

ACORN is a lightweight authenticated stream cipher that is submitted in the CAESAR competition 

and it’s one of the leading candidates. So far, there are three versions of the cipher with some 

modifications-improvements in each new version. ACORN-v3 [44] is the current version and until 

now it has been proved to have very good cryptographic properties. For the purpose of this thesis, 

ACORN-128 will be used, which is suitable for lightweight and high-performance applications. 

ACORN-128 uses a 128-bit key, 128-bit nonce (𝐼𝑉) and 128-bit tag. The associated data length and 

the plaintext length are less than 2଺ସ bits. It has a small 293-bits state that is consisted of 6 LFSRs. 
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It has a sequential design and at each step, only one message bit is processed. ACORN allows parallel 

computation that offer high speed of hardware and software implementation. 

 
Figure	4.1: The concatenation of the 6 mentioned LFSRs. 𝑓௜ is the overall feedback bit for the 𝑖th step and 𝑚௜ 

is the message bit for the 𝑖th step. 

There are three functions in ACORN-128: the function to generate keystream bit from the state, the 

function to compute the overall feedback bit and the function to update the state. 

The keystream bit is computed by using: 

𝑘𝑠௜ ൌ 𝑆௜,ଵଶ ⊕ 𝑆௜,ଵହସ ⊕ 𝑚𝑎𝑗ሺ𝑆௜,ଶଷହ, 𝑆௜,଺ଵ, 𝑆௜,ଵଽଷሻ ⊕ 𝑐ℎሺ𝑆௜,ଶଷ଴, 𝑆௜,ଵଵଵ, 𝑆௜,଺଺ሻ 

Initialization 

 Key and 𝐼𝑉 are injected into the state bit by bit.  

 It consists of 1792 steps. 

Padding of associated data 

 Padding is fixed at 256 steps.  

 One bit at each step 

Padding of the plaintext 

 Padding is fixed at 256 steps.  

 One bit at each step 

Finalization 

 The cipher runs for 768 steps.  
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 The last 128 bits of keystream are the tag. 

After the processing of the associated data, one plaintext bit 𝑝௜ is used to update the state and is also 

encrypted to 𝑐௜. The encryption is as follows: 𝑐௜ ൌ 𝑝௜⨁𝑘𝑠௜ 

The decryption and verification are similar to the encryption and tag generation. If verification fails, 

the ciphertext and the authentication tag are not given as output to avoid known plaintext or chosen 

ciphertext attacks. 

Changes from v1 to v3 

 The number of steps was changed for initialization, padding of associated data, padding of 

plaintext and finalization from 1536, 512, 512, 512 to 1792, 256, 256, 768 respectively. 

This offers better protection to the key if the nonce is reused. 

 In initialization, the key bits are used in 1664 steps in contrast with version 1 that were 

used only in 128 steps. By this modification the cipher was strengthened against nonce 

reuse attacks.  

 The function 𝑐ℎሺ𝑆௜,ଶଷ଴, 𝑆௜,ଵଵଵ, 𝑆௜,଺଺ሻ was moved from the feedback function 𝑓௜ to the output 

filtering function 𝑘𝑠௜. This was made to prevent guess-and-determine attacks.  

4.1.1	Security	Analysis	

In general, ACORN is considered to be a secure cipher until now. Despite this, the attacks that 

follows present that ACORN can be compromised under some specific circumstances. 

ACORN can have state collisions in the internal state [76]. State collisions happen when different 

sets of inputs have the same internal state at some point of cipher’s operation. In order to achieve 

collisions in ACORN, the 𝐼𝑉 or associated data or plaintext should be modified properly.  

Cube attack [77] is one powerful cryptanalytic tool designed for symmetric key ciphers and is 

especially effective at stream ciphers. The conventional attack considers the symmetric 

cryptosystem as a blackbox polynomial which is analysed experimentally. Therefore, it is not 

possible to evaluate the security of a cipher because the experimental size can’t be exceeded. If the 
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cube attack is developed by the division property [78], it is possible to exploit a large cube size. This 

was the first time the division property was applied to stream ciphers. Compared to the previous 

best key-recovery attacks, this attack was more efficient and it updated the maximum number of 

initialization rounds that are needed for the recovery from 503 to 704. 

Cube attack was applied on ACORN. This kind of attack is effective against ciphers of low algebraic 

degree or against ciphers of high degree but a sparse system of nonlinear equations. There are 6 

LFSRs and 14 taps in the initialization process and it is expected and maybe this could make the 

system of equations dense. A cube attack was performed [79] to a reduced version of the 

initialization phase that consists of 477 steps. The attack could successfully recover the key in the 

reduced version but not in the normal version. 

An attack framework based upon cube testers and 𝑑-monomial tests is proposed against ACORN-

v3 [80]. Specifically, some high degree monomials are considered in the Boolean functions of the 

keystreams using cube testers and a statistical test is carried out on the outputs of the truth tables 

of the functions. The specific statistical test is called 𝑑 -monomial [81]. The 𝑑 -monomial test 

compares the output of a symmetric cipher with that of a random Boolean function. Normally, the 

focus is on the frequency of the special monomials in the ANF of the Boolean functions, but for the 

attack, the focus is on the truth table. The framework distinguishes between random sequences and 

keystreams of ACORN-v3 and for up to 676 initialization rounds with a time complexity of 200 ൈ

2ଷଷ. A big advantage of this proposed framework is that the accuracy of the test can be adjusted to 

the available computing power. It is stated that it is the best practical attack on ACORN-v3 so far. 

A differential cryptanalysis of initialization is  presented by the designers [44]. From the results, 

ACORN is proved to be secure against differential cryptanalysis. 

A fault differential attack is proposed against ACORN-v3 [82]. The fault attack [83], [84] is 

categorised as a side channel attack meaning that it works on physical implementations and the 

cipher can be weakened by injecting a fault. The cipher had to be tested to this kind of attacks too, 

because it’s an algorithm that maybe will be used in reality. The attack is composed mainly of two 

procedures: fault locating and equation solving which are detailed explained in the work. Then a 

guess-and-determine method is used to obtain the initial state. It is stated in the work that with 𝑛 

fault experiments (26 ൏ 𝑛 ൏ 43), the initial state can be recovered with time complexity 𝑐 ൈ

2ଵସ଺,ହିଷ,ହଶൈ௡ , where 𝑐  is the time complexity of solving linear equations. It is also shown that 

ACORN-v3 is more vulnerable to this attack than ACORN-v2. Of course, this doesn’t mean that this 
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attack is a problem for the security of ACORN-v3 since it requires many preconditions and high time 

complexity.  

Another fault attack was conducted against ACORN-v3 [85], that requires 9 faults for cryptanalysis 

to be possible. A successful attack means that the secret state is compromised and thus the secret 

key is obtained too.  The method of the attack is similar to that of a differential fault attack on Plantlet 

[86]. The problem of implementing this method to ACORN-v3 was its large state with the 

complicated update. To overcome this, some bits are fixed for the differential fault attack to be 

possible with the drawback of increasing the time complexity. The big contribution of this work is 

the small number of faults that are required for the cryptanalysis. 

4.2	Grain	Family	

Grain-128a is the cipher that offers authentication but first there must be a reference to Grain-v1 

and Grain-128 that are former versions of the cipher since the basic structure remains the same.  

4.2.1	Grain‐v1	

The cipher was submitted to the eSTREAM project and it stood out for its easiness in hardware 

implementation and because is able to be applicated in very limited hardware environments. It also 

has the feature of increasing its speed in case of extra resources in the hardware. The original 

version (v0) was weak and after some observations and changes, the final version was proposed 

that is known as Grain-v1 [9]. 

Grain is a bit oriented synchronous stream cipher. The structure is based in two shift registers of 

80 bits, one LFSR and one NFSR. The LFSR guarantees the lower bound of the period and provides 

balance to the output and the NFSR adds the nonlinearity. The secret key is 80 bits and the 𝐼𝑉 is 

specified to be 64 bits.  

The cipher has three main building blocks, the LFSR 𝑓ሺ𝑥ሻ, the NFSR 𝑔ሺ𝑥ሻ and a nonlinear filter 

function ℎሺ𝑥ሻ. The content of the LFSR is denoted by 𝑠௜, 𝑠௜ାଵ, … , 𝑠௜ା଻ଽ and the content of the NFSR 

is denoted by 𝑏௜, 𝑏௜ାଵ, … , 𝑏௜ା଻ଽ. 

The feedback polynomial of the LFSR is defined as: 
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𝑓ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଵ଼ ൅ 𝑥ଶଽ ൅ 𝑥ସଶ ൅ 𝑥ହ଻ ൅ 𝑥଺଻ ൅ 𝑥଼଴ 

The feedback polynomial of the NFSR is defined as: 

𝑔ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଵ଻ ൅ 𝑥ଶ଴ ൅ 𝑥ଶ଼ ൅ 𝑥ଷହ ൅ 𝑥ସଷ ൅ 𝑥ସ଻ ൅ 𝑥ହଶ ൅ 𝑥ହଽ ൅ 𝑥଺ହ ൅ 𝑥଻ଵ ൅ 𝑥଼଴ ൅ 𝑥ଵ଻𝑥ଶ଴

൅ 𝑥ସଷ𝑥ସ଻ ൅ 𝑥଺ହ𝑥଻ଵ ൅ 𝑥ଶ଴𝑥ଶ଼𝑥ଷହ ൅ 𝑥ସ଻𝑥ହଶ𝑥ହଽ ൅ 𝑥ଵ଻𝑥ଷହ𝑥ହଶ𝑥଻ଵ

൅ 𝑥ଶ଴𝑥ଶ଼𝑥ସଷ𝑥ସ଻ ൅ 𝑥ଵ଻𝑥ଶ଴𝑥ହଽ𝑥଺ହ ൅ 𝑥ଵ଻𝑥ଶ଴𝑥ଶ଼𝑥ଷହ𝑥ସଷ ൅ 𝑥ସ଻𝑥ହଶ𝑥ହଽ𝑥଺ହ𝑥଻ଵ

൅ 𝑥ଶ଼𝑥ଷହ𝑥ସଷ𝑥ସ଻𝑥ହଶ𝑥ହଽ 

The contents of LFSR and NFSR represent the state of the cipher. Out of this state, 5 variables are 

used as input to a Boolean function ℎሺ𝑥ሻ. This function is balanced, correlation immune of the 1௦௧ 

order, has algebraic degree 3 and 𝑁𝐿௛ሺ௫ሻ ൌ 12. 

The filter function is defined as: 

ℎሺ𝑥ሻ ൌ 𝑥ଵ ൅ 𝑥ସ ൅ 𝑥଴𝑥ଷ ൅ 𝑥ଶ𝑥ଷ ൅ 𝑥ଷ𝑥ସ ൅ 𝑥଴𝑥ଵ𝑥ଶ ൅ 𝑥଴𝑥ଶ𝑥ଷ ൅ 𝑥଴𝑥ଶ𝑥ସ ൅ 𝑥ଵ𝑥ଶ𝑥ସ ൅ 𝑥ଶ𝑥ଷ𝑥ସ 

where the variables 𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ  and 𝑥ସ  correspond to 𝑠௜ାଷ, 𝑠௜ାଶହ, 𝑠௜ାସ଺, 𝑠௜ା଺ସ  and 𝑏௜ା଺ଷ 

respectively. The output of the filter function produces the keystream of the cipher. 

4.2.2	GRAIN‐128	

Due to the increase of the processing capabilities of computers Grain-v1 was not considered secure 

because it was vulnerable to exhaustive attacks (it required approximately 2଼଴ of computational 

complexity). Grain-128 [87] was designed and proposed to meet the requirements of security of 

the time and still possessed the advantages of Grain-v1. Grain-128 supports a 128-bits key and a 

96-bits 𝐼𝑉. It is stated by the designers that at that time there was not another 128-bit cipher that 

could offer such security and ease in hardware implementation.  

The cipher, as Grain-v1, consists of an LFSR, an NFSR and an output function with some differences. 

The content of the LFSR is denoted by 𝑠௜, 𝑠௜ାଵ, … , 𝑠௜ାଵଶ଻ and the content of the NFSR is denoted by 

𝑏௜, 𝑏௜ାଵ, … , 𝑏௜ାଵଶ଻. The 256 bits of both of these shift registers represent the state of the cipher. 

The LFSR is defined as:  
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𝑓ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଷଶ ൅ 𝑥ସ଻ ൅ 𝑥ହ଼ ൅ 𝑥ଽ଴ ൅ 𝑥ଵଶଵ ൅ 𝑥ଵଶ଼ 

The NFSR is defined as:  

𝑔ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଷଶ ൅ 𝑥ଷ଻ ൅ 𝑥଻ଶ ൅ 𝑥ଵ଴ଶ ൅ 𝑥ଵଶ଼ ൅ 𝑥ସସ𝑥଺଴ ൅ 𝑥଺ଵ𝑥ଵଶହ ൅ 𝑥଺ଷ𝑥଺଻ ൅ 𝑥଺ଽ𝑥ଵ଴ଵ

൅ 𝑥଼଴𝑥଼଼ ൅ 𝑥ଵଵ଴𝑥ଵଵଵ ൅ 𝑥ଵଵହ𝑥ଵଵ଻ 

From the state of the cipher, 9 variables (2 from the NFSR and 7 from the LFSR) are used as input 

in the Boolean function ℎሺ𝑥ሻ as follows: 

ℎሺ𝑥ሻ ൌ 𝑥଴𝑥ଵ ൅ 𝑥ଶ𝑥ଷ ൅ 𝑥ସ𝑥ହ ൅ 𝑥଺𝑥଻ ൅ 𝑥଴𝑥ସ𝑥଼ 

where 𝑥଴,𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥଺, 𝑥଻, 𝑥଼  correspond to the tap positions 𝑏௜ାଵଶ, 𝑠௜ା଼, 𝑠௜ାଵଷ, 

𝑠௜ାଶ଴, 𝑏௜ାଽହ, 𝑠௜ାସଶ, 𝑠௜ା଺଴, 𝑠௜ା଻ଽ, 𝑠௜ାଽହ respectively. 

The output function, which gives the keystream, is defined as:  

𝓏௜ ൌ ෍ 𝑏௜ା௝

௝∈஺

൅ ℎሺ𝑥ሻ ൅ 𝑠௜ାଽଷ 

where 𝐴 ൌ ሼ2,15,36,45,64,73,89ሽ. 

4.2.3	GRAIN‐128a	

This is a new version of Grain-128 that offers authentication and is strengthened against all known 

attacks. The modifications to this new version did not affect the basic structure of Grain-128 that, 

as it previously mentioned, is based on Grain-v1. Thus, the hardware performance of Grain-128a is 

close to that of the former versions. 

The cipher supports two modes of operations, with and without authentication. When 𝐼𝑉଴ ൌ 1, the 

authentication is mandatory and when 𝐼𝑉଴ ൌ 0, it’s forbidden. The authentication tag, denoted by 

𝑤  is up to 32  bits in size and it doesn’t affect the keystream of Grain-128a. If there is no 

authentication, the cipher can be more efficient due to its construction.  

Most of the parametres of the cipher are the same as the previous version. The key and IV size 

remain the same. The polynomials of the LFSR 𝑓ሺ𝑥ሻ and the Boolean function ℎሺ𝑥ሻ also remain the 
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same. The output function becomes a pre-output function and a new output function is presented. 

There is an addition in the NFSR 𝑔ሺ𝑥ሻ to strengthen the cipher against known attacks as it is stated 

by the designers. 

The LFSR is defined as: 

𝑓ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଷଶ ൅ 𝑥ସ଻ ൅ 𝑥ହ଼ ൅ 𝑥ଽ଴ ൅ 𝑥ଵଶଵ ൅ 𝑥ଵଶ଼ 

The NFSR is defined as:  

𝑔ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଷଶ ൅ 𝑥ଷ଻ ൅ 𝑥଻ଶ ൅ 𝑥ଵ଴ଶ ൅ 𝑥ଵଶ଼ ൅ 𝑥ସସ𝑥଺଴ ൅ 𝑥଺ଵ𝑥ଵଶହ ൅ 𝑥଺ଷ𝑥଺଻ ൅ 𝑥଺ଽ𝑥ଵ଴ଵ

൅ 𝑥଼଴𝑥଼଼ ൅ 𝑥ଵଵ଴𝑥ଵଵଵ ൅ 𝑥ଵଵହ𝑥ଵଵ଻ ൅ 𝑥ସ଺𝑥ହ଴𝑥ହ଼ ൅ 𝑥ଵ଴ଷ𝑥ଵ଴ସ𝑥ଵ଴଺

൅ 𝑥ଷଷ𝑥ଷହ𝑥ଷ଺𝑥ସ଴ 

The last three monomials are the addition to 𝑔ሺ𝑥ሻ of Grain-128. 

 
Figure	4.2: An overview of the pre-output generator 

The pre-output function is defined as 

𝓎௜ ൌ ෍ 𝑏௜ା௝

௝∈஺

൅ ℎሺ𝑥ሻ ൅ 𝑠௜ାଽଷ 

where 𝐴 ൌ ሼ2,15,36,45,64,73,89ሽ. 

For the generation of the keystream, 𝓎௜ is used but the is a small difference in the generator that 

depends on the mode of operation. If 𝐼𝑉଴ ൌ 1 the output function is defined as  
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𝓏௜ ൌ 𝓎଺ସ ൅ 2𝑖 

If 𝐼𝑉଴ ൌ 0, then 

𝓏௜ ൌ 𝓎௜ 

meaning that without authentication, the keystream of the cipher is generated as in Grain-128. 

4.2.4	Security	Analysis	

A related-key chosen IV attack was conducted on Grain-v1 and Grain-128 [88] that is an extended 

version of the slide resynchronization attack [89]. The attack takes advantage of the similarity of 

the setup mode of the ciphers with the keystream generation mode which is common for all ciphers 

in the Grain family. The attack on Grain-v1 needs 2ଶଶ.ହଽ  chosen 𝐼𝑉𝑠 , 2ଶ଺.ଶଽ  bits of keystream 

sequences and 2ଶଶ.ଽ଴  computational complexity to recover the secret key. The same attack on 

Grain-128 needs 2ଶ଺.ହଽ chosen 𝐼𝑉𝑠, 2ଷଵ.ଷଽ bits of keystream sequences and 2ଶ଻.଴ଵ computational 

complexity to recover the secret key.  

The attack described in the previous paragraph is possible due to the symmetric padding that is 

used in Grain-v1 and Grain-128. Grain-128a has asymmetric padding, thus the specific chosen 𝐼𝑉 

related key attack is not applicable to this new version of Grain. A functionable chosen 𝐼𝑉 related 

key attack for Grain-128a [90] was later published and its goal is to recover the key. In the paper it 

is proved that using around 2ସ଴ related keys and 2଻ଶ chosen 𝐼𝑉𝑠, it’s possible to obtain 32 ൈ 2଼ 

simple nonlinear equations that gives the secret key when solved. The complexity for this attack is 

better than exhaustive search. A countermeasure for this attack, that would make its complexity 

higher than a brute force would be to extend the padding to be at least equal to half the length of the 

secret key [90]. 

An attack based on differential cryptanalysis and targets cryptosystems that include NLFRs in their 

constructions was also used against Grain [91]. What is requested is to obtain deterministic 

differential characteristics for large number of rounds by identifying conditions on the internal 

state. Depending on these conditions, distinguishing and partial key recovery attacks are derived. 

The technique is applied to Grain-v1 and on Grain-128. Grain-128 can be distinguished for up to 

215 of its 256 rounds and some parts of the key can be recovered for up to 213 rounds. 
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Standard cube attacks obtain the key by solving linear equations in the key bits. The dynamic	cube	

attack [92] recovers the secret key by exploiting distinguishers obtained by cube testers. The attack 

can recover the key of Grain-128 if the number of initialization rounds is reduced to 207 for a 

feasible time complexity. The attack is also done with 250 initialization rounds and it’s shown that 

this method is faster than exhaustive search. The attack on the full version of the cipher can be 

successful if the key belongs to a subset 2ିଵ଴ of possible keys. It is stated that in this paper it was 

the first time that a cube attack is effective against a well-known, considered secure cipher.  

A single key attack is used against Grain-128 [93] which can recover the secret key by an algorithm 

significantly faster than exhaustive search. The paper states that for 7,5% of keys, there is an 

improvement factor of 2ଷ଼ over exhaustive search. There are no assumptions taken into account 

for this attack. The only restriction to the attack is that it needs dedicated hardware, due to high 

complexity and hardware-oriented nature. The attack may be infeasible but it presents better 

results than other methods. 

The attack framework that was mentioned for ACORN-v3 [80], was also applied to Grain-128a in 

the same paper. The framework distinguishes between random sequences and keystreams of 

Grain128a and for up to 171 initialization rounds with a time complexity of 200 ൈ 2ଶ଼ . As in 

ACORN, the attack has good results, but the security of the cipher is not contained. 

The newly introduced MAC in the Grain family is used to authenticate the message. However, it can 

be also be used by cryptanalysts to compromise the cipher. This scheme was already described [94] 

and it uses a differential fault attack on the cipher to recover the key by observing the correct and 

faulty MACs that are produced for certain chosen messages. This attack is functionable due to 

specific properties of Boolean functions and corresponding choices of the taps from the LFSR. The 

attack requires less than 2ଵଵ  fault injections and invocations of less than 2ଵଶ  MAC generation 

routines to find the secret key. 

Not many cryptanalytic studies had been published about Grain-128a because not many years has 

passed since the introduction of the cipher in 2011. However, Grain-128a is considered to be a 

cipher of high security level until now and because of this it has been standardized for radio 

frequency identification (RFID) devices. 

4.3	PALS	
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This cipher was introduced by Ashouri [95] and it is designed to resist all known conventional 

attacks. It is a clock-controlled stream cipher with a mechanism of altering steps. The main key’s 

size is 256 bits and the message key’s size is 32 bits. Important criteria of the cipher are maximum 

period, high linear complexity and good statistical properties. The base structure is a clock-

controlled combination generator with memory. 

The main and the message keys are used to generate a session key of 256 bits that is extended to 

1600 bits and becomes the initial vector.  

Message key generator 

In PALS, a message key is produced by an LFSR of 32 bits, whose feedback function is represented 

by the following polynomial: 

𝐶ሺ𝑥ሻ ൌ 𝑥ଷଶ ൅ 𝑥ଶଽ ൅ 𝑥ଶସ ൅ 𝑥ଶଷ ൅ 𝑥ଶଵ ൅ 𝑥ଵଽ ൅ 𝑥ଵ଻ ൅ 𝑥ଵ଺ ൅ 𝑥ଵସ ൅ 𝑥ଵଷ ൅ 𝑥ଵଵ ൅ 𝑥ଽ ൅ 𝑥଺ ൅ 𝑥ଷ

൅ 1 

Session key generator 

The message key bits should be altered by 50% (Avalanche effect) to be used on the main key (𝑀𝑘ሻ 

and generate the session key (𝑆௞). For this, a permutation and a substitution box are used for the 

32 bits message key to obtain good diffusion that produce a 32-bit sequence. This operation is 

repeated eight times and the diffused sequence (𝐷) 

𝑆𝑘௜ ൌ 𝑀𝑘௜⨁𝐷௜ 

Initial Vector Generator 

For the production of the IV, an LFSR of 256 bits, a polynomial of degree 256 and four S-boxes are 

used. The session key is used as the initial state of the LFSR and generates 8 bits at any clock. For 

the diffusion, the S-boxes are used and the first 320 generated bits are discarded. The next 1600 

bits are used as the IV. 

Keystream generator 
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The generator is based on 8 LFSRs with different lengths that are clocked irregularly using one of 

the four S-boxes of the IV generator. 8 bits that are selected in different stages of the LFSRs are used 

as input to eight nonlinear Boolean functions of 𝑁𝐿 ൌ 6 and correlation immunity of the 2௡ௗ order. 

Each function has 9 input variables and the 9௧௛ variable’s value is a bit of the S-box’s output. The 

output of these 8 functions enters the function 𝑔. The 9௧௛ variable of the function 𝑔 is taken by the 

output of the nonlinear function ℎ. The output of the function 𝑔 is the keystream. 

 
Figure	4.3: Keystream generator 

The polynomial of the output combiner (ℎ and 𝑔 functions) is as follows: 

ℎ௜ ൌ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ହ ൅ 𝑥ହ𝑥ଷ ൅ 𝑥଺𝑥ସ ൅ 𝑥଻𝑥଴ ൅ 𝑥଻𝑥ଵ ൅ 𝑥଻𝑥ହ ൅ 𝑥଼𝑥଴ ൅ 𝑥଼𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଴

൅ 𝑥଼𝑥଻𝑥ଵ ൅ 𝑥଼𝑥଻𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ସ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ହ𝑥ଶ

൅ 𝑥଼𝑥଻𝑥ହ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ହ𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ହ𝑥ସ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ଷ𝑥ଶ

൅ 𝑥଼𝑥଻𝑥଺𝑥ସ ൅ 𝑥଼𝑥଻𝑥଺𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ସ𝑥ଷ ൅ 𝑥଼𝑥଻𝑥଺𝑥ସ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ

൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ଷ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ

൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ𝑥ଷ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ𝑥ଷ𝑥ଶ 
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𝑔 ൌ 𝑥଴ ൅ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ 𝑥ହ ൅ 𝑥଺ ൅ 𝑥଻ ൅ ℎ௜ିଵ 

4.3.1	Security	Analysis	

PALS is a new algorithm that was submitted in 2018. Therefore, there are not yet published attacks 

on the cipher except the ones that were performed by the designer in [95], in order to display its 

high level of security against known attacks. 
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Chapter	5	
The	Approximation	Technique	

applied	to	the	Algorithms	

In this chapter, the process of finding approximations with fewer variables that was described in 

Chapter 3 is applied to the ciphers of Chapter 4. Specifically, the LPA is used on the sequences of the 

truth tables of Boolean functions that are used in the algorithms of the ciphers3.  

To achieve this, the Boolean functions are expressed in their ANF4 . For better results in the 

approximation functions the variables may be permuted. Then, the truth table of the Boolean 

function is generated and the LPA is adjusted to respond to the sequence of the truth table. The 

sequence is set as input to the algorithm and after that the algorithm is executed. Τhe output 

                                                           
3 For the generation of the truth table, an application that is available on the web was used that was developed 

by Southwestern	Adventist	University. http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/ 

4 For simplicity reasons, characteristic polynomials are associated with Algebraic Normal Forms (ANFs) in 

some occasions in this thesis, since this leads to permutation equivalent functions 
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includes the CPs. The SCPs are written down and present the distance of each approximation 

function. 

For the creation of the approximation function, as it is mentioned in Chapter 3, the LPA must be 

modified to present which bits must be changed. After that, the truth table of the approximation 

sequence is built and the function is built based on that sequence. 

5.1	ACORN	

The keystream bit is generated as follows: 

𝑘𝑠௜ ൌ 𝑆௜,ଵଶ ⊕ 𝑆௜,ଵହସ ⊕ 𝑚𝑎𝑗ሺ𝑆௜,ଶଷହ, 𝑆௜,଺ଵ, 𝑆௜,ଵଽଷሻ ⊕ 𝑐ℎሺ𝑆௜,ଶଷ଴, 𝑆௜,ଵଵଵ, 𝑆௜,଺଺ሻ 

We know that 

𝑚𝑎𝑗ሺ𝑥, 𝑦, 𝑧ሻ ൌ 𝑥𝑦⨁𝑥𝑧⨁𝑦𝑧 

𝑐ℎሺ𝑥, 𝑦, 𝑧ሻ ൌ 𝑥𝑦⨁൫ሺ~𝑥ሻ𝑧൯ ൌ 𝑥𝑦⨁𝑧⨁𝑥𝑧 

Thus, the keystream generator can be written as: 

𝑘𝑠௜ ൌ 𝑆௜,ଵଶ ⊕ 𝑆௜,ଵହସ ⊕ 𝑆௜,ଶଷହ𝑆௜,଺ଵ⨁𝑆௜,ଶଷହ𝑆௜,ଵଽଷ⨁𝑆௜,଺ଵ𝑆௜,ଵଽଷ ⊕ 𝑆௜,ଶଷ଴𝑆௜,ଵଵଵ⨁𝑆௜,଺଺⨁𝑆௜,ଶଷ଴𝑆௜,଺଺ 

Replacing the 𝑆௜ with 𝑥௡, we have the following Boolean function: 

𝑘𝑥௡ ൌ 𝑥ଵ⨁𝑥ହ⨁𝑥଼𝑥ଶ⨁𝑥଼𝑥଺⨁𝑥ଶ𝑥଺⨁𝑥଻𝑥ସ⨁𝑥ଷ⨁𝑥଻𝑥ଷ 

According to Proposition 1, the highest possible approximation that depends on 𝑛 െ 1 variables 

for a function of 𝑑𝑒𝑔 ൌ 2 is: 

൬1 െ
1

2ଶ൰ ൈ 100% ൌ 75% 

The critical points are (0,161), (64,73), (96,17), (128,0). The SCPs are (64,73), (96,17). Like it was 

mentioned in Chapter 3, the first number displays the number of bits that need to be changed, thus 

the distance between the two functions and the second number displays the corresponding linear 
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complexity which is used to find out the number of variables. Based on the previous, Table 5.1 

displays at each row the number of variables, the distance and the approximation of each SCP. 

Variables  Distance  Approximation (%) 

7  64  75 

5  96  62,5 

  										Table	5.1: ACORN I 

The approximation that depends on 𝑛 െ 1 variables is the highest possible, although 𝑥଼ appears in 

two monomials. That is because 𝑥଼ affects ଶ
ఴ

ଶమ (64) bits even if it exists in two monomials. Like it was 

shown in subchapter	3.3.2, it is not necessary for variables to only exist once in an ANF to find the 

best approximation functions. 

The next approximation function depends on 𝑛 െ 3ሺൌ 5ሻ variables. Apparently, the distance of the 

function that depends on 𝑛 െ 2ሺൌ 6ሻ variables has the same distance as the one that depends on 

one less variable from the function 𝑘𝑥௡. This means that the distance between 𝑘𝑥௡ and the function 

that depends on 𝑛 െ 2 is also 96. However, the LPA only showed the one with the less linear 

complexity, which is the one that depends on 𝑛 െ 3 variables. 

Variable 𝑥଻  affects ଶఴ

ଶమ  (64) bits in the function 𝑘𝑥௡  as variable 𝑥଼  but because 𝑥଻  is the second 

variable that needs to be removed and there would be only 6 variables left in the function, other 

things should be taken into account – the interaction between the ℬ𝒜 by variables 𝑥଻ and 𝑥଼. 

As concerns the variable 𝑥଺, it also affects ଶ
ఴ

ଶమ (64) bits of function 𝑘𝑥௡. The function that depends on 

𝑛 െ 3 variables has the same distance as the one that depends on 𝑛 െ 2 variables because of the 

interaction of the ℬ𝒜. 

As it is presented, only two approximations are computed by this order of variables. There are no 

more approximations because 𝑥ହ only appears once in a monomial of degree 1. However, more 

approximations may be found because there are more variables that appear in monomials with 

𝑑𝑒𝑔 ൐ 1 that can be permitted with 𝑥ହ. 

By permitting the variables the new order is as follows: 



52 

𝑆௜,ଵଶ  𝑆௜,଺ଵ  𝑆௜,଺଺  𝑆௜,ଵଵଵ  𝑆௜,ଵହସ  𝑆௜,ଵଽଷ  𝑆௜,ଶଷ଴  𝑆௜,ଶଷହ 

𝑥ଵ  𝑥ଶ  𝑥ଷ  𝑥ହ  𝑥ସ  𝑥଺  𝑥଻  𝑥଼ 

Table	5.2: ACORN II 

Thus, the ANF of the new permuted equivalent function is: 

𝑘𝑥௡ ൌ 𝑥ଵ⨁𝑥ସ⨁𝑥଼𝑥ଶ⨁𝑥଼𝑥଺⨁𝑥ଶ𝑥଺⨁𝑥଻𝑥ହ⨁𝑥ଷ⨁𝑥଻𝑥ଷ 

The sequence of the truth table of the above function is used as input to the LPA that gives the 

following CPs: (0,161), (64,81), (96,9), (128,0). The approximations that can be built by these CPs 

are presented in Table 5.3. 

Variables  Distance  Approximation (%) 

7  64  75 

4  96  62,5 

            Table	5.3: ACORN III 

This means that an approximation function can be built that depends on 𝑛 െ 4ሺൌ 4ሻ variables and 

it has the same distance as the approximation function that depends on 𝑛 െ 3 variables that was 

computed for the normal order of the variables. 

The approximations of this function also stop at the point of 𝑆௜,ଵହସ . Looking to find better 

approximations than the previously mentioned ones and taking into account the function with the 

permitted variables, 𝑆௜,ଵହସ was permuted with 𝑆௜,଺଺ and later in another function with 𝑆௜,଺ଵ but no 

better approximation function were found. Thus, the results in Table 5.3 are considered to be the 

best approximations that can be found by the LPA for function 𝑘𝑠௜.  

It is important to mention that, if the variables 𝑥௜  are replaced with 𝑥ଽି௜  for 1 ൑ 𝑖 ൑ 8 , it is 

confirmed that there are no SCPs because the last variable only exists once in the ANF, in a 

monomial of degree 1. 

5.2	GRAIN‐v1	
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NFSR 

The feedback polynomial of the NFSR is defined as: 

𝑔ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଵ଻ ൅ 𝑥ଶ଴ ൅ 𝑥ଶ଼ ൅ 𝑥ଷହ ൅ 𝑥ସଷ ൅ 𝑥ସ଻ ൅ 𝑥ହଶ ൅ 𝑥ହଽ ൅ 𝑥଺ହ ൅ 𝑥଻ଵ ൅ 𝑥଼଴ ൅ 𝑥ଵ଻𝑥ଶ଴

൅ 𝑥ସଷ𝑥ସ଻ ൅ 𝑥଺ହ𝑥଻ଵ ൅ 𝑥ଶ଴𝑥ଶ଼𝑥ଷହ ൅ 𝑥ସ଻𝑥ହଶ𝑥ହଽ ൅ 𝑥ଵ଻𝑥ଷହ𝑥ହଶ𝑥଻ଵ

൅ 𝑥ଶ଴𝑥ଶ଼𝑥ସଷ𝑥ସ଻ ൅ 𝑥ଵ଻𝑥ଶ଴𝑥ହଽ𝑥଺ହ ൅ 𝑥ଵ଻𝑥ଶ଴𝑥ଶ଼𝑥ଷହ𝑥ସଷ ൅ 𝑥ସ଻𝑥ହଶ𝑥ହଽ𝑥଺ହ𝑥଻ଵ

൅ 𝑥ଶ଼𝑥ଷହ𝑥ସଷ𝑥ସ଻𝑥ହଶ𝑥ହଽ 

For the purpose of analysing 𝑔ሺ𝑥ሻ , ( 𝑥ଵ଻, 𝑥ଶ଴, 𝑥ଶ଼, 𝑥ଷହ, 𝑥ସଷ, 𝑥ସ଻, 𝑥ହଶ, 𝑥ହଽ, 𝑥଺ହ, 𝑥଻ଵ, 𝑥଼଴ ) are 

replaced by ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥଺, 𝑥଻, 𝑥଼, 𝑥ଽ, 𝑥ଵ଴, 𝑥ଵଵ) respectively.  

Thus, 𝑔ሺ𝑥ሻ can also be written as: 

𝑔ሺ𝑥ሻ ൌ 1 ⊕ 𝑥ଵ ⊕ 𝑥ଶ ⊕ 𝑥ଷ ⊕ 𝑥ସ ⊕ 𝑥ହ ⊕ 𝑥଺ ⊕ 𝑥଻ ⊕ 𝑥଼ ⊕ 𝑥ଽ ⊕ 𝑥ଵ଴ ⊕ 𝑥ଵଵ ⊕ 𝑥ଵ𝑥ଶ

⊕ 𝑥ହ𝑥଺ ⊕ 𝑥ଽ𝑥ଵ଴ ⊕ 𝑥ଶ𝑥ଷ𝑥ସ ⊕ 𝑥଺𝑥଻𝑥଼ ⊕ 𝑥ଵ𝑥ସ𝑥଻𝑥ଵ଴ ⊕ 𝑥ଶ𝑥ଷ𝑥ହ𝑥଺

⊕ 𝑥ଵ𝑥ଶ𝑥଼𝑥ଽ ⊕ 𝑥ଵ𝑥ଶ𝑥ଷ𝑥ସ𝑥ହ ⊕ 𝑥଺𝑥଻𝑥଼𝑥ଽ𝑥ଵ଴ ⊕ 𝑥ଷ𝑥ସ𝑥ହ𝑥଺𝑥଻𝑥଼ 

(Νote that the constant term 1 does not affect the degree to which a function can be approximated 

by another function with fewer number of variables). 

By observing the polynomial, one can see that the variable 𝑥ଵଵ , which is the last variable, only 

appears once in a monomial with degree 1. This means that it affects the maximum possible bits; 

ℬ𝒜௫భభ ൌ ଶభభ

ଶ
. As a result, it is certain like it was mentioned in Chapter 3, that there won’t be any 

SCPs. Applying the LPA to the sequence of the truth table of 𝑔ሺ𝑥ሻ, it is presented that indeed there 

are only two CPs: (0,1025), (1024,0). 

Therefore, in order to find good approximations of this function, the variables must be 

permuted. It is interesting to observe that just by replacing 𝑥௜ with 𝑥ଵଶି௜ for 1 ൑ 𝑖 ൑ 11 there are 

some good approximations that are presented in Table 5.4. 
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Variables  Distance  Approximation (%) 

10  624  69,5 

9  652  68,2 

8  832  59,4 

7  868  57,6 

6  948  53,7 

2  1004  50,1 

            Table	5.4: Grain-v1 NFSR I 

It can be observed that the 𝑛 െ 1 approximation has a big difference from the best approximation 

that is possible for a function of 𝑑𝑒𝑔 ൌ 6 which is: 

ሺ1 െ
1

2଺ሻ ൈ 100% ൌ 98,4% 

One could see that the variable 𝑥ଵ which was placed last doesn’t exist in a monomial which has 

degree equal to deg ሺ𝑔ሻ. So, one could think that maybe it would be better to place a variable that 

exists in a monomial with degree that equals deg ሺ𝑔ሻ. This is not always true. As an example, the 

variables are permuted as is shown in Table 5.5. 

𝑥ଵ଻  𝑥ଶ଴  𝑥ଶ଼  𝑥ଷହ  𝑥ସଷ  𝑥ସ଻  𝑥ହଶ  𝑥ହଽ  𝑥଺ହ  𝑥଻ଵ  𝑥଼଴ 

𝑥ସ  𝑥ଷ  𝑥଺  𝑥଻  𝑥ଵ଴  𝑥ଽ  𝑥଼  𝑥ଵଵ  𝑥ଶ  𝑥ହ  𝑥ଵ 

Table	5.5: Grain-v1 NFSR II 

The last variable was set to be 𝑥ହଽ to examine if the approximation function that depends on 𝑛 െ 1 

variables has less distance than the approximation that depends on 𝑛 െ 1 variables when 𝑥ଵ଻ is set 

to be last. The first approximation is very important because the approximations that depends on 

less variables have greater distance of the ones with more variables. For example, if the 

approximation of the function that depends on 𝑛 െ 1 variables is 80%, then the approximations of 

the functions that depends on 𝑛 െ 𝑥 variables, where 𝑥 ൌ 2,3, … , 𝑛 െ 2, is ൑ 80% for the same 

𝑥௡. 

The approximations of the permuted function (Table 5.5) are shown in Table 5.6. 



55 

Variables  Distance  Approximation (%) 

10  752  63,3 

9  832  59,4 

8  856  58,2 

7  864  57,8 

6  964  52,9 

5  980  52,1 

3  996  51,4 

            Table	5.6: Grain-v1 NFSR III 

It can be seen that the approximation that depends on 𝑛 െ 1 variables is not better than the one 

computed in Table 5.4.  

From Table 5.6, it can be observed that the approximation functions with the least distance are the 

ones with 8 and 7 variables. This could be seen as a weakness for variable 𝑥ହଶ and that it could 

compute a good approximation that depends on 𝑛 െ 1 variables if it is set last. So, it would seem 

interesting to place the 8௧௛ variable last to observe the approximations that will be calculated.  

𝑥ଵ଻  𝑥ଶ଴  𝑥ଶ଼  𝑥ଷହ  𝑥ସଷ  𝑥ସ଻  𝑥ହଶ  𝑥ହଽ  𝑥଺ହ  𝑥଻ଵ  𝑥଼଴ 

𝑥ସ  𝑥ଷ  𝑥଺  𝑥଻  𝑥ଵ଴  𝑥ଽ  𝑥ଵଵ  𝑥଼  𝑥ଶ  𝑥ହ  𝑥ଵ 

Table	5.7: Grain-v1 NFSR IV 

The approximation that depends on 𝑛 െ 1  variables of the permuted function (Table 5.7) 

approximates 𝑔ሺ𝑥ሻ 63,3%, like the one of the previously permuted function (Table 5.6). So, the 

interaction with the variables that were after 𝑥ହଶ was the reason that the distance was little. 

Finding a better approximation would be easy if it was known how each variable interacts with the 

others and how many bits are affected by each variable. However, this is indeed difficult for 𝑔ሺ𝑥ሻ 

because it has many monomials of different degrees that varies from 1 to 6. 

It would be interesting to observe which variable if set last has the best approximation that depends 

on 𝑛 െ 1 variables. Table 5.8 presents the variables that are placed last and the corresponding 

distance and approximation of the functions that can be built and depend on 𝑛 െ 1 variables. 
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Variable set last  Distance  Approximation (%) 

𝑥ସ଻  592  71,1 

𝑥ସଷ  592  71,1 

𝑥ଷହ  592  71,1 

𝑥଻ଵ  544  73,4 

𝑥଺ହ  544  73,4 

𝑥ଶ଴  576  71,9 

𝑥ଶ଼  752  63,3 

            Table	5.8: Grain-v1 NFSR V 

Thus, the best approximation that can be computed with LPA for function 𝑔ሺ𝑥ሻ that depends on 

𝑛 െ 1 variables is 73,4%. 

Filter function 

The filter function is correlation immune of the 1௦௧ order. The filter function is defined as: 

ℎሺ𝑥ሻ ൌ 𝑥ଵ ൅ 𝑥ସ ൅ 𝑥଴𝑥ଷ ൅ 𝑥ଶ𝑥ଷ ൅ 𝑥ଷ𝑥ସ ൅ 𝑥଴𝑥ଵ𝑥ଶ ൅ 𝑥଴𝑥ଶ𝑥ଷ ൅ 𝑥଴𝑥ଶ𝑥ସ ൅ 𝑥ଵ𝑥ଶ𝑥ସ ൅ 𝑥ଶ𝑥ଷ𝑥ସ 

where the variables 𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ  and 𝑥ସ  correspond to 𝑠௜ାଷ, 𝑠௜ାଶହ, 𝑠௜ାସ଺, 𝑠௜ା଺ସ  and 𝑏௜ା଺ଷ 

respectively. The output of the filter function produces the keystream of the cipher. 

The SCPs of ℎሺ𝑥ሻ are shown in Table 5.9. 

Variables  Distance  Minimum Distance  Approximation (%) 

4  8  2,733501  75 

3    8   

2  12  12  62,5 

       Table	5.9: Grain-v1 Filter Function I 

The 3rd column presents the lowest possible distance of an approximation function to ℎሺ𝑥ሻ based 

on equation (1) of this thesis. It is observed that for the approximation function that depends on 2 

variables the distance is the least possible. For the approximation function that depends on 4 
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variables it is observed that the distance can be lower. Thus, a better approximation with 4 

variables may be calculated with LPA. For this, a different approach is used. 

The truth table of function ℎሺ𝑥ሻ is a sequence of 32 bits. Thus, it is easier to observe how the 

variables interact with each other. For this, variable 𝑥ସ is examined that was last in the function and 

it needed 8 bits to be removed for the approximation function with 1 less variable. ℬ𝒜௫ర
 depends 

on these monomials: 

𝑥ସ ൅ 𝑥ଷ𝑥ସ ൅ 𝑥଴𝑥ଶ𝑥ସ ൅ 𝑥ଵ𝑥ଶ𝑥ସ ൅ 𝑥ଶ𝑥ଷ𝑥ସ 

  VARIABLES  MONOMIALS 

𝑥଴  𝑥ଵ 𝑥ଶ  𝑥ଷ 𝑥ସ 𝑥ସ 𝑥ଷ𝑥ସ 𝑥଴𝑥ଶ𝑥ସ 𝑥ଵ𝑥ଶ𝑥ସ  𝑥ଶ𝑥ଷ𝑥ସ
17  0  0  0  0  1  ൈ         

18  1  0  0  0  1  ൈ         

19  0  1  0  0  1  ൈ         

20  1  1  0  0  1  ൈ         

21  0  0  1  0  1  ൈ         

22  1  0  1  0  1  ൈ    ൅     

23  0  1  1  0  1  ൈ      ൅   

24  1  1  1  0  1  ൈ    ൅  ൈ   

25  0  0  0  1  1  ൈ  ൅       

26  1  0  0  1  1  ൈ  ൅       

27  0  1  0  1  1  ൈ  ൅       

28  1  1  0  1  1  ൈ  ൅       

29  0  0  1  1  1  ൈ  ൅      ൈ 

30  1  0  1  1  1  ൈ  ൅  ൈ    ൅ 

31  0  1  1  1  1  ൈ  ൅    ൈ  ൅ 

32  1  1  1  1  1  ൈ  ൅  ൈ  ൅  ൈ 

Table	5.10: Grain-v1 Filter Function II 

In Table 5.10 is presented only the second half of the truth table because on the first half variable 

𝑥ସ ൌ 0 and no bits are affected. By the symbol ൈ is meant that the specific bit in the output column 

of the truth table is affected by the variable and by the symbol ൅ is meant that the bit is restored in 

its initial state. The shaded background of the boxes that include these symbols, indicates the last 

state of the bit. 

Thus, the variable 𝑥ସ affects: 

ଷଶ

ଶ
െ  ଷଶ

ସ
െ ሺଷଶ

ଵ଺
െ  ଷଶ

ଵ଺
ሻ െ ሺଷଶ

ଵ଺
െ  ଷଶ

ଵ଺
ሻ െ ሺଷଶ

ଵ଺
െ  ଷଶ

ଵ଺
ሻ െ ሺଷଶ

ଵ଺
െ ଷଶ

ଵ଺
ሻ = 8 
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Of course, doing this for variables that exist in functions that depends on greater number of 

variables is not so easy and it is time-consuming.  

For variable 𝑥ଵ, that only exists in three monomials in the function (𝑥ଵ ൅ 𝑥଴𝑥ଵ𝑥ଶ ൅ 𝑥ଵ𝑥ଶ𝑥ସ), it is 

easier to compute ℬ𝒜௫భ
, that equals: 

32
2

െ
32
8

െ ൬
32
16

െ  
32
16

൰ ൌ 12 

Monomial 𝑥ଵ affects 16 bits of the truth table. Monomial 𝑥଴𝑥ଵ𝑥ଶ restore 4 bits to their initial state. 

At the monomial 𝑥ଵ𝑥ଶ𝑥ସ things get more complicated. However, it is easy to see that the previous 

monomial ሺ𝑥଴𝑥ଵ𝑥ଶሻ restored 2 bits in the 1௦௧ half of the truth table and 2 bits in the 2௡ௗ half.  The 

monomial 𝑥ଵ𝑥ଶ𝑥ସ affects 2 of the restored bits and restores 2 bits. 

According to the above, the bits that are changed by 𝑥ଵ  are 12, so if 𝑥ଵ  is placed last, then the 

approximation function that depends on 𝑛 െ 1 variables should have a distance of 12 from ℎሺ𝑥ሻ. 

After the appropriate permutation, the SCP that is computed by LPA is: (12,9). 

It is concluded that the best approximation that depends on 4 variables has a distance of 8 from 

ℎሺ𝑥ሻ.  This is of course the best approximation that can be computed by using the LPA. 

5.3	GRAIN‐128	

NFSR 

The NFSR is defined as:  

𝑔ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଷଶ ൅ 𝑥ଷ଻ ൅ 𝑥଻ଶ ൅ 𝑥ଵ଴ଶ ൅ 𝑥ଵଶ଼ ൅ 𝑥ସସ𝑥଺଴ ൅ 𝑥଺ଵ𝑥ଵଶହ ൅ 𝑥଺ଷ𝑥଺଻ ൅ 𝑥଺ଽ𝑥ଵ଴ଵ

൅ 𝑥଼଴𝑥଼଼ ൅ 𝑥ଵଵ଴𝑥ଵଵଵ ൅ 𝑥ଵଵହ𝑥ଵଵ଻ 

The LPA has a limitation to the length of sequence that can take as input, which is 2ଵଶ meaning that 

12 variables can be used. The function 𝑔ሺ𝑥ሻ has 19 variables and this complicates the procedure 

because applying the LPA algorithm to a 2ଵଽ-bit sequence is of high computational and memory 

requirements for our testing system.  
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Observing the function, it can be seen that all variables exist only once in the ANF. It is also observed 

that 5 variables in the function appear in monomials of degree 1. These 5 variables don’t contribute 

to the computation of approximations, so all 5 can be ignored during the procedure, because they 

are of no use in the process of finding approximation functions, like it is shown in Proposition 2. 

At this point, it is also safe to estimate the approximations that will be computed before using the 

LPA. For this function, it is ensured that there exist approximations with fewer number of variables, 

whose approximation degrees are 75% and 62,5%. This is because all the variables (excluding the 

5 previously mentioned) exist in monomials of degree 2. It is also expected to compute 

approximations ൏ 62,5%. 

The approximations can be estimated but the LPA is needed to calculate the number of variables 

for each approximation function. That is not possible with the current version of LPA, because 

excluding the 5 variables, there are still 14 variables. 

Of course, the LPA is not necessary for the approximating function that depends on 𝑛 െ 1 variables. 

That is because each variable only appears once in the ANF, including the last one. Since it only 

appears once in a monomial of degree 2, it means that the approximation is 75%. 

To be able to run the LPA, the function needs to be shortened to 12 variables. Thus, the following 

polynomial represent a part of the function 𝑔ሺ𝑥ሻ: 

𝑥ଵ𝑥ଶ ൅  𝑥ଷ𝑥ସ ൅ 𝑥ହ𝑥଺ ൅ 𝑥଻𝑥଼ ൅ 𝑥ଽ𝑥ଵ଴ ൅ 𝑥ଵଵ𝑥ଵଶ 

(It can be observed that this specific part of the function is actually a bent function if taken as it is) 

The use of a part of the whole function in the LPA can provide the way the distance grows while the 

variables that are needed decrease. This way, if there is a pattern, it is possible to find the 

approximations of the whole function without running the LPA. Of course, for the process of 

building these approximation functions the LPA is needed.  

After running the part of the function in the LPA the following SCPs are calculated: 

ሺ1024,769ሻ, ሺ1536,193ሻ, ሺ1792,49ሻ, ሺ1920,13ሻ, ሺ1984,4ሻ . These results are illustrated in 

Table 5.11. 
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Variables  Distance  Approximation (%) 

10  1024  75 

8  1536  62,5 

6  1792  56,3 

4  1920  53,1 

2  1984  51,6 

           Table	5.11: Grain-128 NFSR I 

It is also necessary to mention CP: (2016,0)  Approximation 50,8%. 

From the SCPs calculated by a part of the function, it is possible to understand what SCPs will occur 

if the truth table of the whole function is used in the LPA. That’s because there is a pattern. The 

approximations depend on 12 െ 2𝑥  variables and the distance is 2ଵଶିଵ െ ଶభమషభ

ଶೣ  for 𝑥 ൌ

ሺ1,2,3,4,5ሻ.  

This pattern applied to the function 𝑔ሺ𝑥ሻ give us the results that are depicted in Table 5.12. 

Variables  Distance  Approximation (%) 

17 
2ଵଽ

2ଶ ή 2ଵ଼ െ
2ଵ଼

2
  75 

15  2ଵ଼ െ
2ଵ଼

4
  62,5 

13  2ଵ଼ െ
2ଵ଼

8
  56,3 

11  2ଵ଼ െ
2ଵ଼

16
  53,1 

9  2ଵ଼ െ
2ଵ଼

32
  51,6 

7  2ଵ଼ െ
2ଵ଼

64
  50,8 

5  2ଵ଼ െ
2ଵ଼

128
  50,4 

   Table	5.12: Grain-128 NFSR II 
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Essentially, these approximation functions are nothing more than the same function with less 

variables. Each approximation function uses two less variables of one monomial of the polynomial, 

like it was shown in Proposition 1.  

Filter function 

From the state of the cipher, 9 variables (2 from the NFSR and 7 from the LFSR) are used as input 

in the Boolean function ℎሺ𝑥ሻ as follows: 

ℎሺ𝑥ሻ ൌ 𝑥଴𝑥ଵ ൅ 𝑥ଶ𝑥ଷ ൅ 𝑥ସ𝑥ହ ൅ 𝑥଺𝑥଻ ൅ 𝑥଴𝑥ସ𝑥଼ 

where 𝑥଴,𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥଺, 𝑥଻, 𝑥଼  correspond to the tap positions 𝑏௜ାଵଶ, 𝑠௜ା଼, 𝑠௜ାଵଷ, 𝑠௜ାଶ଴, 

𝑏௜ାଽହ, 𝑠௜ାସଶ, 𝑠௜ା଺଴, 𝑠௜ା଻ଽ, 𝑠௜ାଽହ respectively. 

The highest possible approximation that depends on 𝑛 െ 1 variables for this function is: 

ሺ1 െ
1

2ଷሻ ൈ 100% ൌ 87,5% 

After running the LPA with sequence of the truth table the results that are presented in Table 5.13 

are calculated. As it is shown, there is a function that depends on 𝑛 െ 1  variables and it 

approximates ℎሺ𝑥ሻ 87,5% 

Variables  Distance  Approximation (%) 

8  64  87,5 

6  160  68,75 

4  192  62,5 

2  224  56,25 

             Table	5.13: Grain-128 Filter Function I 

Since the best approximation function that depends on 𝑛 െ 1 variables is found, there is no reason 

to permute the last variable. However, it is possible to find better approximations that depends on 

less variables. For this, the order of the variables is changed as in Table 5.14. 
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𝑏௜ାଵଶ  , 𝑠௜ା଼  𝑠௜ାଵଷ  𝑠௜ାଶ଴  𝑏௜ାଽହ  𝑠௜ାସଶ  𝑠௜ା଺଴  𝑠௜ା଻ଽ  𝑠௜ାଽହ 

𝑥଻  𝑥ଵ  𝑥ଶ  𝑥ଷ  𝑥଺  𝑥ହ  𝑥ସ  𝑥଴  𝑥଼ 

Table	5.14: Grain-128 Filter Function II 

As it can be seen, 𝑏௜ାଵଶ and 𝑏௜ାଽହ are 𝑥଻ and 𝑥଺ respectively. This permutation was done to test if 

the variables that are in the same monomial and interact with 𝑥଼ can lead to better approximations. 

Of course, both of them are used in another monomial and that’s something that complicates the 

interaction and the outcome. Thus, the function after the permutation is as follows  

ℎሺ𝑥ሻ ൌ 𝑥଻𝑥ଵ ൅ 𝑥ଶ𝑥ଷ ൅ 𝑥଺𝑥ହ ൅ 𝑥ସ𝑥଴ ൅ 𝑥଻𝑥଺𝑥଼ 

The results of the LPA are presented in Table 5.15. 

Variables  Distance  Approximation (%) 

8  64  87,5 

7  128  75 

6  160  68,75 

4  192  62,5 

2  224  56,25 

												Table	5.15: Grain-128 Filter Function III 

It is seen that not better approximations are computed, but there is one more approximation that 

depends on 7 variables. 

5.4	GRAIN‐128a	

For Grain-128a, only the NFSR is tested because the function ℎሺ𝑥ሻ is the same as in Grain-128. 

The NFSR is defined as:  

𝑔ሺ𝑥ሻ ൌ 1 ൅ 𝑥ଷଶ ൅ 𝑥ଷ଻ ൅ 𝑥଻ଶ ൅ 𝑥ଵ଴ଶ ൅ 𝑥ଵଶ଼ ൅ 𝑥ସସ𝑥଺଴ ൅ 𝑥଺ଵ𝑥ଵଶହ ൅ 𝑥଺ଷ𝑥଺଻ ൅ 𝑥଺ଽ𝑥ଵ଴ଵ

൅ 𝑥଼଴𝑥଼଼ ൅ 𝑥ଵଵ଴𝑥ଵଵଵ ൅ 𝑥ଵଵହ𝑥ଵଵ଻ ൅ 𝑥ସ଺𝑥ହ଴𝑥ହ଼ ൅ 𝑥ଵ଴ଷ𝑥ଵ଴ସ𝑥ଵ଴଺

൅ 𝑥ଷଷ𝑥ଷହ𝑥ଷ଺𝑥ସ଴ 
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The last three monomials are the addition to 𝑔ሺ𝑥ሻ  of Grain-128. This function consists of 29 

variables, 10 more than its previous version and once again all the variables only exist once in the 

polynomial.  

This means that the LPA is not necessary in this function, like in the NFSR of Grain-128, in the 

process of computing the approximations. Like the NFSR of Grain-128, the number of the variables 

and the distance of the approximations from 𝑔ሺ𝑥ሻ depends on the degree of the monomials.  

For example, to have the highest possible 1௦௧ SCP, the variables of the monomial which is of degree 

4 (since degሺ𝑔ሻ ൌ 4ሻ, are permitted and placed last. The first approximation will be equal to ሺ1 െ
ଵ

ଶరሻ ൈ 100% ൌ 93,8%. This approximation function depends on 4 less variable of the function 

𝑔ሺ𝑥ሻ which are the four prementioned variables. The distance of the approximation to the function  

𝑔ሺ𝑥ሻ is ଶ
మవ

ଶర  bits. Thus, the 1st approximation depends on 25 variables, has a distance of ଶ
మవ

ଶర  bits and 

approximates 𝑔ሺ𝑥ሻ 93,8%. Specifically, this approximation function is the same as 𝑔ሺ𝑥ሻ without 

the last monomial. 

Using Proposition 1, the rest of the approximations can be calculated without LPA. 

5.5	PALS	

The polynomial of the output combiner (ℎ and 𝑔 functions) is as follows: 

ℎ௜ ൌ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ହ ൅ 𝑥ହ𝑥ଷ ൅ 𝑥଺𝑥ସ ൅ 𝑥଻𝑥଴ ൅ 𝑥଻𝑥ଵ ൅ 𝑥଻𝑥ହ ൅ 𝑥଼𝑥଴ ൅ 𝑥଼𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଴

൅ 𝑥଼𝑥଻𝑥ଵ ൅ 𝑥଼𝑥଻𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ସ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ହ𝑥ଶ

൅ 𝑥଼𝑥଻𝑥ହ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ହ𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥ହ𝑥ସ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ଷ𝑥ଶ

൅ 𝑥଼𝑥଻𝑥଺𝑥ସ ൅ 𝑥଼𝑥଻𝑥଺𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ସ𝑥ଷ ൅ 𝑥଼𝑥଻𝑥଺𝑥ସ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ

൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ଷ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ଷ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ

൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ𝑥ଶ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ𝑥ଷ ൅ 𝑥଼𝑥଻𝑥଺𝑥ହ𝑥ସ𝑥ଷ𝑥ଶ 

𝑔 ൌ 𝑥଴ ൅ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ 𝑥ହ ൅ 𝑥଺ ൅ 𝑥଻ ൅ ℎ௜ିଵ 

The way the output combiner of PALS is built (having the NFSR output as input in an LFSR), makes 

the approximation techniques on function ℎ௜ of limited cryptographic value for the cryptanalysis of 

the cipher. However, it is still considered important to observe how the NFSR resist to this kind of 
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approximation technique because if the NFSR is compromised, then the difficulty to compromise 

the whole output combiner is decreased. 

The function ℎ௜ consists of 9 variables and as it can be observed, it depends on many monomials of 

different degrees and all variables appear many times. This leads to a complex interaction between 

the variables, that complicates the procedure of finding better approximations with permutation. 

Thus, the function ℎ௜ is tested as it is. 

The highest possible approximation that depends on 𝑛 െ 1 variables for this function is: 

ሺ1 െ
1

2଺ሻ ൈ 100% ൌ 98,4% 

However, it is not expected to have such a high approximation due to the interaction of the 

variables.  

After running the sequence of the truth table of the function in the LPA, the following SCPs are 

computed: ሺ128,131ሻ, ሺ160,97ሻ, ሺ188,40ሻ, ሺ208,17ሻ, ሺ240,9ሻ. Table 5.16 illustrates the details 

of each approximation function. 

Variables  Distance  Approximation (%) 

8  128  75 

7  160  68,8 

6  188  63,3 

5  208  59,4 

4  240  53,1 

											Table	5.16: PALS I 

The function that depends on 8 variables approximates ℎ௜ 75%. This is not even close to the 98,4%. 

The other approximations have a slightly bigger distance from ℎ௜  from the approximations that 

depends on one more variable, with the last one that depends on 4 variables approximating ℎ௜ just 

53,1%. 

If the best approximations need to be calculated for this function with LPA, the ℬ𝒜 need to be 

calculated for each variable and the interaction of these bits.  
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Chapter	6	
Conclusions	

The authenticated stream ciphers share similarities in their basic structures. The general 

framework of authenticated stream ciphers, which is based on these similarities, is considered to 

be very important and useful in the cryptographic community; many authenticated stream ciphers 

lie in the class of lightweight ciphers and thus, they are candidates for adoption in Internet of Things 

(IoT) applications, in which devices connected to the internet that can utilize limited resources for 

the purpose of encryption and authentication are being used. Authenticated stream ciphers 

combine security, high speed of execution and low hardware complexity. This means that such 

ciphers can be built to be lightweight, like ACORN. As a result, there is much attention to this 

category of ciphers by cryptographers and there will be much more in the upcoming years. 

In this thesis, three authenticated stream ciphers are analysed and all of them are considered to be 

secure. Even if there are some attacks on Grain-128a and ACORN that show good results, there is 

no attack that comes close to compromising the ciphers. Of course, it should be mentioned that most 

of the attacks that are used on the ciphers are designed for prior ciphers that don’t fall into the 

category of authenticated stream ciphers and they had to be adjusted. Thus, the designers could 

take into account these attacks and use the info to make sure that the ciphers would withstand 
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them. Future studies should concentrate more on the cryptanalytic methods on specifically 

authenticated stream ciphers. Especially the fusion of authentication and encryption methods 

should be properly examined for weaknesses that can be used to compromise the ciphers. This, 

certainly doesn’t mean that attacks that are not designed specifically for authenticated stream 

ciphers should not be considered important. Such an attack could be one using the approximation 

technique that was described in Chapter 3. 

The approximation technique is based on the relationship of binary sequences and the truth table 

of Boolean functions. The technique takes advantage of the advanced study that has been done on 

binary sequence and applies it to the truth table of Boolean functions. Specifically, the Error Linear 

Complexity Spectrum (ELCS) is used to find approximation functions that depend on less variables. 

This means that this technique could be widely used because of the vast use of Boolean functions in 

cryptographic ciphers. Based on the previous, the approximation technique can be considered as 

an evaluation tool for new ciphers but also can be used to existing algorithms in future studies. 

In addition to the study of the technique, this thesis also introduces a theoretical framework that 

can be used to have the optimal results in the calculation of the approximations. As it was described 

in Chapter 3, the technique highly depends on the order of the variables of the function. Based on 

this, it was proved in this thesis that the proper order of the input variables can be calculated for 

some specific cases. It is shown how the bits affected by a variable in the truth table can lead to the 

highest possible approximation function that depends on 1 less variable. The method of calculating 

the number of the bits affected is given in detail in Chapter 3. However, to calculate approximation 

functions that depends on more than 1 less variables, the interaction between the bits affected in 

the truth table of the variables that will be disregarded must be calculate. In case the approximation 

function depends on 1 less variable, the interaction of variables is not taken into account because 

only one variable is disregarded.  

Apart from the theoretical framework that is used to properly permute the input variables, there 

are also some suggestions that are useful to determine the right order of the variables in the 

approximation technique. It is also stated in which cases this technique is not necessary to compute 

the approximations and which parts (if there are any) of Boolean functions don’t contribute to the 

calculation of approximations. It is also shown that the approximation is linked to the degree of the 

function and with that degree an upper bound limit (that concerns only the approximations that 

can be found by LPA) of the approximations can be calculated even before using the technique. All 

the previous, give a major advantage in the process of evaluating a function using this technique as 
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a cryptographic criterion. Furthermore, the work that is done in this thesis paves the way for further 

studies on this subject. For example, a future study could focus on the way the disregarded variables 

interact with one another. 

Except the theoretical analysis of the approximation technique, the latter was also applied to the 

three authenticated stream ciphers and also the two prior ciphers of Grain-128a that are described 

in Chapter 4. The results of the application of the technique are written down in Chapter 5 and the 

methods of the theoretical framework that are introduced in this thesis are used, so that the 

technique is more effective. Each one of the ciphers has a different reaction to the technique that is 

mentioned in brief in the following paragraphs. 

Firstly, the approximation technique is applied to ACORN. Due to the function’s low degree, the 

approximation’s upper bound limit for a function that depends on 1 less variable is only 75%. 

However, a function of this approximation (75%) is possible and it is calculated. After this, a 

function that approximates the function 𝑘𝑠௜ 62,5% is calculated that depends on 4 less variables. 

The approximation may be low, but 4 variables are disregarded. It is reminded that 𝑘𝑠௜  uses 8 

variables, so only half of the variables are used in the approximation function that is indeed a critical 

reduction. It is also remarked that these approximations are the best possible that can be calculated 

by the technique. 

The next ciphers that are tested are the ones of the Grain family and for start Grain-v1. For the 

feedback function of the NFSR that has 11 input variables there are three different permutations of 

the function 𝑓ሺ𝑥ሻ that are used for the technique, so as a result there are approximation functions 

that vary in terms of the depending variables (2 to 10) and of the approximations (50,1 – 69,5%). 

After that, the best possible approximation function that depends on 1 less variable is calculated 

and it approximates 𝑓ሺ𝑥ሻ 73,4%. For the filter function ℎሺ𝑥ሻ that has 5 input variables, the best 

possible approximations that depends on 2 and 4 variables are calculated which approximate ℎሺ𝑥ሻ 

62,5% and 75% respectively. The one that depends on 4 variables is calculated after computing the 

ℬ𝒜 of all the variables. The one with the least value is used as the last variable to calculate the 

prementioned approximation function. As concerns the other approximation function that 

depends on 2 variables, no further examination can be done after the first approximation on the 

regular order of the variables, since (1) shows that the approximation function that is calculated 

has the minimum distance.  
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After that, Grain-128 is used, whose feedback polynomial of the NFSR is drastically changed 

compared to the one in Grain-v1. The feedback function has 19 input variables, the degree of the 

function is 2 and all the variables only appear once in the function. The best approximation function 

that depends on 17 variables is calculated and approximates 𝑔ሺ𝑥ሻ 75%. Moreover, all the other 

best possible approximations are written down. This is possible due to the form of function 𝑔ሺ𝑥ሻ - 

the explanation is in Proposition 1. A significant pattern is also revealed during the calculation of 

the approximations that can be used in other Boolean functions that have a similar form. The filter 

function is composed of 9 variables and the best approximation function that depends on 8 

variables is calculated and approximates ℎሺ𝑥ሻ 87,5%. Other approximations are also calculated 

that can lower the number of variables to 2 with a 56,25% approximation. 

The last cipher of the Grain family is also the one that offers authentication and it is Grain-128a. The 

feedback function is the same as in Grain-128 with the addition of three monomials in the 

polynomial. Proposition 1 is also applicable on this function and the best possible approximations 

can be calculated, although the use of the technique is not necessary like it is explained in Chapter 

5. On the other hand, the filter function remains the same as in Grain-128 and so do the 

approximations. 

For the end, the approximation technique is applied to the output combiner of PALS. The combiner 

function (ℎ௜ ) has 9 input variables and degሺℎ௜ሻ ൌ 7 . The approximations functions that are 

calculated in the regular order of variables in ℎ௜ depends on 4 to 8 variables and approximates ℎ௜ 

53,1 to 75%. This surely doesn’t even come close to the upper bound limit of the best 

approximation that depends on 8 variables, but it needs to be mentioned that no permutation is 

done to this function. Thus, much better approximations may be possible and could be calculated 

in a future study. 

From the results in Chapter 5, it is proved that the approximation technique can indeed calculate 

approximation functions of cryptographic value. Immediately, it is safe to state that the 

approximation technique can be used as a cryptographic criterion to evaluate functions in ciphers. 

However, it is also necessary for future studies to focus on finding the way to calculate the best 

possible permutation of variables in a function, so that the full potential of the approximation attack 

can be achieved each time. The work that is done in this thesis can be a starting point. Except that, 

future studies can also work on cryptanalytic techniques that can be combined with the 

approximation technique with the purpose of compromising a cipher.  



69 

Bibliography	

[1] K. Limniotis and N. Kolokotronis, ‘The error linear complexity spectrum as a cryptographic 

criterion of Boolean Functions’, Submitted	to	IEEE	Trans.	Inform.	Theory	(under	review). 

[2] G. S. Vernam, ‘Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic 

Communications’, Transactions	of	the	American	Institute	of	Electrical	Engineers, vol. XLV, pp. 295–

301, Jan. 1926. 

[3] C. Paar and J. Pelzl, Understanding	Cryptography:	A	Textbook	for	Students	and	Practitioners. 

Berlin: Springer, 2010. 

[4] S. W. Golomb, Shift	Register	Sequences. Laguna Hills, CA, USA: Aegean Park Press, 1981. 

[5] J. Massey, ‘Shift-register synthesis and BCH decoding’, IEEE	Transactions	on	Information	

Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969. 

[6] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook	of	Applied	Cryptography, 1st 

ed. Boca Raton, FL, USA: CRC Press, Inc., 1996. 

[7] A. Braeken and J. Lano, ‘On the (Im)Possibility of Practical and Secure Nonlinear Filters and 

Combiners’, in Selected	Areas	in	Cryptography, 2006, pp. 159–174. 

[8] C. De Cannière, ‘Trivium: A Stream Cipher Construction Inspired by Block Cipher Design 

Principles’, in Information	Security, 2006, pp. 171–186. 

[9] M. Hell, T. Johansson, and W. Meier, ‘Grain: a Stream Cipher for Constrained Environments’, 

Int.	J.	Wire.	Mob.	Comput., vol. 2, no. 1, pp. 86–93, May 2007. 

[10] H. Fredricksen, ‘A Survey of Full Length Nonlinear Shift Register Cycle Algorithms’, SIAM	

Rev., vol. 24, no. 2, pp. 195–221, Apr. 1982. 

[11] A. Tsuneda, K. Kudo, D. Yoshioka, and T. Inoue, ‘Maximal-Period Sequences Generated by 

Feedback-Limited Nonlinear Shift Registers’, IEICE	Transactions	on	Fundamentals	of	Electronics	

Communications	and	Computer	Sciences, vol. E90A, pp. 2079–2084, 2007. 



70 

[12] R. A. Rueppel, New	Approaches	to	Stream	Ciphers. Swiss Federal Institute of Technology 

Zurich, 1984. 

[13] H. Beker and F. Piper, Cipher	 systems.	 The	 protection	 of	 communications. London, 

Northwood Books, 1982, 1982. 

[14] E. D. Erdmann, ‘Empirical Tests of Binary Keystreams’, Master’s thesis, University of 

London, 1992. 

[15] M. J. B. Robshaw, ‘Stream Ciphers’, RSA Laboratories, Redwood City, CA, Technical 701, Jul. 

1995. 

[16] M. Bellare and C. Namprempre, ‘Authenticated Encryption: Relations among Notions and 

Analysis of the Generic Composition Paradigm’, in Journal	of	Cryptology, 2000, vol. 21, pp. 531–545. 

[17] J. Katz and M. Yung, ‘Unforgeable Encryption and Chosen Ciphertext Secure Modes of 

Operation’, in Fast	Software	Encryption, 2001, pp. 284–299. 

[18] V. D. Gligor and B. G. Lindsay, ‘Object Migration and Authentication’, IEEE	Transactions	on	

Software	Engineering, vol. SE-5, no. 6, pp. 607–611, Nov. 1979. 

[19] C. Campbell, ‘Design and specification of cryptographic capabilities’, IEEE	Communications	

Society	Magazine, vol. 16, no. 6, pp. 15–19, Nov. 1978. 

[20] R. R. Jueneman, S. M. Matyas, and C. H. Meyer, ‘Message Authentication with Manipulation 

Detection Code’, in 1983	IEEE	Symposium	on	Security	and	Privacy, Oakland, CA, USA, 1983, pp. 33–

33. 

[21] M. Bellare and P. Rogaway, ‘Encode-Then-Encipher Encryption: How to Exploit Nonces or 

Redundancy in Plaintexts for Efficient Cryptography’, in Advances	in	Cryptology	—	ASIACRYPT	2000, 

2000, pp. 317–330. 

[22] M. Bellare, T. Kohno, and C. Namprempre, ‘Authenticated Encryption in SSH: Provably 

Fixing the SSH Binary Packet Protocol’, in Proceedings	of	the	9th	ACM	Conference	on	Computer	and	

Communications	Security, New York, NY, USA, 2002, pp. 1–11. 



71 

[23] H. Krawczyk, ‘The Order of Encryption and Authentication for Protecting Communications 

(or: How Secure Is SSL?)’, in Advances	in	Cryptology	—	CRYPTO	2001, 2001, pp. 310–331. 

[24] C. S. Jutla, ‘Encryption Modes with Almost Free Message Integrity’, in Advances	in	Cryptology	

—	EUROCRYPT	2001, 2001, pp. 529–544. 

[25] P. Rogaway, M. Bellare, and J. Black, ‘OCB: A Block-cipher Mode of Operation for Efficient 

Authenticated Encryption’, ACM	Trans.	Inf.	Syst.	Secur., vol. 6, no. 3, pp. 365–403, Aug. 2003. 

[26] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, ‘UMAC: Fast and Secure Message 

Authentication’, in Advances	in	Cryptology	—	CRYPTO’	99, 1999, pp. 216–233. 

[27] D. Whiting, R. Housley, and N. Ferguson, Counter	with	cbc‐mac	(ccm). RFC Editor, 2003. 

[28] D. A. Mcgrew and J. Viega, The	Galois/counter	mode	of	operation	(GCM). 2004. 

[29] P. Rogaway, ‘Authenticated-encryption with Associated-data’, in Proceedings	of	the	9th	ACM	

Conference	on	Computer	and	Communications	Security, New York, NY, USA, 2002, pp. 98–107. 

[30] D. A. McGrew and J. Viega, ‘The Security and Performance of the Galois/Counter Mode 

(GCM) of Operation’, in Progress	in	Cryptology	‐	INDOCRYPT	2004, 2005, pp. 343–355. 

[31] P. Rogaway, ‘Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes 

OCB and PMAC’, in Advances	in	Cryptology	‐	ASIACRYPT	2004, 2004, pp. 16–31. 

[32] P. Sarkar, ‘A Simple and Generic Construction of Authenticated Encryption with Associated 

Data’, ACM	Trans.	Inf.	Syst.	Secur., vol. 13, no. 4, pp. 33:1–33:16, Dec. 2010. 

[33] P. Sarkar, ‘Modes of operations for encryption and authentication using stream ciphers 

supporting an initialisation vector’, Cryptography	and	Communications, vol. 6, no. 3, pp. 189–231, 

Sep. 2014. 

[34] P. Hawkes and G. Rose, ‘Primitive Specification for SOBER-128’, Cryptology ePrint Archive, 

2003/081, 2003. 



72 

[35] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno, ‘Helix: Fast Encryption 

and Authentication in a Single Cryptographic Primitive’, in Fast	Software	Encryption, 2003, pp. 330–

346. 

[36] D. Whiting, B. Schneier, S. Lucks, and F. Muller, ‘Phelix-fast encryption and authentication in 

a single cryptographic primitive’, eSTREAM ECRYPT, Stream Cipher Project 2005/020, 2005. 

[37] 3GPP Task Force, ‘Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3. Document 2: ZUC Specification’. ETSI/SAGE, 2011. 

[38] M. Ågren, M. Hell, T. Johansson, and W. Meier, ‘Grain-128a: a new version of Grain-128 with 

optional authentication’, International	Journal	of	Wireless	and	Mobile	Computing, vol. 5, no. 1, pp. 48–

59, 2011. 

[39] G. Sekar, ‘The Stream Cipher Core of the 3GPP Encryption Standard 128-EEA3: Timing 

Attacks and Countermeasures’, in Information	Security	and	Cryptology, 2012, pp. 269–288. 

[40] D. Watanabe and S. Furuya, ‘A MAC Forgery Attack on SOBER-128’, in Fast	 Software	

Encryption, 2004, pp. 472–482. 

[41] F. Muller, ‘Differential Attacks against the Helix Stream Cipher’, in Fast	Software	Encryption, 

2004, pp. 94–108. 

[42] H. Wu and B. Preneel, ‘Differential-Linear Attacks Against the Stream Cipher Phelix’, in Fast	

Software	Encryption, 2007, pp. 87–100. 

[43] D. J. Bernstein, ‘The Poly1305-AES Message-Authentication Code’, in Fast	 Software	

Encryption, 2005, pp. 32–49. 

[44] H. Wu, ‘ACORN: a lightweight authenticated cipher (v3)’, Candidate	 for	 the	 CAESAR	

Competition.	See	also	https://competitions.cr.yp.to/round3/acornv3.pdf, 2016. 

[45] H. Wu and T. Huang, ‘The authenticated cipher MORUS (v1)’, CAESAR	submission, 2014. 

[46] R. A. Rueppel, Analysis	and	Design	of	Stream	Ciphers. Berlin, Heidelberg: Springer-Verlag, 

1986. 



73 

[47] R. Games and A. Chan, ‘A fast algorithm for determining the complexity of a binary sequence 

with period2^n(Corresp.)’, IEEE	Transactions	on	Information	Theory, vol. 29, no. 1, pp. 144–146, Jan. 

1983. 

[48] K. G. Paterson, ‘Perfect maps’, IEEE	Transactions	on	Information	Theory, vol. 40, no. 3, pp. 

743–753, May 1994. 

[49] T. Etzion, ‘Constructions for perfect maps and pseudorandom arrays’, IEEE	Transactions	on	

Information	Theory, vol. 34, no. 5, pp. 1308–1316, Sep. 1988. 

[50] R. A. Rueppel, ‘Linear Complexity and Random Sequences’, in Advances	in	Cryptology	—	

EUROCRYPT’	85, 1986, pp. 167–188. 

[51] M. Stamp and C. F. Martin, ‘An algorithm for the k-error linear complexity of binary 

sequences with period 2/sup n/’, IEEE	Transactions	on	Information	Theory, vol. 39, no. 4, pp. 1398–

1401, Jul. 1993. 

[52] H. Niederreiter, ‘Some Computable Complexity Measures for Binary Sequences’, in 

Sequences	and	their	Applications, 1999, pp. 67–78. 

[53] K. Kurosawa, F. Sato, T. Sakata, and W. Kishimoto, ‘A relationship between linear complexity 

and k-error linear complexity’, IEEE	Transactions	on	Information	Theory, vol. 46, no. 2, pp. 694–698, 

Mar. 2000. 

[54] T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis, and K. G. Paterson, ‘Properties of the 

Error Linear Complexity Spectrum’, IEEE	Transactions	on	Information	Theory, vol. 55, no. 10, pp. 

4681–4686, Oct. 2009. 

[55] A. G. B. Lauder and K. G. Paterson, ‘Computing the error linear complexity spectrum of a 

binary sequence of period 2/sup n/’, IEEE	Transactions	on	Information	Theory, vol. 49, no. 1, pp. 

273–280, Jan. 2003. 

[56] J. L. Massey, D. J. Costello, and J. Justesen, ‘Polynomial weights and code constructions’, IEEE	

Transactions	on	Information	Theory, vol. 19, no. 1, pp. 101–110, Jan. 1973. 



74 

[57] A. Salagean, ‘On the computation of the linear complexity and the k-error linear complexity 

of binary sequences with period a power of two’, IEEE	Transactions	on	Information	Theory, vol. 51, 

no. 3, pp. 1145–1150, Mar. 2005. 

[58] M. Matsui, ‘Linear Cryptanalysis Method for DES Cipher’, in Advances	 in	Cryptology	—	

EUROCRYPT	’93, 1994, pp. 386–397. 

[59] C. Ding, G. Xiao, and W. Shan, ‘The Stability Theory of Stream Ciphers’, in Lecture	Notes	in	

Computer	Science, 1991, vol. 561. 

[60] T. W. Cusick and P. Stanica, ‘Chapter 7 - Stream Cipher Design’, in Cryptographic	Boolean	

Functions	and	Applications	(Second	Edition), T. W. Cusick and P. Stanica, Eds. Academic Press, 2017, 

pp. 143–185. 

[61] A. Canteaut, ‘Lecture notes on Cryptographic Boolean Functions’, Inria,	Paris,	France, 2016. 

[62] F. J. MacWilliams and N. J. A. Sloane, The	theory	of	error	correcting	codes. North-Holland, 

Amsterdam: Elsevier, 1977. 

[63] Siegenthaler, ‘Decrypting a Class of Stream Ciphers Using Ciphertext Only’, IEEE	

Transactions	on	Computers, vol. C–34, no. 1, pp. 81–85, Jan. 1985. 

[64] J. Pieprzyk, ‘Non-linearity of Exponent Permutations’, in Advances	 in	 Cryptology,	

Proceedings	of	EuroCrypt’89,	LNCS, 1989, vol. 434, pp. 80–92. 

[65] A. F. Webster and S. E. Tavares, ‘On the Design of S-Boxes’, in Advances	in	Cryptology	—	

CRYPTO	’85	Proceedings, 1986, pp. 523–534. 

[66] Babbage, ‘On the relevance of the strict avalanche criterion’, Electronics	Letters, vol. 26, no. 

7, pp. 461–462, Mar. 1990. 

[67] T. W. Cusick and P. Stanica, ‘Chapter 3 - Avalanche and Propagation Criteria’, in 

Cryptographic	Boolean	Functions	and	Applications	(Second	Edition), T. W. Cusick and P. Stanica, Eds. 

Academic Press, 2017, pp. 31–54. 



75 

[68] R. A. Rueppel, ‘Correlation Immunity and the Summation Generator’, in Advances	 in	

Cryptology	—	CRYPTO	’85	Proceedings, 1986, pp. 260–272. 

[69] T. Siegenthaler, ‘Correlation-immunity of nonlinear combining functions for cryptographic 

applications (Corresp.)’, IEEE	Transactions	on	Information	Theory, vol. 30, no. 5, pp. 776–780, Sep. 

1984. 

[70] A. Canteaut, ‘On the correlations between a combining function and functions of fewer 

variables’, in Proceedings	of	the	IEEE	Information	Theory	Workshop, 2002, pp. 78–81. 

[71] A. Canteaut and M. Videau, ‘Symmetric Boolean functions’, IEEE	 Transactions	 on	

Information	Theory, vol. 51, no. 8, pp. 2791–2811, Aug. 2005. 

[72] H. Wang, J. Peng, Y. Li, and H. Kan, ‘On 2k-Variable Symmetric Boolean Functions With 

Maximum Algebraic Immunity k’, IEEE	Transactions	on	Information	Theory, vol. 58, no. 8, pp. 5612–

5624, Aug. 2012. 

[73] O. S. Rothaus, ‘On “bent” functions’, Journal	of	Combinatorial	Theory,	Series	A, vol. 20, no. 3, 

pp. 300–305, May 1976. 

[74] N. Tokareva, Bent	functions:	results	and	applications	to	cryptography. Academic Press, 2015. 

[75] A. M. Youssef and G. Gong, ‘Hyper-bent Functions’, in Advances	in	Cryptology	—	EUROCRYPT	

2001, 2001, pp. 406–419. 

[76] M. I. Salam, K. K.-H. Wong, H. Bartlett, L. Simpson, E. Dawson, and J. Pieprzyk, ‘Finding State 

Collisions in the Authenticated Encryption Stream Cipher ACORN’, in Proceedings	 of	 the	

Australasian	Computer	Science	Week	Multiconference, New York, NY, USA, 2016, pp. 36:1–36:10. 

[77] I. Dinur and A. Shamir, ‘Cube Attacks on Tweakable Black Box Polynomials’, in Advances	in	

Cryptology	‐	EUROCRYPT	2009, 2009, pp. 278–299. 

[78] Y. Todo, T. Isobe, Y. Hao, and W. Meier, ‘Cube Attacks on Non-Blackbox Polynomials Based 

on Division Property’, IEEE	Transactions	on	Computers, vol. 67, no. 12, pp. 1720–1736, Dec. 2018. 



76 

[79] M. I. Salam, H. Bartlett, E. Dawson, J. Pieprzyk, L. Simpson, and K. K.-H. Wong, ‘Investigating 

Cube Attacks on the Authenticated Encryption Stream Cipher ACORN’, in Applications	 and	

Techniques	in	Information	Security, 2016, pp. 15–26. 

[80] V. A. Ghafari and H. Hu, ‘A new chosen IV statistical distinguishing framework to attack 

symmetric ciphers, and its application to ACORN-v3 and Grain-128a’, Journal	 of	 Ambient	

Intelligence	and	Humanized	Computing, Jun. 2018. 

[81] E. Filiol, ‘A New Statistical Testing for Symmetric Ciphers and Hash Functions’, in 

Information	and	Communications	Security, 2002, pp. 342–353. 

[82] X. Zhang, X. Feng, and D. Lin, ‘Fault Attack on ACORN v3’, The	Computer	Journal, vol. 61, no. 

8, pp. 1166–1179, May 2018. 

[83] E. Biham and A. Shamir, ‘Differential fault analysis of secret key cryptosystems’, in Advances	

in	Cryptology	—	CRYPTO	’97, 1997, pp. 513–525. 

[84] J. J. Hoch and A. Shamir, ‘Fault Analysis of Stream Ciphers’, in Cryptographic	Hardware	and	

Embedded	Systems	‐	CHES	2004, 2004, pp. 240–253. 

[85] A. Siddhanti, S. Sarkar, S. Maitra, and A. Chattopadhyay, ‘Differential Fault Attack on Grain 

v1, ACORN v3 and Lizard’, in Security,	Privacy,	and	Applied	Cryptography	Engineering, 2017, pp. 

247–263. 

[86] S. Maitra, A. Siddhanti, and S. Sarkar, ‘A Differential Fault Attack on Plantlet’, IEEE	

Transactions	on	Computers, vol. 66, no. 10, pp. 1804–1808, Oct. 2017. 

[87] M. Hell, T. Johansson, A. Maximov, and W. Meier, ‘A Stream Cipher Proposal: Grain-128’, in 

2006	IEEE	International	Symposium	on	Information	Theory, 2006, pp. 1614–1618. 

[88] Y. Lee, K. Jeong, J. Sung, and S. Hong, ‘Related-Key Chosen IV Attacks on Grain-v1 and Grain-

128’, in Information	Security	and	Privacy, 2008, pp. 321–335. 

[89] O. Küçük, ‘Slide Resynchronization Attack on the Initialization of Grain 1.0’, eSTREAM-

ECRYPT Stream Cipher Project, 2006/044, 2006. 



77 

[90] S. Banik, S. Maitra, S. Sarkar, and T. Meltem Sönmez, ‘A Chosen IV Related Key Attack on 

Grain-128a’, in Information	Security	and	Privacy, 2013, pp. 13–26. 

[91] S. Knellwolf, W. Meier, and M. Naya-Plasencia, ‘Conditional Differential Cryptanalysis of 

NLFSR-Based Cryptosystems’, in Advances	in	Cryptology	‐	ASIACRYPT	2010, 2010, pp. 130–145. 

[92] I. Dinur and A. Shamir, ‘Breaking Grain-128 with Dynamic Cube Attacks’, in Fast	Software	

Encryption, 2011, pp. 167–187. 

[93] I. Dinur, T. Güneysu, C. Paar, A. Shamir, and R. Zimmermann, ‘An Experimentally Verified 

Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware’, in Advances	in	Cryptology	–	

ASIACRYPT	2011, 2011, pp. 327–343. 

[94] S. Banik, S. Maitra, and S. Sarkar, ‘A Differential Fault Attack on Grain-128a Using MACs’, in 

Security,	Privacy,	and	Applied	Cryptography	Engineering, 2012, pp. 111–125. 

[95] M. Ashouri, Design	of	a	New	Stream	Cipher:	PALS. 2018. 

  



A-1 

 

Appendix	A	
Lauder	and	Paterson	Algorithm	

The LPA has a significant part in the approximation technique that is analysed and used in this 

thesis. Thus, the source code of the algorithm that was used is given.  

Α.1	Source	Code	

/* program to compute CELCS of costed binary sequences */ 
/* modified to output tree info */ 
/* restricted to integer costs (but easily modified) */ 
#include<stdio.h> 
#include<math.h> 
#include<stdlib.h> 
#define N 4096/* N is the period of the input sequence */ 
  /* and the maximum size of any arrays we need */ 
 
void celcs(int *s,int *cost, int l, int tsf, int lim, int c); 
int min(int a, int b); 
 
  FILE *fp; 
  FILE *fp_output; 
 
main() 
{ 
  int i,k; 
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  char c; 
  int s[N]; 
  int cost[N]; 
   
 
   
  fp=fopen("input.txt","r"); 
  fp_output=fopen("output.txt","w"); 
   
  /* input the initial sequence of N bits, setting all costs to 1 */ 
  for (i=0; i< N; i++) 
    { 
      c=fgetc(fp);  
      if (c=='1') 
 s[i]=1; 
      else 
 s[i]=0; 
      cost[i]=1; 
    } 
 
  /* now run the celcs algorithm  */ 
  celcs(s,cost,N,0,N,0); 
   
  fclose(fp); 
  fclose(fp_output); 
 
} 
 
void celcs(int *s,int *cost, int l, int tsf, int lim, int c) 
{ 
  int i; 
  int L[N]; // N/2 
  int R[N]; 
  int B[N];  // N/2 
  int Lcost[N];  // N/2 
  int Bcost[N];  //N /2 
  int T=0; 
 
  if (l >1) 
    { 
      /* calculate B(S) and L(S) */ 
 
      for (i=0;i < (l/2); i++) 
 { 
   L[i]=s[i]; 
   R[i]=s[i+(l/2)]; 
   B[i]=L[i]^R[i]; 
 } 
 
      /* calculate costs for B and L, and calculate T */ 
 
      for (i=0; i < (l/2); i++) 
 { 
   Bcost[i]=min(cost[i],cost[i+(l/2)]); 
   T+=B[i]*Bcost[i]; 
 } 
       
      for (i=0; i < (l/2); i++) 
 { 
   if (B[i]==1) 
     { 
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       if (cost[i] <= cost[i+(l/2)]) 
  { 
    L[i]=R[i]; 
    Lcost[i]=cost[i+(l/2)]-cost[i]; 
  } 
       else 
  { 
    Lcost[i]=cost[i]-cost[i+(l/2)]; 
  } 
     } 
   else 
     Lcost[i]=cost[i]+cost[i+(l/2)]; 
 } 
       
 /* output the tree information - omit this if only need spectrum 
*/ 
      fprintf(fp_output,"B(S):"); 
      for (i=0; i < l/2; i++) 
   fprintf(fp_output,"%1d_%1d ",B[i],Bcost[i]); 
      fprintf(fp_output,"\n"); 
       
      fprintf(fp_output,"L(S):"); 
      for (i=0; i < l/2; i++) 
  fprintf(fp_output,"%1d_%1d ",L[i],Lcost[i]); 
      fprintf(fp_output,"\n"); 
 
      fprintf(fp_output,"T: %d\n\n",T); 
       
       
 /* the main decision point in the algorithm */       
      if (T > 0)  
 { 
   fprintf(fp_output,"CELCS(B(S),%d,%d,%d)\n",tsf,min(lim,tsf+T-
1),c+(l/2)); 
   celcs(B,Bcost,l/2,tsf,tsf+T-1,c+(l/2)); 
 } 
      if (tsf + T <= lim) 
 { 
   fprintf(fp_output,"CELCS(L(S),%d,%d,%d)\n",tsf+T,lim,c); 
   celcs(L,Lcost,l/2,tsf+T,lim,c); 
 } 
    } 
  else 
    { 
 /* the case l=1 */ 
      fprintf(fp_output,"s[0]=%d,cost[0]=%d\n",s[0],cost[0]); 
      if (s[0]==0) 
 fprintf(fp_output,"CP: (%d,%d)\n",tsf,c); 
      if ((s[0]==1) && (cost[0] > 0)) 
 fprintf(fp_output,"CP: (%d,%d)\n",tsf,c+1); 
      if ((s[0]==1) && (tsf+cost[0] <= lim)) 
 fprintf(fp_output,"CP: (%d,%d)\n",tsf+cost[0],c); 
      fprintf(fp_output,"\n"); 
    } 
  return; 
} 
 
 
int min(int a, int b) 
{ 
if (a < b) 
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  return(a); 
else 
  return(b); 
} 
 


