

Ανοικτό	Πανεπιστήμιο	Κύπρου	
Σχολή	Θετικών	και	Εφαρμοσμένων	Επιστημών	

Μεταπτυχιακή	Διατριβή	

Στην	Ασφάλεια	Υπολογιστών	και	Δικτύων	

	

	

	
Μελέτη	της	Ασφάλειας	των	Αυθεντικοποιημένων	

Κρυπτογραφικών	Αλγόριθμων	

	
Χρυσόστομος	Κωνσταντίνου	

	
Επιβλέπων	Καθηγητής	
Κωνσταντίνος	Λιμνιώτης	

	
Μάιος	2019

Ανοικτό	Πανεπιστήμιο	Κύπρου	
Σχολή	Θετικών	και	Εφαρμοσμένων	Επιστημών	

	
Μελέτη	της	Ασφάλειας	των	Αυθεντικοποιημένων	

Κρυπτογραφικών	Αλγόριθμων	

	
Χρυσόστομος	Κωνσταντίνου	

	
Επιβλέπων	Καθηγητής	
Κωνσταντίνος	Λιμνιώτης	

Η παρούσα μεταπτυχιακή διατριβή υποβλήθηκε
προς μερική εκπλήρωση των απαιτήσεων για απόκτηση

μεταπτυχιακού τίτλου σπουδών
στην Ασφάλεια Υπολογιστών και Δικτύων

από τη Σχολή Θετικών και Εφαρμοσμένων Επιστημών
του Ανοικτού Πανεπιστημίου Κύπρου

	
Μάιος	2019	 	

ii

Περίληψη	

Οι αυθεντικοποιημένοι κρυπτογραφικοί αλγόριθμοι έχουν προσελκύσει την προσοχή της

κρυπτογραφικής κοινότητας τα τελευταία χρόνια. Η ανάπτυξη τέτοιων αλγορίθμων και η μελέτη

τους έχουν αυξηθεί κατακόρυφα λόγω της υψηλής ασφάλειας που προσφέρουν. Προκειμένου

λοιπόν η διατριβή να συμβαδίζει με την εποχή και να συνεισφέρει στην κρυπτογραφική

κοινότητα, επιλέχθηκε να μελετηθεί η ασφάλεια των αυθεντικοποιημένων κρυπτογραφικών

αλγόριθμων ροής.

Στη διατριβή αναλύονται αρχικά οι αυθεντικοποιημένοι κρυπτογραφικοί αλγόριθμοι ροής.

Έπειτα περιγράφεται μια πρόσφατα ανεπτυγμένη τεχνική για την εύρεση προσεγγίσεων λογικών

συναρτήσεων, η οποία μπορεί να ενισχύσει γνωστές κρυπταναλυτικές επιθέσεις. Η εν λόγω

τεχνική αναλύεται διεξοδικά ώστε να μπορεί να έχει το καλύτερο δυνατό αποτέλεσμα. Στη

συνέχεια περιγράφονται τρεις αυθεντικοποιημένοι κρυπτογραφικοί αλγόριθμοι ροής, οι

συναρτήσεις των οποίων υποβάλλονται στην τεχνική που προαναφέρθηκε.

Η συνεισφορά της διατριβής μπορεί εν συντομία να συνοψιστεί σε τρία σημεία. Πρώτον,

καταγράφεται η ανάλυση της ασφάλειας τριών αυθεντικοποιημένων κρυπτογραφικών

αλγορίθμων ροής, οι δύο εκ των οποίων έχουν απασχολήσει αρκετά την ερευνητική κοινότητα τα

τελευταία χρόνια, ενώ ο τρίτος είναι πολύ πρόσφατος και δεν έχει ακόμη μελετηθεί εκτενώς.

Δεύτερον, στη διατριβή αυτή γίνεται ανάλυση μιας πρόσφατης τεχνικής εύρεσης προσεγγίσεων,

με απόδειξη νέων αποτελεσμάτων που επιτρέπουν πιο αποτελεσματική εφαρμογή αυτής. Η

τεχνική εύρεσης προσεγγίσεων μπορεί να αποτελέσει εργαλείο για κατασκευή ισχυρών

κρυπτογραφικών συναρτήσεων που να είναι ανθεκτικές σε προσεγγίσεις αλλά και να

χρησιμοποιηθούν σε συνδυασμό με άλλες τεχνικές κρυπτανάλυσης για τη δημιουργία επιθέσεων

εναντίων κρυπτογραφικών αλγορίθμων. Τέλος, η τεχνική αυτή εφαρμόζεται στους τρεις

αλγορίθμους οι οποίοι αναφέρονται προηγουμένως με τα αποτελέσματα να δίνουν αρκετές

πληροφορίες για τη δραστικότητα της.

iii

Summary	

Authenticated stream ciphers have attracted great attention of the cryptographic community last

years. The development of such ciphers and their study have increased dramatically due the high

level of security they offer. Therefore, this thesis studies the security of authenticated ciphers, as a

contemporary research topic.

Initially, authenticated stream ciphers are analysed in the thesis. After this, a recently developed

method for approximating cryptographic functions is described, which can be subsequently used

to enhance known cryptanalytic attacks. This technique is further analysed so as to be improved in

terms of efficiency. Subsequently, three authenticated stream ciphers are being studied, as case

studies for exploring the strengthness of this technique.

The contribution of this thesis can be summarized in three points. Firstly, a security analysis of three

authenticated stream ciphers is performed, whereas two of them have been greatly studied by the

research community during the last years and the third is a recent cipher, not having yet studied

and evaluated to a great extent. Secondly, an approximation technique is analysed, with the aim to

reach conclusions that allow an increase of its effectiveness. The approximation technique can be

used as a tool for the construction of cryptographic functions that are resistant to approximations

and also be combined with other cryptanalytic techniques for the creation of attacks against

ciphers. Finally, the technique is applied to the three ciphers that are mentioned before and the

results provide us with information about its potency.

iv

Table	of	Contents	

1	 Introduction			 . 1

2	 Authenticated	Stream	Ciphers				. 4

2.1 Stream Ciphers . 4

2.1.1 Foundations . 4

2.1.2 Random Number Generators . 5

2.1.3 Feedback Shift Registers . 6

2.1.4 Synchronous and Asynchronous . 7

2.1.5 Design . 7

2.1.6 Initialization Vector . 8

2.2 Authentication Encryption . 9

2.2.1 Early work . 9

2.2.2 Schemes . 10

2.2.3 MAC . 12

2.2.4 Block Ciphers . 13

2.2.5 AEAD and DAE(AD) . 14

2.3 Stream Ciphers providing AE . 14

2.4 Caesar Competition . 16

3	 Approximation	technique			 18

3.1 Error Linear Complexity Spectrum . 18

3.2 Boolean Functions . 21

3.2.1 Nonlinearity . 21

3.2.2 Properties . 22

3.2.3 Special Types . 26

3.3 Relationship between Binary Sequences and Boolean Functions . 27

3.3.1 Computation of Approximation Functions . 27

3.3.2 Analysis of the Computation Method . 30

4	 Overview	of	the	Authenticated	Stream	Algorithms		 . 36

4.1 ACORN . 36

4.1.1 Security Analysis . 38

v

4.2 Grain Family . 40

4.2.1 Grain-v1 . 40

4.2.2 Grain-128 . 41

4.2.3 ACORN-128a . 42

4.2.4 Security Analysis . 44

4.3 PALS . 46

4.3.1 Security Analysis . 48

5	 The	Approximation	Technique	applied	to	the	Algorithms				 . 49

5.1 ACORN . 50

5.2 Grain-v1 . 52

5.3 Grain-128 . 58

5.4 Grain-128a . 62

5.5 PALS . 63

6	 Conclusions . 65

	 Bibliography . 69

Α	 Lauder	and	Paterson	Algorithm				. Α-1

Α.1 Source Code . Α-1

Chapter	1	
Introduction	

Authenticated ciphers have been around only for the last decades but there is already a massive

amount of research that concerns them due to their necessity. So, this thesis will not examine these

ciphers’ s security from a surface level because it has been done. Instead, it will focus on a specific

kind of authenticated ciphers and it will present how and why these ciphers react to a newly

developed approximation technique[1]. Specifically, the authenticated stream ciphers will be

examined and the technique that will be used is able to find approximation functions that depend

on less variables. Taking advantage of the opportunity, I would like to thank my supervisor because

this thesis wouldn’t be possible without his help. In the next paragraphs, there is a short description

of how authenticated stream ciphers came to be, a paragraph that summarizes the work done in

this thesis regarding the approximation technique and in the last paragraph is stated what is

included in the following chapters.

The world of cryptography has vastly expanded the last decades, although it has been around for

centuries. New ciphers are being designed nonstop because of the swift increase of the resources

in computer systems and the new cryptanalysis methods that are being exposed (to the public). So,

algorithms are needed that can provide resistance to at least conventional known attacks like

algebraic, distinguishing or cube attacks. From this perspective higher security is the purpose.

2

There are also ciphers that aim for speed. Another reason for the necessity of new ciphers are the

low resources devices. Most electronic devices these days are connected to the internet and there

must be a secure channel through encryption. So, ciphers that utilize fewer resources are designed.

This large amount of ciphers has been divided in some categories.

In general, the modern ciphers are being categorised to symmetric and asymmetric with the

symmetric being divided to block and stream ciphers. There are of course more subcategories

depending on the features and operation of each cipher. One of those, are the authenticated stream

ciphers and their security is the main subject of this thesis.

Stream ciphers are very common and important in the world of cryptography. The reasons behind

this are their speed, simplicity and ease of implementation on hardware. That’s why stream ciphers

are preferred in specific sectors, like GSM. In stream ciphers, typically plaintexts bits are encrypted

through an operation (usually XOR) one at a time with the corresponding keystream generator’s

bits, resulting in ciphertext bits – in the contrary to block ciphers that work on fixed blocks of bits.

The keystream of an ideal stream cipher would be random, but because the sequences of each

cipher are produced from the same operations, the keystream can’t be absolutely random and is

called pseudorandom. These operations are typically shift registers that use random unique initial

values which are called seeds. The same values are also used in the decryption process. This in a

way is the philosophy behind stream ciphers.

From that point, each stream cipher has different designs and specifications. Of course, each cipher

has its own flaws too. Some known attacks on stream ciphers are the reused key, the bit-flipping

and the chosen-𝐼𝑉 attacks. In response to the attacks, there are counter measures and as concerns

the bit-flipping attack, it can be prevented with a message authentication code (MAC). Surely, that’s

not the only reason a MAC is used, because nowadays message authentication is an integral part of

all modern cryptosystems and not just to stream ciphers.

Message authentication is a property that increases security because it ensures that the data of the

message has not been modified during transit (integrity) and that the receiving entity can verify the

sending one. This is typically achieved by using authenticated encryption (AE), message

authentication codes (MACs), and digital signatures, with the latest being used for asymmetric

ciphers. Stream ciphers use MACs as mentioned before. At first the encryption and the generation

of the MAC were entirely different processes and this was the source for some problems which are

described in Chapter	2. So, the need for the unification of these processes popped up. As a result, we

3

have the authenticated encryption which simultaneously assures the confidentiality and the

authentication of the data. This kind of structure to a cipher, led to the creation of authenticated

stream ciphers.

In this thesis, a new method for analysing weaknesses in cryptographic Boolean functions is being

studied, with emphasis on analysing relevant cryptographic properties in authenticated ciphers

lying in the class of stream ciphers. More precisely, the thesis focus on a very recent technique to

find out, in an efficient way, how well a cryptographic function can be approximated by another

function with fewer number of variables. Such approximations could possibly be the starting point

for subsequently mounting successful attacks and, thus, they are of high importance. The

aforementioned technique is based on appropriately using a known algorithm for computing the

error linear complexity spectrum of sequences, namely the Lauder-Paterson algorithm, via

uniquely associating each truth table of a Boolean function on 𝑛 variables with a well-determined

sequence of period 2 . Since this technique strongly depends on a proper ordering of the input

variables in the function, the thesis also further elaborated towards proving results that allow for

efficiently choosing the optimal such ordering – i.e. the ordering that is the most probable to reveal

whether the corresponding function is weak or not, under this cryptographic criterion.

The thesis is organised as follows. In Chapter	2 there is a detailed analysis of the authenticated

stream ciphers. Later on, in Chapter	3 the Error Linear Complexity Spectrum is explained, followed

by an analysis of Boolean functions. At the end of the chapter, a link is established between the two

that forms the base of the approximation technique [1] alongside an examination of how the

technique works and how the technique can be used in the most favourable way. In Chapter	4, an

overview of the ciphers that will be used to test the approximation technique and in Chapter	5 the

technique applied to the ciphers and the results are presented. For the end, Chapter	6 includes the

conclusions and suggests new studies that can be conducted based on this thesis.

4

Chapter	2	
Authenticated	Stream	Ciphers	

Before analysing authenticated stream ciphers, it is required to make a reference separately for

stream ciphers and authenticated encryption. For both of them a detailed analysis follows that

present how the stream ciphers that offers AE emerged and developed.

2.1	Stream	Ciphers	

Modern stream ciphers are designed to be computationally – and not unconditionally – secure. That

means that if an attacker had infinite resources to attack the cipher, it would break. The

unconditional security means that even if the attacker had infinite resources, the cipher would be

unbreakable. The inspiration for creating stream ciphers was given by an unconditionally secure

cipher, the one-time pad (OTP).

2.1.1	Foundations	

5

The OTP, also known as Vernam cipher [2], was basically a stream cipher, in which the random

secret key is the same size, or longer than the message and is generated by a true random number

generator (TRNG). The key is securely distributed to the legitimate parties. Note that it is necessary

for the key stream to be truly random or else the cipher is not perfectly secure. Thus, we have a

perfect cipher but we can see that is not used in modern technology. That’s because the OTP is

impractical. The reasons are the need of TRNG, which most PCs and smartphones don’t have, the

secure transport of the keystream from the one party to the other and the most important is the

need of one key bit for each plaintext bit. These problems led to the creation of the modern practical

stream ciphers which replaced the truly random keystream with a pseudorandom keystream that

uses a key as a seed.

Stream ciphers are symmetric-key algorithms that are used to provide confidentiality, which

ensures that the message is only disclosed to authorized entities. In order to do this, they produce

a sequence of elements over the finite field 𝐺𝐹 2 0,1 that depends on the secret key. For

the encryption process, a group operation combines each plaintext symbol with the corresponding

keystream symbol and the ciphertext is computed. This ciphertext is transmitted to the receiver via

insecure channels and with the use of the secret key the receiver decrypts it. Stream ciphers are

superior in speed compared to block ciphers due to their lower hardware complexity, but if used

incorrectly, they are susceptible to serious security problems.

2.1.2	Random	Number	Generators	

The number generators play a major role in the modern stream ciphers. The security of the ciphers

highly depends on the randomness of the numbers that are generated. The number generators can

be truly random or pseudorandom. The main feature of the TRNGs is the uniqueness in each

sequence it produces. This happens because the generator depends on physical processes, like

semiconductor noise. This feature makes TRNGs ideal for producing session keys in cryptography,

but impractical in generating a keystream, because two parties will not be able to generate the same

keystream. On the other hand, pseudorandom number generators (PRNGs) initially take a seed

value and through computations, having the seed as a starting point, sequences of numbers are

generated. Cryptographically good PRNGs are those having good statistical properties, which

means that their outcome is close to the one of a true random number generator. However, these

number generators can’t be used because even with a small part of the plaintext the ciphertext can

be decrypted very easy with a simple attack [3].

6

The ones that can be used in stream ciphers are a special type of PRNGs, the cryptographically

secure pseudorandom number generators (CSPRNGs), which have the feature of being

unpredictable. That means that given 𝑛 number of bits of the sequence, it isn’t possible to compute

the following or the preceding bits with better chance of success than 50%. These deterministic

number generators are suitable for the generation of keystreams in stream ciphers.

2.1.3	Feedback	Shift	Registers	

The right theoretical framework was found, but the practical one was missing. There was the

problem of how the stream ciphers will generate such sequences with few CPU instructions for

software implementation and easily adapt on hardware operations for hardware implementation.

There are many proposals in the literature, but the most prominent is the shift registers with

feedback. They are being used in stream cipher designs because they offer large periods, efficiency

and good statistical properties.

The pseudorandom sequences that will be generated in stream ciphers must have certain

properties. Linear Feedback Shift Registers (LFSRs) are widely used and studied [4] in

cryptography because of their useful properties in generating pseudorandom sequences. Since

their mathematical properties are well-understood to the research community, it is easy to find

LFSRs that produce max period 2 , given 𝑛 . Although LFSRs produce sequences with good

statistical properties, they are cryptographically weak because they are completely linear. If 2𝑐 𝑠

(where 𝑐 𝑠 is the linear complexity) of the output are leaked, the sequence can be computed using

the Berlekamp-Massey algorithm [5]. Therefore, the stream ciphers need to have high nonlinearity

to avoid this weakness.

Nonlinearity is the criterion that determines the minimum distance of a function 𝑓 from any

affine/linear function. There were many design attempts to add nonlinearity to ciphers. Some

attempts were based only on LFSRs, like using a nonlinear function to combine outputs of LFSRs or

with a nonlinear filter of the LFSR state [6]. However, these types of approaches don’t always offer

the desired security level to the cipher [7]. There are limitations to the LFSRs, in contrast with the

Nonlinear Feedback Shift Registers (NFSRs), which are used in most cases of recently designed

stream ciphers [8], [9]. Consequently, NFSRs can offer high nonlinearity, but there are not well-

understood like LFSRs. For example, there is not an efficient way to find such functions with a

maximum period 2 . Golomb [4] presented a method of creating maximum period NFSRs but their

corresponding feedback functions have low nonlinearity and they can be approximated with affine

7

functions. Someone can find more on the properties of the NFSRs in these studies [10], [11]. The

optimum solution to the construction of a stream cipher for security, is considered to be the use of

both LFSRs and NFSRs.

2.1.4	Synchronous	and	Asynchronous	

In the design of a stream cipher there are two essential procedures. The one is the update of the

state of the cipher and the other is the interaction of the plaintext with the state that creates the

ciphertext. The latter is mostly a bit-wise exclusive-or of the function of the state (keystream) and

the plaintext. The former is a little more complicated and it divides the stream ciphers into two

types, synchronous and asynchronous.

If the state is updated independently, without the use of the plaintext or the ciphertext, then the

stream cipher is called synchronous. Since the state isn’t affected, the corruption of one bit in the

ciphertext will not affect the next ciphertext bits. As a result, the cipher has no error‐propagation.

This seems to be desirable, but it has its drawbacks, such as the possibility of an attacker that will

make controlled changes to some bits of the ciphertext, knowing well the corresponding plaintext.

From a practical perspective, it is important for encryption and decryption units to be in step

because the encrypt and decrypt processes must be synchronized. To accomplish this, marker	

positions are usually used in the transmission.

On the opposite, the asynchronous stream ciphers compute the next state using previously

generated ciphertext bits. This way, if the synchronization between the encryption and the

decryption is lost, the decryption process is resumed correctly. This type of stream cipher has

limited error propagation. If a bit is incorrect, then the following bits that are affected by that bit

may be incorrect. This may seem as an advantage considering the attack that was described in the

previous paragraph, but Rueppel [12] managed to deliver two disadvantages when using self-

synchronizing stream ciphers. The first is that an attacker can identify some of the variables that

are being used by the generator and the second is the inability to fully analyse those generators

because the keystream depends on the plaintext.

2.1.5	Design	

8

Until this point, it was remarked that stream ciphers need high nonlinearity, but that’s not the only

consideration that the designers keep in mind. A very important factor is the period, which must be

of great length. If the period is short, then some identical parts of the plaintext may be encrypted in

the same way. It is not stated in the literature the exact length that is required for a period, but it

would be optimum if the same part of the keystream is not reused during the encryption. It is also

necessary for the sequences of stream ciphers to have good statistical properties. This can happen

by following Golomb’ s randomness postulates [4]. Of course, these alone are not enough to offer

good pseudorandom sequences and there are various statistical tests [12]–[14] that can be applied

to sequences to assess the randomness. Another important consideration is the complexity of the

sequence, which needs to be high. The complexity indicates how hard the sequence can be

reproduced. The most popular technique to measure that complexity is the linear complexity [15].

Thus, the design and the construction of stream ciphers must be based on these considerations or

else the cipher will be cryptographically weak.

2.1.6	Initialization	Vector	

Almost all stream ciphers nowadays have two and not one inputs: a secret key 𝑘 and the

initialization vector 𝐼𝑉. The secret key is used for the encryption and decryption, like in all other

symmetric cryptosystems. The 𝐼𝑉, which takes a new value for each encryption process, is used as

a randomizer. Arbitrary numbers that are used once, like the values of 𝐼𝑉, are called nonces in

cryptography. The primary purpose of 𝐼𝑉 is to ensure that an attacker can’t reuse old

communications in replay attacks. In brief, replay attacks can be done when an attacker has the

plaintext of an encryption and he can compute the corresponding keystream. If another encryption

uses the same keystream, then the attacker can easily decipher the ciphertext. It is also important

to note about the 𝐼𝑉, that it doesn’t have to be secret like the key.

9

Figure	2.1: Stream cipher

2.2	Authenticated	Encryption	

Most people think that the most important goal in cryptography is confidentiality (or privacy as it

is usually called), but usually message authentication has a more significant role. Just thinking about

it, it’s not always of great significance for the message to stay private, but it’s always essential to

know the source of the message. This is being done through message authentication, by detecting

a message that has been modified en route from the sender to the receiver. It is important to note

that the detection is not absolutely certain. Data integrity is also a property of message

authentication. This means that the message is received by the authorized party as it was sent out,

without any modification. This significance of message authentication gave birth to the idea of

creating authenticated encryption schemes that would provide both confidentiality and

authenticity. Authenticated encryption is the process of transforming plaintext to ciphertext by an

encryption algorithm and attaching an authentication tag that was generated by an authentication

algorithm.

2.2.1	Early	work	

The idea of creating algorithms that combine message authentication and confidentiality was first

introduced by Bellare and Namprempre [16]. They described the beneficial conditions of a

symmetric encryption scheme combined with a MAC algorithm and identified the security notions

for a generic scheme of Authenticated Encryption (AE). In the same paper, there are also various

definitions, including the ones of privacy and authenticity. About a year later, Katz and Yung also

published a study on AE [17]. The latter also describes parametres and identify security notions of

a generic scheme of AE that combine a symmetric encryption with a MAC algorithm. Based on both

10

previously mentioned papers [16], [17], this new scheme needs two keys to function, one for each

algorithm. The construction of this kind of scheme has a major drawback. The data need to pass

from an algorithm twice, one time for confidentiality and another for authenticity and this is a major

problem for efficiency. This would be the initial point of many design attempts to build a secure and

efficient authenticated encryption scheme.

Some early design attempts to create cryptosystems that provided confidentiality and authenticity

did not meet the expectations of the security standards. Specifically, Gligor and Linsday [18]

proposed a mechanism that was based on various cryptographic techniques and data redundancy.

The authentication in this mechanism can be achieved with a signature and it is stated in the study

that «The	more	redundant	bits	 included	 in	 the	 signature,	 the	more	reliable	 is	 the	authentication	

procedure». A similar cryptographic technique that only provides authenticity is also found in the

literature [19]. It is based on cryptographic check digits which can be likened with data redundancy

to the message. These proposals were found vulnerable to chosen plaintext and chosen ciphertext

attacks due to the redundancy [20]. This was a major weakness for the mechanisms that were

based on data redundancy, so the designers decided to construct new mechanisms that would

provide authenticated encryption without security flaws.

2.2.2	Schemes	

AE schemes had been studied for more than 20 years, but only recently there is so much interest,

due to the recognition of the significance of AE [16], [17], [21]. This happened because problems

were emerging from the combination of privacy-only encryption and message authentication code

(MAC) [16], [22], [23] leading to the creation of the first class of AE schemes [24], [25]. All of the

schemes can have efficient constructions and offer sufficient security. These are shared-key

mechanisms that through processing transform a message 𝑀 into a ciphertext 𝐶 that can be sent

safely to the receiver because both confidentiality and authenticity are protected. Each one of them

has important practical applications. As it was mentioned in the introduction, message

authentication in asymmetric cryptography is done with digital signatures. In the case of symmetric

ciphers, the sender shares a secret key with the receiver to authenticate their message. So, the

following approaches to message authentication are based on a shared key relationship between

the sender and the receiver.

There are three approaches that will be described in brief:

11

1. Let’s suppose that a sender 𝑆 has encrypted a message 𝑀 and sent it to the receiver 𝑅. For

the 𝑅 to be able to authenticate 𝑀 , 𝑆 has encrypted the key 𝐾 with some encryption

algorithm 𝐸 and its outcome is concealed in the ciphertext 𝐶. The 𝐶 is transmitted to 𝑅, but

because the transmission channel is insecure, 𝑅 will receive the ciphertext 𝐶΄. 𝑅 will apply

the decryption algorithm 𝐷 to 𝐶΄. There are two possible outcomes from the decryption:

(a) the message 𝑀΄ which is the original 𝑀 or (b) an indication ⊥ , that indicates that

𝐶΄wasn’t authentic. This approach of message authentication is based on an encryption

process. This encryption is not obligated to protect the privacy of the message. Sometimes

the term authenticated	encryption is used for this method.

2. Privacy is not necessary for a message to be authenticated. So, for this method a ciphertext

𝐶 is transmitted from the sender to the receiver and it includes the message 𝑀 with a tag 𝑇.

𝑇 is generated by a tag-generation algorithm 𝑇𝐺 using a key 𝐾 and 𝑀, 𝑇 ← 𝑇𝐺 𝑀 . 𝑇𝐺

can be probabilistic or stateful. When the ciphertext is received, 𝑀΄ and 𝑇΄ are run in a tag-

verification algorithm with the key 𝐾 and a bit 𝐵 is produced, 𝐵 ← 𝑇𝑉 𝑀΄, 𝑇΄ . If the bit

is 1, then 𝑀΄ is accepted as the original message, but if the bit is 0, then 𝑀΄is rejected. Due

to the form of the ciphertext, this mechanism is called message-authentication scheme.

3. The most common approach is when the tag-generation algorithm 𝑇𝐺 is stateless and

deterministic. In this case, the whole scheme is called message authentication code, or just

MAC. The process starts with the sender computing the tag – that is 𝑇 𝑀𝐴𝐶 𝑀 . It is

important to mention that when MAC is used, there is no need for a tag-verification

algorithm, because the receiver after the receipt of ciphertext 𝐶΄, which contains 𝑀΄and 𝑇΄,

can compute 𝑇΄΄ 𝑀𝐴𝐶 𝑀΄ . If 𝑇΄΄ equals 𝑇΄, then 𝑀΄ is authentic; if not, the message is

disregarded.

One other way to classify AE schemes is the order in which the processes of encryption and

authentication are performed. These two processes are very important for these primitives, so a

different order can cause massive changes. There are three compositions which are analysed in the

literature: Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), MAC-then-Encrypt (MtE). These

three compositions were named and studied first by Bellare and Namprempre [16] and because of

their cryptographic value are also studied (sometimes with different names) in later studies [23].

The following paragraph describes in brief how each composition works and the security it offers.

12

In the Encrypt-and-MAC scheme, the plaintext and the key are the inputs to the encryption and MAC

algorithms. The MAC tag and the ciphertext are the outputs of the two algorithms and they are sent

together to the receiver. This scheme lacks in security compared to the other two [23]. The Encrypt-

then-MAC scheme computes firstly the ciphertext which is used as an input in the MAC algorithm.

Then the MAC is attached to the ciphertext and they are sent together. Between the three

compositions, this is the one that can reach the highest level of security. The reverse procedure

happens in the MAC-then-Encrypt, where the MAC is produced first and then the MAC tag is

attached to the plaintext and they are together used as input in the encryption algorithm. The

ciphertext is sent alone in this case. For this approach, it is proven that the security is not guaranteed

[23].

Figure	2.2: EtM, E&M, MtE from Top to Bottom Respectively	

2.2.3	MAC	

Message Authentication Code (MAC) has a major role in the cryptographic world. It is also referred

to as a cryptographic	checksum or a keyed	hash	function. MAC is similar to digital signature because

13

both of them provide message authentication and message integrity. The difference lies to the use

of symmetric-key schemes from MACs and asymmetric-key schemes from digital signatures. It is

also important to mention that MACs don’t provide non-repudiation, unlike digital signatures

(since, in MACs, there are two parties that can generate the same "signature", that is the same MAC;

namely, two parties sharing the same secret key). The advantage of MACs is their speed because

they are based on hash functions or block ciphers. The input of a MAC algorithm is a message of

arbitrary length and it produces a fixed-size authentication tag that is cryptographically secure and

it is attached to the message. A secret key is necessary between the two legitimate parties, since

MACs are based on symmetric schemes. For a MAC to be considered as unforgeable and thus

secure, it shouldn’t be computationally possible to compute the generated MAC of a message

without knowing the key.

An option for building MACs, as it was mentioned in the previous paragraph, is with the use of hash

functions as building blocks. There are two approaches to the construction of hash-based MAC, the

secret	 prefix MAC and the secure	 prefix MAC. Both of them generate strong cryptographic

checksums, but have weaknesses [3]. A very popular among all the types of constructions of hash-

based MAC is the HMAC [3] that was introduced in 1996, because it doesn’t show the weaknesses

of both approaches. Except that being provable secure, HMAC is also efficient and that’s way is being

used in the Transport Layer Security (TLS) and the IPsec protocol suite. In 1999 UMAC was

proposed [26] and the designers aimed to achieve extreme speed and guarantee security. UMAC

can achieve them because it uses NH, which is a universal hash-function family. These are the

prominent MACs of this kind, but there are even more new similar MACs in the literature.

2.2.4	Block	Ciphers	

It is worth mentioning that a huge step into authenticated encryption was first made with the use

of block ciphers to build MACs. Jutla presented in 2001 the Integrity Aware CBC which does not

require two passes to provide authenticated encryption [24]. Instead, this mode of operation

requires 𝑚 2 block encryptions, assuming that the message has a length of 𝑚 blocks. In the same

study, a highly parallelizable mode (IAPM) for encryption and message integrity is introduced.

IAPM was used as a base scheme for the construction of OCB [25]. The latter was a refined scheme

of the former and has additional features. Other important block cipher modes that provide

authenticated encryption is the Counter with CBC-MAC mode [27] and Galois /Counter mode

(GCM) [28]. These ciphers paved the way for the following block and stream ciphers offering AE.

14

2.2.5	AEAD	and	DAE(AD)	

Studies of the first AE schemes shown that there are some data that don’t need to be encrypted. So,

it was decided that for better results in efficiency a mixture of encrypted and unencrypted data

would be optimum. This of course is not supposed to decrease the security of the cryptosystem. For

this new scheme, privacy is necessary for the encrypted data and authenticity for all the data. This

scheme is called authenticated-encryption with associated-data (AEAD) [29]. The unencrypted

data are called associated data. It is very useful in the case of network packets because their header

doesn’t have to be encrypted, in contrast to the payload. Both of them though need authentication.

Later works [30]–[32] describe methods to provide AE and simultaneously authenticate the

associated data.

A special kind of AE schemes is the Deterministic Authentication Encryption (DAE) [33]. The main

difference with the other schemes is that DAE doesn’t use a nonce. DAE can be used with associated

data (DAEAD), thus there is also a header used in the cryptosystem. Security of these schemes is

determined as for other AE schemes. In other AE schemes the same nonce can’t be used twice, but

in the case of DAE schemes the same messages can’t be used twice. This is a drawback for DAE

schemes because they lack in efficiency because of that.

2.3	Stream	Ciphers	providing	AE	

Authenticated stream cipher is a stream cipher algorithm that can provide both authenticity and

confidentiality. This kind of primitives have been designed and developed relatively recently. This

means that their security is not absolutely guaranteed because not enough time has passed for

getting scrutiny from the research community. That’s why there are not enough studies in the

literature related to the security of authenticated stream ciphers. Of course, these primitives are

most probably checked with known attacks like algebraic and are able to withstand them.

However, because this is a new field, maybe there are some other attacks that can be applied only

to authenticated stream ciphers and specifically to those primitives. In the following years, some

primitives will be proved to be secure and some won’t.

 The construction of an authenticated stream cipher is a mixture of the constructions of stream

cipher and authenticated encryption. As in stream ciphers, a secret key 𝑘 is shared to the legitimate

parties and most times it is combined with an initialization vector (𝐼𝑉). At first, a plaintext 𝑃 is

15

inserted into the authenticated stream cipher algorithm and the output is the ciphertext and a MAC

tag (𝛭𝛵). The way the 𝑀𝑇 is going to be combined with the ciphertext depends on the order in

which the MAC and encryption process are being done like it is described in subchapter 2.2.2. The

encrypted message 𝐸𝑀 is then transmitted over the insecure channel from the sender to the

receiver. The latter gets the encrypted message 𝐸𝑀΄ which is the input data to the authenticated

stream algorithm that computes the decrypted message 𝑃΄ with the corresponding MAC tag 𝛭𝛵΄.

If the values of 𝑀𝑇 and 𝑀𝑇΄are the same then the integrity of the message is validated and the

message is show, otherwise the message is considered as falsified and is disregarded.

Figure	2.3: Authenticated Stream Cipher	

The stream ciphers providing AE attract the attention of the cryptographers and the designers.

That’s why there are many submitted designs of constructions of such algorithms. Some examples

of such ciphers are SOBER-128[34], Helix [35] and Phelix [36], ZUC [37], Grain-128a [38]. ZUC is

the only one (of the mentioned ciphers), that was designed for telephony application. It was

considered to be secure until it was found susceptible to timing attacks [39]. SOBER-128 is one of

the SOBER family of ciphers and it was designed with a built-in MAC. Many attacks were tried on

this cipher, but the one that’s staying on top of them and it indicates a weakness of SOBER-128 is

the MAC forgery attack [40] .Phelix is an advanced version of the Helix cipher. Both of them were

found vulnerable to differential attacks – Helix to a differential attack published by Muller [41] and

Phelix to a differential attack if the nonces are reused published by Wu and Preneel [42]. In contrast,

Grain-128a, which is of the Grain family of ciphers, is showing good results against known attacks

and it will be used later in this study.

16

Authenticated stream ciphers have some similarities in their construction except from the standard

parts of a stream cipher. They usually depend on LFSRs that interact with NFSRs or non-linear

functions to generate the keystream and the MAC tag. It’s also very common to use an Initialization

Vector (𝐼𝑉) and associate data to strengthen the security. In general, authenticated stream ciphers

use techniques that don’t require much resources because except from encryption this cipher is

also designed to authenticate the message too.

Apart from the stream ciphers that were built from the start to provide authentication, there are

the cases where a stream cipher can be reformed to provide authentication. This can happen by

combining the stream cipher with a MAC like it was previously described. A common MAC that is

combined with stream ciphers is Poly1305 provided by Bernstein [43]. The problem is that there is

not enough research on the optimum way to combine a stream cipher with a MAC algorithm.

Another way of making stream ciphers provide authentication is by using an initialisation vector

(𝐼𝑉) [33]. In general, the study describes «a	 systematic	 framework	 for	using	a	 stream	 cipher	

supporting	an	initialisation	vector	(𝐼𝑉)	to	perform	various	tasks	of	authentication	and	authenticated	

encryption». The big advantage of the constructions based on this study is a keyed hashed function

that it was proven to have low collision and differential probabilities. Both methods are widely used

to stream ciphers that have proved their security. Of course, security must be preserved and after

the reform of the cipher.

2.4	Caesar	Competition	

The significance of the authenticated stream ciphers can be seen in the ongoing competition

CAESAR (Competition for Authenticated Encryption: Security, Applicability and Robustness)1. The

organisers of the competition are asking cryptographic designers to submit shared secret-key

authenticated ciphers that have better features over AES-GCM and are suitable for widespread

application. The specific requirements of the ciphers are provided in the competition’s website2.

At the first round, there were 57 ciphers that were put to test for security and efficiency. As a result,

the ciphers that were not qualified to the standards of the competition were withdrawn. This

happened at each round with more requirements as the number of the rounds was increasing. At

present, the competition is at round 4 with 7 ciphers. The three main types of ciphers that were

1 https://competitions.cr.yp.to/caesar.html
2 https://competitions.cr.yp.to/caesar-call.html

17

submitted are block, stream and sponge. Of the 7 finalists two are authenticated stream ciphers,

ACORN [44] and MORUS [45]. Both of them showed good results in all the known attacks and

efficient tests. A bit more interesting is the ACORN cipher, that will be used later in the study.

18

Chapter	3	
Approximation	technique	

The approximation techniques can used in combination with other cryptanalytic techniques to

compromise a cipher. The approximations are until now useful in attacks against combination and

filter functions. However, the approximation technique that is described in this Chapter is also

applied to feedback functions in Chapter 5. This is done for two reasons: 1) Evaluation of the

strengthness of the approximation technique 2) for future use in case a cryptanalytic technique is

developed that can use approximations of feedback functions.

In the beginning of this chapter the Error Linear Complexity Spectrum (ELCS) is explained and

analysed. Later on, there is a detailed analysis on the Boolean functions and after that, the

relationship between binary sequences and Boolean functions is explained. The latter leads to the

conclusion that the ELCS can be useful in finding approximations of Boolean functions. The method

of finding approximations is analysed and it is also mentioned how it is possible to achieve the best

possible approximations in some cases.

3.1	Error	Linear	Complexity	Spectrum	

19

Stream ciphers produce keystreams that are combined with the plaintext to create the ciphertext.

These produced keystreams are binary sequences that must have good pseudorandomness

properties like complexity [6], [46]. The most common way to measure the complexity of a

sequence	𝑠 with period	𝑁 is via its linear	complexity	𝑐 𝑠 , which is the length of the shortest LFSR

that is able to generate 𝑠. A strong-secure sequence must have high 𝑐 𝑠 . Nevertheless, the linear

complexity is not the only cryptographic criterion that is being used to evaluate the

pseudorandomness properties of a sequence.

The notion of pseudo-random sequences [4] refers to a periodic binary sequence that satisfies three

randomness postulates. These postulates, that are proposed by Golomb, correspond to the

properties that need to be satisfied by a sequence to resemble a random one. However, despite their

importance, these Golomb’s pseudorandomness criteria are not sufficient and thus, a cryptosystem

is not secure only by applying these postulates to create a cryptographic sequence. For example,

the linear complexity of a sequence is not being explicitly described by Golomb but it constitutes an

important cryptographic criterion since 2𝑐 𝑠 of consecutive bits are needed by an attacker to fully

determine the whole sequence. This can happen by using the Berlekamp – Massey algorithm that

takes advantage of the low linear complexity of the sequence. The algorithm needs up to 𝒪 𝑁

operations to be completed, for 𝑁 being the known part of the sequence. This algorithm computes

the linear complexity but also the feedback polynomial of the shortest LFSR that generates the

sequence; this minimum-length LFSR is unique if and only if the linear complexity of the sequence

is less than the half of the length of the whole sequence (that’s why knowledge of 2𝑐 𝑠 consecutive

bits is adequate).

In the case that period 𝑁 equals 2 , then there is a more efficient way to compute the linear

complexity of a sequence. The Games-Chan algorithm (GCA) [47] can compute 𝑐 𝑠 using 𝒪 𝑁

operations but it has the drawback that it needs the whole period of the sequence (whilst the

Berlekamp-Massey requires 2𝑐 𝑠 bits). Thus, this algorithm is not applicable to modern ciphers

that have large periods, but it reveals properties that can be used to construct sequences with

specific properties [48], [49].

In short, the GCA works by performing the following steps:

Let 𝑐 𝑠 0. At first, the sequence 𝑠 that has length 𝑙, is decomposed in 𝐿 𝑠 , … 𝑠 / and 𝑅

𝑠 , … , 𝑠 , which are the left are right halves of the sequence respectively. If the two halves are

not identical (𝐿 ⨁ 𝑅 0), then 𝑐 𝑠 𝑐 𝑠 𝑙/2 and 𝑠 𝐿 ⊕ 𝑅. Otherwise, 𝑐 𝑠 𝑐 𝑠

20

and 𝑠 𝐿 . After that in both cases 𝑙 𝑙/2 and the process starts again from the point of

decomposition. When 𝑙 1, 𝑐 𝑠 𝑐 𝑠 1 if 𝑠 1 and 𝑐 𝑠 𝑐 𝑠 if 𝑠 0. The value of

𝑐 𝑠 is equal to the linear complexity of 𝑠.

Linear complexity is valuable as a measure for the randomness of finite sequences. Rueppel noticed

this and introduced linear	complexity	profile [50], which describes the growth of linear complexity

as the length of the sequence increases. Moreover, criteria to evaluate the randomness of generated

sequences are analysed. This profile is an important tool for the assessment of finite binary

sequences such as the keystreams of stream ciphers.

It was previously stated that sequences must have high linear complexity for security. Except that,

the sequence also needs to keep its linear complexity at a high level even if some of bits are changed

to be cryptographically strong. If this doesn’t hold, then the knowledge of some consecutive bits of

a keystream can lead to the creation of a sequence that closely approximates the original. This

observation is of high cryptographic value and led to the introduction of the k‐error	 linear	

complexity of sequence [51]. As the definition implicates, it is related with the variation of linear

complexity depending on the number of changed bits. Specifically, as it is stated in the last

mentioned paper, the k-error linear complexity (denoted as 𝑐 𝑠) of a sequence 𝑠 that has period

𝑁 and linear complexity 𝑐 𝑠 , is defined as the lowest possible 𝑐 𝑠 of 𝑠 when 𝑘 or fewer bits are

changed in every period of the sequence.

The Error Linear Complexity Spectrum (ELCS) is based on the k-error linear complexity and it

indicates how linear complexity decreases as the number of the changed bits increases. This means

that when we have 0 errors the linear complexity of 𝑠 is 𝑐 𝑠 and when 𝑘 equals 𝑤𝑡 𝑠 then 𝑐 𝑠 ’

equals 0. Besides these 2 points, any pair 𝑘, 𝑐 𝑠 for any 𝑘 lies in the aforementioned spectrum.

ELCS is defined as k-error linear complexity profile by Martin and Stamp [51]. It is highlighted that

the same definition was also given by Niederreiter [52] with the difference on the way the linear

complexity changes. Etzion [53] presented a formula of the minimum 𝑘 that is needed to reduce

the 𝑐 𝑠 of sequences with 𝑁 2 and is shown as an explicit function of the Hamming weight of

𝑐 𝑠 . There are also several other properties of the ELCS that are studied and proved in other works

[54].

Based on the Games-Chan algorithm, Martin and Stamp managed to create an efficient algorithm

that is able to compute, for any fixed 𝑘, the linear complexity 𝑐 𝑠 for a binary periodic sequence of

period 𝑁 2 . The algorithm [51] computes the entire ELCS using 𝒪 𝑁 𝑙𝑜𝑔𝑁 operations.

21

Subsequently, Lauder and Paterson [55] created a generalized version of the algorithm to compute

the entire ELCS of sequences. This algorithm can also be used as a soft-decoding method for a

specific class of linear subcodes of Reed – Muller binary codes [56].

The Lauder and Paterson algorithm (LPA) takes as input a sequence 𝑠 of period 𝑁 2 and the

output presents the points where there is a decrease of the linear complexity along with the number

of bits that need to be changed for that decrease. These points are called critical	points (CPs), the

number of bits is denoted by 𝑘 and the linear complexity of the sequence with 𝑘 changed bits is

denoted by 𝑐 𝑠 . Clearly, the critical points constitute a subset of ELCS and is being called Critical

Error Linear Complexity Spectrum (CELCS). In the output, the critical points are presented as 𝐶𝑃 ∶

𝑘, 𝑐 𝑠). All sequences have at least 2 CPs, which are the points 0, 𝑐 𝑠 and 𝑤𝑡 𝑠 , 0 . The

values of the in between CPs (if there are any) depend on each sequence. For any given 𝑘, a critical	

error	 sequence, which is denoted by 𝑒 , is a sequence with period 𝑁 and weight 𝑘 for which

𝑐 𝑠 ⊕ 𝑒 𝑐 𝑠 .

As stated above, given a binary sequence 𝑠 of period 𝑁 2 , the Games-Chan algorithm requires

the full sequence to compute its linear complexity, while Berlekamp-Massey algorithm requires

only 2𝑐 𝑠 of bits. A modified version of the Games-Chan algorithm [57], was designed that needs

only 2𝑐 𝑠 of bits to compute the complexity. In the same article, the Lauder-Paterson algorithm is

also modified, so for a given constant 𝑐, it computes the minimum number of errors and their

position needed for bringing the complexity below 𝑐 over a period.

3.2	Boolean	Functions	

Boolean functions are one of the most important tools in cryptography. They are used in various

ways and have the most times a prominent role in the efficiency and the security of cryptosystems.

Their most important applications rest with their usage as building blocks in symmetric

cryptosystems. Specifically, they are used in the analysis and design of s-boxes in block ciphers and

for the construction of filter or combining functions in stream ciphers [6]. The widespread use of

Boolean functions is mainly attributed to their simplicity in hardware and software application and

because when they are properly used in cryptosystems, they can withstand various known

cryptanalytic attacks.	

3.2.1	Nonlinearity	

22

It was mentioned in the previous chapter, that just using an LFSR with good statistical properties

and high linear complexity as a pseudorandom bit generator, is not adequate in terms of security

because of the Berlekamp-Massey algorithm (even if using an LFSR of huge size with adequately

high linear complexity that can resist to Berlekamp-Massey, the system that would use such an

LFSR would be impractical). A solution to this problem is to use a nonlinear Boolean function in the

process of generating the sequence. The nonlinearity of a function 𝑓 can prevent linear

cryptanalysis attacks [58] and best affine approximation attacks [59]. Thus, a Boolean function of

high nonlinearity must be used for the generation of the sequence or a system that can increase

nonlinearity at a sufficient level.

Such systems are the nonlinear combination generators and the nonlinear filter generators. The

former takes the outputs of 𝑛 LFSRs and use them as inputs in an 𝑛-vector nonlinear Boolean

function 𝑓 𝑥 , 𝑥 … . 𝑥 . The function 𝑓 then generates a sequence of bits that serves as the

keystream. For the latter, a nonlinear function 𝑓 is required to be used at a fixed number of stages

of the outputs of a single LFSR. Both of them are widely used in modern stream ciphers. More on

these generators can be found in the literature [60].

Figure	3.1: Nonlinear Combination Generator (Top) and Nonlinear Filter Generator (Bottom)	

3.2.2	Properties	

23

Let 𝐹 0,1 and 𝐵 be the set of all Boolean functions that consist of 𝑛 variables. From the

previous assumptions, it is considered that 𝑓 ∈ 𝐵 and 𝑓: 𝐹 → 𝐹 . The most common way to

express 𝑓 is by a multivariate polynomial, called algebraic	normal	form (ANF) and it’s given by:

𝑓 𝑥 , … , 𝑥 a 𝑥 … 𝑥 𝑎 ∈
 ∈

𝐹

where sum (𝛴) is performed modulo 2. Each monomial of a polynomial is composed by a number

of variables.

The algebraic	degree of 𝑓 , denoted by 𝑑𝑒𝑔 𝑓 , is the maximum number of variables that are

presented in one of the monomials with a nonzero coefficient. In case that deg 𝑓 1, then the

function 𝑓 is affine. Furthermore, if the constant term in the ANF is zero, the f is linear. The value of

the degree affects the weight of 𝑓 [61]. If the Boolean functions have only terms with the same

degree, then they are called homogeneous. The opposite function or complement of function f is 𝑓 ;

thus,𝑓 𝑓 ⊕ 1. It is important to mention that cryptosystems shouldn’t use Boolean functions

with maximal degree because their output distribution is biased.

Another important representation of a Boolean function is its truth	table, which present the values

of each element in 𝐹 and the value vector of 𝑓. For example, Table 3.1 illustrates the truth table of

the Boolean function 𝑓 𝑥 𝑥 𝑥 . A Boolean function can be identified and it is defined by its

value vector. McWilliams and Sloane [62] describe a method to build the ANF of a Boolean function

𝑓 by its truth table.

𝑥 0 1 0 1 0 1 0 1

𝑥 0 0 1 1 0 0 1 1

𝑥 0 0 0 0 1 1 1 1

𝑥 𝑥 𝑥 0 1 0 1 0 1 1 0

Table	3.1: N Truth table of 𝑓 x x x 	

The hamming weight of a function 𝑓, denoted by 𝑤𝑡 𝑓 , is the number of 1’𝑠 in the truth table of 𝑓.

If 𝑤𝑡 𝑓 2 , then the 𝑓 is called balanced.

Balanced functions are used by most cryptosystems because they offer better randomness

compared to unbalanced functions. The latter have an unbalanced distribution of binary digits or a

24

statistical bias as it’s called and they are subject to various cryptanalysis attacks like correlation

attacks [63]. However, almost balanced functions may also be acceptable, if they simultaneously

satisfy other cryptographic criteria.

Hamming distance is the number of differences in the truth tables of two functions. It is defined as:

𝑑 𝑓, 𝑔 𝑤𝑡 𝑓 ⊕ 𝑔

regarding that 𝑓, 𝑔 ∶ V𝑛 → F2. Thus, the hamming distance of a function 𝑓 to all affine/linear

functions is its nonlinearity.

Let 𝑓, 𝑔 ∈ 𝐵 , 𝐴 be a non-singular matrix (𝑛 𝑛 over 𝐹 and 𝑏 an 𝑛-vector over 𝐹 . It is said that

𝑓 𝑥 and 𝑔 𝑥 functions in 𝑛 variables are affine	equivalent if 𝑔 𝑥 𝑓 𝐴𝑥 ⊕ 𝑏 . When two

Boolean functions are affine equivalent, then 𝑤𝑡 𝑓 𝑤𝑡 𝑔 and 𝑁𝐿 𝑁𝐿 , The weight (𝑤𝑡)

and nonlinearity (𝑁𝐿) are affine invariant cryptographic properties of Boolean functions.	

The Walsh transform (also called the Hadamard transform) is of great importance for Boolean

functions and therefore for cryptography. It is a generalized class of Fourier transforms and it

performs a symmetric, orthogonal, involutive, linear operation on 2 real numbers. By using the

Walsh transform the nonlinearity of a function 𝑓 can be easily computed [64], like many other

properties of Boolean functions.

The bias or correlation or imbalance of a Boolean function 𝑓 is denoted by ℇ is and can be calculated

by:

ℇ 𝑓 1
∈

2 2𝑤𝑡 𝑓 	

It is understood that a function 𝑓 is balanced only if ℇ 𝑓 0.

The Walsh spectrum of 𝑓 ∶ 𝐹 → 𝐹 is computed by:

ℱ 𝑓 𝜙 1 ∗

∈

, 𝑎 ∈ 𝐹 	

25

where 𝜙 is the linear function 𝑥 ↦ 𝛼 ∗ 𝑥 (∗ indicates the inner product). Thus, the hamming

distance of 𝑓 to 𝜙 𝜀, 𝛼 ∈ 𝐹 , 𝜀 ∈ 𝐹 , which is the nonlinearity of 𝑓 can by computed by:

𝑁𝐿 2
1
2

ℒ 𝑓 2 m𝑎𝑥|ℱ 𝑓 𝜑 |	

A useful property of Boolean function is the Strict	Avalanche	Criterion (SAC), which was first

introduced by Webster and Tavares in a study dedicated to the design of S-boxes [65]. A Boolean

function 𝑓 𝑥 of 𝑛 variables that satisfies SAC means that changing one bit of the input 𝑥 will result

to the change of exactly half of the 2 vectors to the output of the function. SAC can be used in

various cryptographic applications [66]. It is widely used because of the big change to the output

that occurs even in case of a slight change in the input. This way, a Boolean function input is more

difficult to be computed by its output, which is essential for cryptosystems. More details on the SAC

and how to construct SAC functions are described by Cusick and Stanica [67].

When the values of 𝑓 ∈ 𝐵 are statistically independent of a subset of 𝑘 variables (1 𝑘 𝑛),

then the Boolean function 𝑓 is correlation	immune	of	order	k. Namely, if the subset of 𝑘 variables is

called 𝑊 and 𝑊 𝑥 , … , 𝑥 , then:

𝐼 𝑓 𝑥 |𝑊 0

Correlation immunity determines the minimum number of LFSRs that must be used in a

correlation attack on a combination generator, which is 𝑘 1 [61]. However, there is a trade-off

between several desired cryptographic properties. It is indicated [68] that even with the

introduction of one bit of memory into the generator, the trade-off of degree and correlation

immunity can be avoided. In case that a k‐th	order	correlation	immune function is balanced, is called

k‐resilient [69].

Another important cryptographic property that a Boolean function needs to possess is that it

should not be well approximated by another function with fewer number of variables. Not many

results are currently known on this criterion. For 𝑡-resilient functions it is possible to compute the

minimum distance of an approximation function with less variables. Let 𝑓 ∈ 𝐵 be a 𝑡-resilient

function. Then, the hamming distance 𝑑 𝑓, 𝐵 𝑘 of 𝑓 from the set 𝐵 𝑘 of all functions

depending on 𝑘 input variables satisfies [70]:

26

𝑑 𝑓, 𝐵 𝑘 2
ℒ 𝑓

2
𝑘
𝑖

Let us consider a Boolean function 𝑓 𝑥 , … , 𝑥 depending on 𝑛 variables. An important

representation of Boolean functions is the Boole’s expansion or as it is also called, the Shannon’s

expansion, which is defined, for any input variable 𝑥 , 𝑖 1, … , 𝑛 as follows:

𝑓 𝑥 , … , 𝑥 1 𝑥 𝑓 𝑥 , … , 𝑥 , 𝑥 , … , 𝑥 𝑥 𝑓 𝑥 , … , 𝑥 , 𝑥 , … , 𝑥

where both functions 𝑓 , 𝑓 depend on 𝑛 1 variables (actually on all variables except 𝑥). More

precisely, 𝑓 (resp. 𝑓) is the function determined by the initial function 𝑓 if we fix the value of 𝑥

being equal to 0 (resp. 1).

Example:	

Recalling the previous example with the function 𝑓 𝑥 , 𝑥 , 𝑥 𝑥 𝑥 𝑥 , the Shannon’s

Expansion Formula for each of the three variables are given as follows:

𝑓 𝑥 , 𝑥 , 𝑥 1 𝑥 𝑥 𝑥 𝑥 1 𝑥 𝑥 (for the variable 𝑥)

 (indeed, by setting 𝑥 0, f becomes 𝑥 𝑥 , whereas by setting 𝑥 1, 𝑓 becomes 1+𝑥 𝑥)

𝑓 𝑥 , 𝑥 , 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 (for the variable 𝑥)

𝑓 𝑥 , 𝑥 , 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 (for the variable 𝑥)

3.2.3	Special	Types	

Boolean functions are called symmetric if their outputs depend only on the Hamming weights of

their inputs. This means that any permutation of the input bits will not result in any change of the

function’s value. An extensive study on Symmetric Boolean Functions and specifically their

cryptographic properties is given by Canteaut and Videau [71]. Except that, there is also a detailed

analysis of symmetric functions of even variables with maximum algebraic immunity [72].

(1)

27

A bent function is another special type of Boolean functions [73]. The feature that separates bent

functions from all other is that they have maximum difference (or distance) from all linear and

affine functions – i.e. they achieve the maximum possible nonlinearity. This feature is desirable in

cryptography because it makes them hard to approximate. That’s the reason they are widely used

and studied [74]. However, bent functions have some drawbacks: i) they exist only for an even

number of variables, ii) they are non-balanced.

3.3	Relationship	between	Binary	Sequences	and	Boolean	

Functions	

The relationship of binary sequences and Boolean functions can be found in many studies in the

literature. It is proved [75] that there exists an 1 1 correspondence between binary sequences of

period 2 and Boolean functions of 𝑛 variables. However, a slightly different approach to the

relationship [1], that leads to some desirable conclusions, is used in this thesis.

If 𝑠 𝑠 , … , 𝑠 is a periodic binary sequence of period 2 , there is a Boolean function 𝑓 of 𝑛

variables, whose truth table denoted by 𝑠 𝑠 , … , 𝑠 corresponds to 𝑠, 𝑠 ↔ 𝑠 . Thus, for any

𝑓𝜖𝐵 of 𝑛 variables, there is a 2 periodic sequence 𝑠 that 𝑠 ↔ 𝑠 . This definition makes the

Boolean function 𝑓𝜖𝐵 subject to all cryptographic criterions that can be applied to the binary

sequence 𝑠. This means that as for the sequence 𝑠, the linear complexity and the ELCS can also be

calculated for 𝑠 .

3.3.1	Computation	of	Approximation	Functions	

It is proved [1] that for a 2 periodic binary sequence 𝑠 with linear complexity 𝑐 𝑠 that 2

𝑐 𝑠 2 for some 1 𝑙 𝑛 1 , if the Boolean function 𝑓 𝑥 , … , 𝑥 depends only on

𝑥 , … , 𝑥 . This proposition establishes a relationship between the linear complexity of sequence

𝑠 with the number of variables of the corresponding Boolean function 𝑓 . Thus, if the 𝑐 𝑠 is

decreased enough, the number of variables of the corresponding function is decreased too. This

leads to the conclusion that by reducing 𝑐 𝑠 , we can compute approximation functions that

depends on fewer number of variables.

28

Approximating a Boolean function 𝑓 with another that depends on fewer variables falls into the

category of correlation	attacks and can also be considered as divide-and-conquer algorithm. The

attack that is presented by Siegenthaler [63] can be prevented by using correlation-immune

functions [69]. It is highlighted that correlation immunity is an affine invariant criterion. Canteaut

[70] describes how an approximation function can be used for cryptanalysis.

The LPA can be useful in computing approximations of functions with fewer variables. This is

because LPA like it was previously described, finds the ELCS of a sequence, which includes the

points where the 𝑐 𝑠 is decreased. This approach is described in the following paragraph:

Let 𝑠 be a binary sequence of period 2 with a CP 𝑘, 𝑐 𝑠 satisfying 2 𝑐 𝑠 2 for

𝑙 1 and 𝑓 be a Boolean function for which 𝑠 ↔ 𝑠. It is proved [1, Theorem 2] that the function

ℎ that can be built by the sequence 𝑠 ⨁ 𝑒 depends on the first 𝑛 𝑙 variables and there are no

other sequences for which 𝑤𝑡 𝑘 and can lead to the creation of functions that depend on the first

𝑛 𝑙 1 variables. It is also stated that if 𝑘 is the least possible of all the values of 𝑘 in CPs in the

spectrum of 2 𝑐 𝑠 2 then there are no other sequences whose weight 𝑤𝑡 satisfies

𝑤𝑡 𝑘 and can lead to the creation of functions that depend on the first 𝑛 𝑙 variables.

As it was previously mentioned, the LPA always finds two CPs for all sequences. However, only the

in between CPs have cryptographic value for the purpose of finding approximations of functions

and from these (in between CPs) only the ones with the least 𝑘 for a certain number of variables

are used. Thus, we will call these CPs, Significant	Critical	Points (SCPs). It should be stated that the

algorithm doesn’t present in the output the appropriate changes that need to be made to the

sequence for each CP. The algorithm can be appropriately modified to also compute the critical

error vectors [55]. This modification is needed in the process of building the approximation

function. It is also important to mention that the LPA doesn’t compute the best approximations of

functions with functions of fewer variables, but at least it sets the upper bound limits [1].

It seems preferable for sequences to have only two CPs, so that they don’t have any approximations.

However, this kind of sequences lack of cryptographic strength [54]. A brief description of the

weakness follows:

Let the truth table of function 𝑓 be a sequence that have only two CPs be represented as 𝑠 𝐿 𝑅

with 𝐿 representing the left half of 𝑠 and 𝑅 the right half. These sequences have one of the two

following form and it is explained beneath of each form why they lack of cryptographic strength:

29

i) 𝐿 𝑅 �̂� 𝑂𝑅 𝐿 ⊕ 𝑅 0

In case the (i) implies, then the truth table of 𝑓 is of the form 𝑠 �̂�‖�̂� (where ‖ indicates

concatenation), which means that the 𝑠 of function 𝑓 𝑥 , … , 𝑥 doesn’t depend on the last

variable 𝑥 . Immediately, since the 𝑠 depends only on 𝑥 , … , 𝑥 , 𝑥 is not taken into account.

Consequently, we can calculate approximations of the function using the sequence �̂�, which uses

one less variable that the sequence 𝑠 .

ii) 𝐿 𝑅 ⨁ 1 �̂� 𝑂𝑅 𝐿⨁𝑅 𝟏

In case that (ii) implies, it means that the truth table of 𝑓 is of the form 𝑠 �̂�‖�̂�⨁1(where ‖

indicates concatenation). It is well known that the value of the last variable 𝑥 is 0 in the first half of

the truth table and 1 in the second half of the table. Thus, this kind of sequences can be produced by

a Boolean function whose ANF includes the variable 𝑥 in a monomial of deg 𝑓 1. This leads to

the conclusion that:

𝑠 𝑥 , … 𝑥 �̂� 𝑥 , … , 𝑥 ‖�̂� 𝑥 , … , 𝑥 ⨁𝑥 �̂� 𝑥 , … , 𝑥 ‖�̂� 𝑥 , … , 𝑥 ⨁1

The previous shows that again, the variable 𝑥 is not taken into account.

Theorem 3 [1] is an extension of Theorem 2 and it includes all the permutations matrices of Boolean

function 𝑓 over 𝐹 , which is denoted by 𝑃 . A Boolean function have 𝑛! possible matrices and they

should be used to find approximations with fewer variables. This means that better approximations

can be found by using the LPA. It is also stated that Theorem 3 is applicable to functions that are

affine	equivalent to 𝑓 and not only to the functions that are obtained by permuting the input

variables.

It is proved [1] that for a Boolean function 𝑓 of deg 𝑓 , the LPA can be used to efficiently compute

approximations of degree lower than deg 𝑓 . As it was previously mentioned, the LPA computes

the ELCS of a sequence and it can also present the corresponding critical error sequences. This was

used to create an algorithm in the same paper for the computation of lower degree approximations

of functions. Although, it is not ensured that the algorithm always computes the best low degree

approximations, experiments indicate that in some cases, such approximations are indeed

efficiently computed.

30

3.3.2	Analysis	of	the	Computation	Method	

As it was stated, the LPA can compute CPs that can lead to approximations of function 𝑓 𝑥 , … , 𝑥

with fewer variables. The approximation functions depend on 𝑛 𝑥 variables for 1 𝑥 𝑛 2.

The way the variables are reduced is from the latter (𝑥) to the first (𝑥).

Let 𝑠 𝐿 𝑅 be a sequence of period 2 with 𝐿 representing the left half of 𝑠 and 𝑅 the right half.

A simple way of explaining how the LPA works is that it compares 𝐿 and 𝑅 and it finds the bits that

need to be changed in one of them, to make them identical. If the approximation function depends

on 𝑛 1 variables, then a number of bits must be changed so that 𝑠 𝑠 𝑠 . If the approximation

depends on 𝑛 2 variables, then 𝑠 𝑠 𝑠 𝑠 𝑠 and so on.

Based on the properties of the LPA, a way to compute higher approximations through proper

permutation is examined. For this, the notion of ℬ𝒜 is introduced. The bits affected in the truth

table by a variable is denoted by ℬ𝒜. The ℬ𝒜 of a variable 𝑥 depends on the positions of 𝑥 in the

polynomial. This means that the monomials that include 𝑥 should be taken into account to measure

ℬ𝒜. The basic factors that determine ℬ𝒜 are 1) the degree of the monomials and 2) the other

variables that are included in each monomial.

More precisely, the ℬ𝒜 is given by the following:

Theorem 1

Let 𝑓 , 𝑓 be the sub-functions (depending on 𝑛 1 variables) obtained by applying the Shannon

Expansion Formula to 𝑓 with respect to the variable 𝑥 for any 𝑖. Then the ℬ𝒜 for 𝑥 is equal to the

weight of the function 𝑓 𝑓 (being considered as functions on 𝑛 1 variables).

Proof:	

Since 𝑓 equals to 𝑓 under the assumption that 𝑥 0 and 𝑓 equals to 𝑓 under the assumption

that 𝑥 1, we get that 𝑥 affects an output of 𝑓 if and only if, 𝑓 𝑣 𝑓 𝑣 , where 𝑣 is the

corresponding input vector on 𝑛 1 variables (all except 𝑥). Hence, the claim follows.

Example:	

Let 𝑓 be a Boolean function for which the ANF is:

31

𝑓 𝑥 , … , 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The 𝑠 of the above function is: 01000100010001000100010001001011

1st half: 0100010001000100

2nd half: 0100010001001011

Recalling the properties of Boolean functions, the difference between the two halves is made by the

variable 𝑥 , which means that ℬ𝒜 4.

ℬ𝒜 can be calculated using the Shannon expansion formula:

𝑓 𝑥 , … , 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 1 𝑥 𝑥 𝑥 𝑥

The ℬ𝒜 equals the 𝑤𝑡 of the sum of 𝑓 𝑥 𝑎𝑛𝑑 𝑓 𝑥 :

ℬ𝒜 𝑤𝑡 𝑓 𝑥 𝑓 𝑥

ℬ𝒜 𝑤𝑡 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

ℬ𝒜 𝑤𝑡 𝑥 𝑥

ℬ𝒜 4

It is also understood that if variables 𝑥 , 𝑥 were last, they would also affect 4 of the 32 bits in

contrast with the other two that affect more bits. The variables have different ℬ𝒜 values because

they exist in monomials of different degrees.

Corollary 1

Let	𝑓 be a Boolean function depending on 𝑛 variables 𝑥 , 𝑥 , … 𝑥 . Then the ℬ𝒜 for 𝑥 for any 𝑖, is

equal to the weight of 𝑓 , where 𝑓 denotes all the monomials in the ANF of 𝑓 that contain 𝑥 .

Proof:	

32

The proof is straightforward from Theorem 1, since – with the notation therein - 𝑓 is equal to 𝑥 ∗

𝑓 𝑓 .

The ℬ𝒜 of a variable 𝑥 has a crucial role in determining how well a function can be approximated

by a function with the same number of variables minus 𝑥 (i.e. with one less variable). Indeed, the

ℬ𝒜 provides direct information on the existence of a function with 𝑛 1 variables whose

hamming distance from the initial function is equal to ℬ𝒜; this approximation is the function that

is obtained by 𝑓 by simply removing all the monomials in the ANF that depend on the variable 𝑥

(the weight of these monomials equals ℬ𝒜). Consequently, the smallest value of ℬ𝒜 amongst all

the possible variables constitutes the best choice to compute the highest possible approximation

for a function that depends on 𝑛 1 variables.

The ℬ𝒜 can be trivially obtained for some cases. For example, we prove the following result.

Proposition 1

If a variable 𝑥 lies only in one monomial in the ANF of 𝑓, with degree 𝑑𝑒𝑔 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 , then the

ℬ𝒜 is 2 ; therefore, there exists an approximation on 𝑛 1 variables that

approximates 𝑓 1 100% . This implies that the highest possible

approximation that can be calculate by LPA for a function that depends on 𝑛 1 variables equals

1 100%; this is the upper bound limit of approximations that are calculated by LPA.

Moreover, if all the variables in this monomial are also present only once in the ANF of 𝑓, that is they

do not appear to any other monomial, then again there exists an approximation depending on 𝑛

𝑑𝑒𝑔 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 variables that approximates 𝑓 1 100%.

Proof:	

Amongst the 2 rows in the truth table of 𝑓, there exist 2 rows in which all the

variables in the monomial have the value “1”; recalling the definition of ℬ𝒜 as well as Corollary 1,

the first claim follows. Clearly, if we remove this monomial from the ANF of 𝑓, we get another

function on 𝑛 𝑑𝑒𝑔 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 variables whose Hamming weight from 𝑓 is also

2 and, thus, the second claim also follows.

Example:	

33

𝑓 𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 𝑥

It is observed that variables 𝑥 𝑎𝑛𝑑𝑥 , which are the last variables in the function only exist once

in the same monomial. Since the monomial of the last variables (𝑥 𝑎𝑛𝑑 𝑥) is of degree 2 the

function that depends on two less variables approximates 𝑓 𝑥 by 75%. The approximation

function is 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 𝑥 .

Therefore, if a variable appears only once, its ℬ𝒜 is trivially obtained. However, the same ℬ𝒜 can

be also computed even if the variable 𝑥 exists more than once in the polynomial, as is shown in the

next example. In case that 𝑥 exists only in one monomial, the LPA will yield an approximation

whose distance from 𝑓 is exactly 2 ; this is an important result which is

subsequently proved.

Example:	

𝑓 𝑥 , … , 𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 𝑥

In the function 𝑓 the highest approximation that can be calculated by LPA for 4 variables is

computable if the last variable is 𝑥 . This is because it’s in a monomial whose degree equals deg 𝑓

and it’s in another monomial with the variable 𝑥 that already exists in the previously mentioned

monomial. It is easy to compute by using Shannon formula the ℬ𝒜 and see that ℬ𝒜 2

ℬ𝒜 . Thus, if 𝑥 was used as the last variable, the approximation function will not be as good.

These are verified by the LPA. Therefore, indeed we get the best result through LPA by putting as

last – under a permutation of variables – the variable with the smallest ℬ𝒜.

Corollary 2

If the variable 𝑥 has a corresponding value ℬ𝒜, then the LPA will yield an approximation of 𝑓 with

𝑛 1 variables whose distance from 𝑓 is exactly ℬ𝒜.

Proof:	

The ℬ𝒜 of 𝑥 is given, according to Theorem 1, by the weight of 𝑓 𝑓 where these are the sub-

functions on 𝑛 1 variables obtained by applying the Shannon Expansion formula to 𝑓. Recalling

how the Lauder-Paterson works, this weight is the minimum number of bits required to be changed

34

in order to reduce the linear complexity of the corresponding sequence below 2 (since 𝑓 and

𝑓 correspond to the left L and right half R of the sequence respectively). Hence, the claim follows.

Note that, in some cases, the value of ℬ𝒜 is trivially computed and, thus, we may know exactly

which the approximation that we could get by the LPA. For example, if 𝑥 appears only in one

monomial with degree 𝑑𝑒𝑔 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 , then its ℬ𝒜 is 2 . Actually, in such cases

there is no need to execute the LPA to compute approximations on 𝑛 1 variables.

Therefore, towards computing the best possible approximations, is seems that putting – under a

permutation of variables - as last the variable with the less ℬ𝒜 is the right option to get the best

approximation results with the LPA. Such an observation is of high practical importance, since

restrict the entire space of all possible permutations on variables that can be applied is restricted.

In case that 𝑥 exists in a monomial of 𝑑𝑒𝑔 2 but also in another monomial of degree 1, then it

is questionable whether 𝑥 is the best choice in order to find out the best approximations

depending on 𝑛 1 variables. That’s because the ℬ𝒜 is equal to 2 2 . For instance, if

we have 𝑥 𝑥 𝑥 𝑥 , then 𝑥 affects 2 2 bits in the truth table and it doesn’t lead to such

a good approximation if 𝑥 is placed last, compared to the case that 𝑥 or 𝑥 are put last.

As the number of the excluding variables increases, then the relationship between the ℬ𝒜 and the

outputs of the LPA gets more complicated. For approximations that depends on less than 𝑛 1

variables things get more complicated and the interaction of the ℬ𝒜 by the excluding variables

should also be taken into account.

Proposition 2

When variables exist only once in the polynomial and they are in monomials of degree 1, then they

don’t contribute to the process of computing approximating functions and they can be ignored.

Example:	

𝑓 𝑥 𝑥 ⨁𝑥 ⨁𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 𝑥

The SCPs of 𝑓 𝑥 are (32,97), (64,25), (96,5) which correspond to the approximations 87,5%, 75%,

62,5% respectively.

35

The approximations of function 𝑓 𝑥 can be computed without the use of variables 𝑥 , 𝑥 , 𝑥 . Thus,

the remaining part of the function will be used:

𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 𝑥

The CPs for this function are (0,22), (4,13), (8,4), (12,0). A reference to all CPs is done because the

last one, even if its not a SCP, is used for the approximation of 𝑓 𝑥 . The CP (4,13) correspond to an

approximation of 87,5%, (8,4) to a 75% approximation and (12,0) to a 62,5% approximation. The

approximations are the same but the distance is different. To calculate the distance of the

approximations for 𝑓 𝑥 𝑘 is multiplied by 2 ,where 𝑥 is the number of variables that are ignored.

This subchapter provides us details on the limits of the approximations found by LPA, where the

algorithm is not necessary and how it is possible to find better approximations through the

permutation of variables.

36

Chapter	4	
Overview	of	the	Authenticated	

Stream	Algorithms	

In this chapter, there is a brief description of the algorithms that are used in the next Chapter to test

the approximation technique that was explained in Chapter 3. Alongside that, there is also a security

analysis for each authenticated stream algorithm.

4.1	ACORN	

ACORN is a lightweight authenticated stream cipher that is submitted in the CAESAR competition

and it’s one of the leading candidates. So far, there are three versions of the cipher with some

modifications-improvements in each new version. ACORN-v3 [44] is the current version and until

now it has been proved to have very good cryptographic properties. For the purpose of this thesis,

ACORN-128 will be used, which is suitable for lightweight and high-performance applications.

ACORN-128 uses a 128-bit key, 128-bit nonce (𝐼𝑉) and 128-bit tag. The associated data length and

the plaintext length are less than 2 bits. It has a small 293-bits state that is consisted of 6 LFSRs.

37

It has a sequential design and at each step, only one message bit is processed. ACORN allows parallel

computation that offer high speed of hardware and software implementation.

Figure	4.1: The concatenation of the 6 mentioned LFSRs. 𝑓 is the overall feedback bit for the 𝑖th step and 𝑚

is the message bit for the 𝑖th step.

There are three functions in ACORN-128: the function to generate keystream bit from the state, the

function to compute the overall feedback bit and the function to update the state.

The keystream bit is computed by using:

𝑘𝑠 𝑆 , ⊕ 𝑆 , ⊕ 𝑚𝑎𝑗 𝑆 , , 𝑆 , , 𝑆 , ⊕ 𝑐ℎ 𝑆 , , 𝑆 , , 𝑆 ,

Initialization

 Key and 𝐼𝑉 are injected into the state bit by bit.

 It consists of 1792 steps.

Padding of associated data

 Padding is fixed at 256 steps.

 One bit at each step

Padding of the plaintext

 Padding is fixed at 256 steps.

 One bit at each step

Finalization

 The cipher runs for 768 steps.

38

 The last 128 bits of keystream are the tag.

After the processing of the associated data, one plaintext bit 𝑝 is used to update the state and is also

encrypted to 𝑐 . The encryption is as follows: 𝑐 𝑝 ⨁𝑘𝑠

The decryption and verification are similar to the encryption and tag generation. If verification fails,

the ciphertext and the authentication tag are not given as output to avoid known plaintext or chosen

ciphertext attacks.

Changes from v1 to v3

 The number of steps was changed for initialization, padding of associated data, padding of

plaintext and finalization from 1536, 512, 512, 512 to 1792, 256, 256, 768 respectively.

This offers better protection to the key if the nonce is reused.

 In initialization, the key bits are used in 1664 steps in contrast with version 1 that were

used only in 128 steps. By this modification the cipher was strengthened against nonce

reuse attacks.

 The function 𝑐ℎ 𝑆 , , 𝑆 , , 𝑆 , was moved from the feedback function 𝑓 to the output

filtering function 𝑘𝑠 . This was made to prevent guess-and-determine attacks.

4.1.1	Security	Analysis	

In general, ACORN is considered to be a secure cipher until now. Despite this, the attacks that

follows present that ACORN can be compromised under some specific circumstances.

ACORN can have state collisions in the internal state [76]. State collisions happen when different

sets of inputs have the same internal state at some point of cipher’s operation. In order to achieve

collisions in ACORN, the 𝐼𝑉 or associated data or plaintext should be modified properly.

Cube attack [77] is one powerful cryptanalytic tool designed for symmetric key ciphers and is

especially effective at stream ciphers. The conventional attack considers the symmetric

cryptosystem as a blackbox polynomial which is analysed experimentally. Therefore, it is not

possible to evaluate the security of a cipher because the experimental size can’t be exceeded. If the

39

cube attack is developed by the division property [78], it is possible to exploit a large cube size. This

was the first time the division property was applied to stream ciphers. Compared to the previous

best key-recovery attacks, this attack was more efficient and it updated the maximum number of

initialization rounds that are needed for the recovery from 503 to 704.

Cube attack was applied on ACORN. This kind of attack is effective against ciphers of low algebraic

degree or against ciphers of high degree but a sparse system of nonlinear equations. There are 6

LFSRs and 14 taps in the initialization process and it is expected and maybe this could make the

system of equations dense. A cube attack was performed [79] to a reduced version of the

initialization phase that consists of 477 steps. The attack could successfully recover the key in the

reduced version but not in the normal version.

An attack framework based upon cube testers and 𝑑-monomial tests is proposed against ACORN-

v3 [80]. Specifically, some high degree monomials are considered in the Boolean functions of the

keystreams using cube testers and a statistical test is carried out on the outputs of the truth tables

of the functions. The specific statistical test is called 𝑑 -monomial [81]. The 𝑑 -monomial test

compares the output of a symmetric cipher with that of a random Boolean function. Normally, the

focus is on the frequency of the special monomials in the ANF of the Boolean functions, but for the

attack, the focus is on the truth table. The framework distinguishes between random sequences and

keystreams of ACORN-v3 and for up to 676 initialization rounds with a time complexity of 200

2 . A big advantage of this proposed framework is that the accuracy of the test can be adjusted to

the available computing power. It is stated that it is the best practical attack on ACORN-v3 so far.

A differential cryptanalysis of initialization is presented by the designers [44]. From the results,

ACORN is proved to be secure against differential cryptanalysis.

A fault differential attack is proposed against ACORN-v3 [82]. The fault attack [83], [84] is

categorised as a side channel attack meaning that it works on physical implementations and the

cipher can be weakened by injecting a fault. The cipher had to be tested to this kind of attacks too,

because it’s an algorithm that maybe will be used in reality. The attack is composed mainly of two

procedures: fault locating and equation solving which are detailed explained in the work. Then a

guess-and-determine method is used to obtain the initial state. It is stated in the work that with 𝑛

fault experiments (26 𝑛 43), the initial state can be recovered with time complexity 𝑐

2 , , , where 𝑐 is the time complexity of solving linear equations. It is also shown that

ACORN-v3 is more vulnerable to this attack than ACORN-v2. Of course, this doesn’t mean that this

40

attack is a problem for the security of ACORN-v3 since it requires many preconditions and high time

complexity.

Another fault attack was conducted against ACORN-v3 [85], that requires 9 faults for cryptanalysis

to be possible. A successful attack means that the secret state is compromised and thus the secret

key is obtained too. The method of the attack is similar to that of a differential fault attack on Plantlet

[86]. The problem of implementing this method to ACORN-v3 was its large state with the

complicated update. To overcome this, some bits are fixed for the differential fault attack to be

possible with the drawback of increasing the time complexity. The big contribution of this work is

the small number of faults that are required for the cryptanalysis.

4.2	Grain	Family	

Grain-128a is the cipher that offers authentication but first there must be a reference to Grain-v1

and Grain-128 that are former versions of the cipher since the basic structure remains the same.

4.2.1	Grain‐v1	

The cipher was submitted to the eSTREAM project and it stood out for its easiness in hardware

implementation and because is able to be applicated in very limited hardware environments. It also

has the feature of increasing its speed in case of extra resources in the hardware. The original

version (v0) was weak and after some observations and changes, the final version was proposed

that is known as Grain-v1 [9].

Grain is a bit oriented synchronous stream cipher. The structure is based in two shift registers of

80 bits, one LFSR and one NFSR. The LFSR guarantees the lower bound of the period and provides

balance to the output and the NFSR adds the nonlinearity. The secret key is 80 bits and the 𝐼𝑉 is

specified to be 64 bits.

The cipher has three main building blocks, the LFSR 𝑓 𝑥 , the NFSR 𝑔 𝑥 and a nonlinear filter

function ℎ 𝑥 . The content of the LFSR is denoted by 𝑠 , 𝑠 , … , 𝑠 and the content of the NFSR

is denoted by 𝑏 , 𝑏 , … , 𝑏 .

The feedback polynomial of the LFSR is defined as:

41

𝑓 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The feedback polynomial of the NFSR is defined as:

𝑔 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The contents of LFSR and NFSR represent the state of the cipher. Out of this state, 5 variables are

used as input to a Boolean function ℎ 𝑥 . This function is balanced, correlation immune of the 1

order, has algebraic degree 3 and 𝑁𝐿 12.

The filter function is defined as:

ℎ 𝑥

where the variables 𝑥 , 𝑥 , 𝑥 , 𝑥 and 𝑥 correspond to 𝑠 , 𝑠 , 𝑠 , 𝑠 and 𝑏

respectively. The output of the filter function produces the keystream of the cipher.

4.2.2	GRAIN‐128	

Due to the increase of the processing capabilities of computers Grain-v1 was not considered secure

because it was vulnerable to exhaustive attacks (it required approximately 2 of computational

complexity). Grain-128 [87] was designed and proposed to meet the requirements of security of

the time and still possessed the advantages of Grain-v1. Grain-128 supports a 128-bits key and a

96-bits 𝐼𝑉. It is stated by the designers that at that time there was not another 128-bit cipher that

could offer such security and ease in hardware implementation.

The cipher, as Grain-v1, consists of an LFSR, an NFSR and an output function with some differences.

The content of the LFSR is denoted by 𝑠 , 𝑠 , … , 𝑠 and the content of the NFSR is denoted by

𝑏 , 𝑏 , … , 𝑏 . The 256 bits of both of these shift registers represent the state of the cipher.

The LFSR is defined as:

42

𝑓 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The NFSR is defined as:

𝑔 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

From the state of the cipher, 9 variables (2 from the NFSR and 7 from the LFSR) are used as input

in the Boolean function ℎ 𝑥 as follows:

ℎ 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

where 𝑥 ,𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 correspond to the tap positions 𝑏 , 𝑠 , 𝑠 ,

𝑠 , 𝑏 , 𝑠 , 𝑠 , 𝑠 , 𝑠 respectively.

The output function, which gives the keystream, is defined as:

𝓏 𝑏
∈

ℎ 𝑥 𝑠

where 𝐴 2,15,36,45,64,73,89 .

4.2.3	GRAIN‐128a	

This is a new version of Grain-128 that offers authentication and is strengthened against all known

attacks. The modifications to this new version did not affect the basic structure of Grain-128 that,

as it previously mentioned, is based on Grain-v1. Thus, the hardware performance of Grain-128a is

close to that of the former versions.

The cipher supports two modes of operations, with and without authentication. When 𝐼𝑉 1, the

authentication is mandatory and when 𝐼𝑉 0, it’s forbidden. The authentication tag, denoted by

𝑤 is up to 32 bits in size and it doesn’t affect the keystream of Grain-128a. If there is no

authentication, the cipher can be more efficient due to its construction.

Most of the parametres of the cipher are the same as the previous version. The key and IV size

remain the same. The polynomials of the LFSR 𝑓 𝑥 and the Boolean function ℎ 𝑥 also remain the

43

same. The output function becomes a pre-output function and a new output function is presented.

There is an addition in the NFSR 𝑔 𝑥 to strengthen the cipher against known attacks as it is stated

by the designers.

The LFSR is defined as:

𝑓 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The NFSR is defined as:

𝑔 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥

The last three monomials are the addition to 𝑔 𝑥 of Grain-128.

Figure	4.2: An overview of the pre-output generator

The pre-output function is defined as

𝓎 𝑏
∈

ℎ 𝑥 𝑠

where 𝐴 2,15,36,45,64,73,89 .

For the generation of the keystream, 𝓎 is used but the is a small difference in the generator that

depends on the mode of operation. If 𝐼𝑉 1 the output function is defined as

44

𝓏 𝓎 2𝑖

If 𝐼𝑉 0, then

𝓏 𝓎

meaning that without authentication, the keystream of the cipher is generated as in Grain-128.

4.2.4	Security	Analysis	

A related-key chosen IV attack was conducted on Grain-v1 and Grain-128 [88] that is an extended

version of the slide resynchronization attack [89]. The attack takes advantage of the similarity of

the setup mode of the ciphers with the keystream generation mode which is common for all ciphers

in the Grain family. The attack on Grain-v1 needs 2 . chosen 𝐼𝑉𝑠 , 2 . bits of keystream

sequences and 2 . computational complexity to recover the secret key. The same attack on

Grain-128 needs 2 . chosen 𝐼𝑉𝑠, 2 . bits of keystream sequences and 2 . computational

complexity to recover the secret key.

The attack described in the previous paragraph is possible due to the symmetric padding that is

used in Grain-v1 and Grain-128. Grain-128a has asymmetric padding, thus the specific chosen 𝐼𝑉

related key attack is not applicable to this new version of Grain. A functionable chosen 𝐼𝑉 related

key attack for Grain-128a [90] was later published and its goal is to recover the key. In the paper it

is proved that using around 2 related keys and 2 chosen 𝐼𝑉𝑠, it’s possible to obtain 32 2

simple nonlinear equations that gives the secret key when solved. The complexity for this attack is

better than exhaustive search. A countermeasure for this attack, that would make its complexity

higher than a brute force would be to extend the padding to be at least equal to half the length of the

secret key [90].

An attack based on differential cryptanalysis and targets cryptosystems that include NLFRs in their

constructions was also used against Grain [91]. What is requested is to obtain deterministic

differential characteristics for large number of rounds by identifying conditions on the internal

state. Depending on these conditions, distinguishing and partial key recovery attacks are derived.

The technique is applied to Grain-v1 and on Grain-128. Grain-128 can be distinguished for up to

215 of its 256 rounds and some parts of the key can be recovered for up to 213 rounds.

45

Standard cube attacks obtain the key by solving linear equations in the key bits. The dynamic	cube	

attack [92] recovers the secret key by exploiting distinguishers obtained by cube testers. The attack

can recover the key of Grain-128 if the number of initialization rounds is reduced to 207 for a

feasible time complexity. The attack is also done with 250 initialization rounds and it’s shown that

this method is faster than exhaustive search. The attack on the full version of the cipher can be

successful if the key belongs to a subset 2 of possible keys. It is stated that in this paper it was

the first time that a cube attack is effective against a well-known, considered secure cipher.

A single key attack is used against Grain-128 [93] which can recover the secret key by an algorithm

significantly faster than exhaustive search. The paper states that for 7,5% of keys, there is an

improvement factor of 2 over exhaustive search. There are no assumptions taken into account

for this attack. The only restriction to the attack is that it needs dedicated hardware, due to high

complexity and hardware-oriented nature. The attack may be infeasible but it presents better

results than other methods.

The attack framework that was mentioned for ACORN-v3 [80], was also applied to Grain-128a in

the same paper. The framework distinguishes between random sequences and keystreams of

Grain128a and for up to 171 initialization rounds with a time complexity of 200 2 . As in

ACORN, the attack has good results, but the security of the cipher is not contained.

The newly introduced MAC in the Grain family is used to authenticate the message. However, it can

be also be used by cryptanalysts to compromise the cipher. This scheme was already described [94]

and it uses a differential fault attack on the cipher to recover the key by observing the correct and

faulty MACs that are produced for certain chosen messages. This attack is functionable due to

specific properties of Boolean functions and corresponding choices of the taps from the LFSR. The

attack requires less than 2 fault injections and invocations of less than 2 MAC generation

routines to find the secret key.

Not many cryptanalytic studies had been published about Grain-128a because not many years has

passed since the introduction of the cipher in 2011. However, Grain-128a is considered to be a

cipher of high security level until now and because of this it has been standardized for radio

frequency identification (RFID) devices.

4.3	PALS	

46

This cipher was introduced by Ashouri [95] and it is designed to resist all known conventional

attacks. It is a clock-controlled stream cipher with a mechanism of altering steps. The main key’s

size is 256 bits and the message key’s size is 32 bits. Important criteria of the cipher are maximum

period, high linear complexity and good statistical properties. The base structure is a clock-

controlled combination generator with memory.

The main and the message keys are used to generate a session key of 256 bits that is extended to

1600 bits and becomes the initial vector.

Message key generator

In PALS, a message key is produced by an LFSR of 32 bits, whose feedback function is represented

by the following polynomial:

𝐶 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

1

Session key generator

The message key bits should be altered by 50% (Avalanche effect) to be used on the main key (𝑀𝑘

and generate the session key (𝑆). For this, a permutation and a substitution box are used for the

32 bits message key to obtain good diffusion that produce a 32-bit sequence. This operation is

repeated eight times and the diffused sequence (𝐷)

𝑆𝑘 𝑀𝑘 ⨁𝐷

Initial Vector Generator

For the production of the IV, an LFSR of 256 bits, a polynomial of degree 256 and four S-boxes are

used. The session key is used as the initial state of the LFSR and generates 8 bits at any clock. For

the diffusion, the S-boxes are used and the first 320 generated bits are discarded. The next 1600

bits are used as the IV.

Keystream generator

47

The generator is based on 8 LFSRs with different lengths that are clocked irregularly using one of

the four S-boxes of the IV generator. 8 bits that are selected in different stages of the LFSRs are used

as input to eight nonlinear Boolean functions of 𝑁𝐿 6 and correlation immunity of the 2 order.

Each function has 9 input variables and the 9 variable’s value is a bit of the S-box’s output. The

output of these 8 functions enters the function 𝑔. The 9 variable of the function 𝑔 is taken by the

output of the nonlinear function ℎ. The output of the function 𝑔 is the keystream.

Figure	4.3: Keystream generator

The polynomial of the output combiner (ℎ and 𝑔 functions) is as follows:

ℎ 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥

𝑥 𝑥

𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

48

𝑔 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ℎ

4.3.1	Security	Analysis	

PALS is a new algorithm that was submitted in 2018. Therefore, there are not yet published attacks

on the cipher except the ones that were performed by the designer in [95], in order to display its

high level of security against known attacks.

49

Chapter	5	
The	Approximation	Technique	

applied	to	the	Algorithms	

In this chapter, the process of finding approximations with fewer variables that was described in

Chapter 3 is applied to the ciphers of Chapter 4. Specifically, the LPA is used on the sequences of the

truth tables of Boolean functions that are used in the algorithms of the ciphers3.

To achieve this, the Boolean functions are expressed in their ANF4 . For better results in the

approximation functions the variables may be permuted. Then, the truth table of the Boolean

function is generated and the LPA is adjusted to respond to the sequence of the truth table. The

sequence is set as input to the algorithm and after that the algorithm is executed. Τhe output

3 For the generation of the truth table, an application that is available on the web was used that was developed

by Southwestern	Adventist	University. http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/

4 For simplicity reasons, characteristic polynomials are associated with Algebraic Normal Forms (ANFs) in

some occasions in this thesis, since this leads to permutation equivalent functions

50

includes the CPs. The SCPs are written down and present the distance of each approximation

function.

For the creation of the approximation function, as it is mentioned in Chapter 3, the LPA must be

modified to present which bits must be changed. After that, the truth table of the approximation

sequence is built and the function is built based on that sequence.

5.1	ACORN	

The keystream bit is generated as follows:

𝑘𝑠 𝑆 , ⊕ 𝑆 , ⊕ 𝑚𝑎𝑗 𝑆 , , 𝑆 , , 𝑆 , ⊕ 𝑐ℎ 𝑆 , , 𝑆 , , 𝑆 ,

We know that

𝑚𝑎𝑗 𝑥, 𝑦, 𝑧 𝑥𝑦⨁𝑥𝑧⨁𝑦𝑧

𝑐ℎ 𝑥, 𝑦, 𝑧 𝑥𝑦⨁ ~𝑥 𝑧 𝑥𝑦⨁𝑧⨁𝑥𝑧

Thus, the keystream generator can be written as:

𝑘𝑠 𝑆 , ⊕ 𝑆 , ⊕ 𝑆 , 𝑆 , ⨁𝑆 , 𝑆 , ⨁𝑆 , 𝑆 , ⊕ 𝑆 , 𝑆 , ⨁𝑆 , ⨁𝑆 , 𝑆 ,

Replacing the 𝑆 with 𝑥 , we have the following Boolean function:

𝑘𝑥 𝑥 ⨁𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 ⨁𝑥 𝑥

According to Proposition 1, the highest possible approximation that depends on 𝑛 1 variables

for a function of 𝑑𝑒𝑔 2 is:

1
1

2
100% 75%

The critical points are (0,161), (64,73), (96,17), (128,0). The SCPs are (64,73), (96,17). Like it was

mentioned in Chapter 3, the first number displays the number of bits that need to be changed, thus

the distance between the two functions and the second number displays the corresponding linear

51

complexity which is used to find out the number of variables. Based on the previous, Table 5.1

displays at each row the number of variables, the distance and the approximation of each SCP.

Variables Distance Approximation (%)

7 64 75

5 96 62,5

 										Table	5.1: ACORN I

The approximation that depends on 𝑛 1 variables is the highest possible, although 𝑥 appears in

two monomials. That is because 𝑥 affects (64) bits even if it exists in two monomials. Like it was

shown in subchapter	3.3.2, it is not necessary for variables to only exist once in an ANF to find the

best approximation functions.

The next approximation function depends on 𝑛 3 5 variables. Apparently, the distance of the

function that depends on 𝑛 2 6 variables has the same distance as the one that depends on

one less variable from the function 𝑘𝑥 . This means that the distance between 𝑘𝑥 and the function

that depends on 𝑛 2 is also 96. However, the LPA only showed the one with the less linear

complexity, which is the one that depends on 𝑛 3 variables.

Variable 𝑥 affects (64) bits in the function 𝑘𝑥 as variable 𝑥 but because 𝑥 is the second

variable that needs to be removed and there would be only 6 variables left in the function, other

things should be taken into account – the interaction between the ℬ𝒜 by variables 𝑥 and 𝑥 .

As concerns the variable 𝑥 , it also affects (64) bits of function 𝑘𝑥 . The function that depends on

𝑛 3 variables has the same distance as the one that depends on 𝑛 2 variables because of the

interaction of the ℬ𝒜.

As it is presented, only two approximations are computed by this order of variables. There are no

more approximations because 𝑥 only appears once in a monomial of degree 1. However, more

approximations may be found because there are more variables that appear in monomials with

𝑑𝑒𝑔 1 that can be permitted with 𝑥 .

By permitting the variables the new order is as follows:

52

𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 ,

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

Table	5.2: ACORN II

Thus, the ANF of the new permuted equivalent function is:

𝑘𝑥 𝑥 ⨁𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 𝑥 ⨁𝑥 ⨁𝑥 𝑥

The sequence of the truth table of the above function is used as input to the LPA that gives the

following CPs: (0,161), (64,81), (96,9), (128,0). The approximations that can be built by these CPs

are presented in Table 5.3.

Variables Distance Approximation (%)

7 64 75

4 96 62,5

 Table	5.3: ACORN III

This means that an approximation function can be built that depends on 𝑛 4 4 variables and

it has the same distance as the approximation function that depends on 𝑛 3 variables that was

computed for the normal order of the variables.

The approximations of this function also stop at the point of 𝑆 , . Looking to find better

approximations than the previously mentioned ones and taking into account the function with the

permitted variables, 𝑆 , was permuted with 𝑆 , and later in another function with 𝑆 , but no

better approximation function were found. Thus, the results in Table 5.3 are considered to be the

best approximations that can be found by the LPA for function 𝑘𝑠 .

It is important to mention that, if the variables 𝑥 are replaced with 𝑥 for 1 𝑖 8 , it is

confirmed that there are no SCPs because the last variable only exists once in the ANF, in a

monomial of degree 1.

5.2	GRAIN‐v1	

53

NFSR

The feedback polynomial of the NFSR is defined as:

𝑔 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

For the purpose of analysing 𝑔 𝑥 , (𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥) are

replaced by 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥) respectively.

Thus, 𝑔 𝑥 can also be written as:

𝑔 𝑥 1 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 ⊕ 𝑥 𝑥

⊕ 𝑥 𝑥 ⊕ 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 𝑥

⊕ 𝑥 𝑥 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 𝑥 𝑥 ⊕ 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

(Νote that the constant term 1 does not affect the degree to which a function can be approximated

by another function with fewer number of variables).

By observing the polynomial, one can see that the variable 𝑥 , which is the last variable, only

appears once in a monomial with degree 1. This means that it affects the maximum possible bits;

ℬ𝒜 . As a result, it is certain like it was mentioned in Chapter 3, that there won’t be any

SCPs. Applying the LPA to the sequence of the truth table of 𝑔 𝑥 , it is presented that indeed there

are only two CPs: (0,1025), (1024,0).

Therefore, in order to find good approximations of this function, the variables must be

permuted. It is interesting to observe that just by replacing 𝑥 with 𝑥 for 1 𝑖 11 there are

some good approximations that are presented in Table 5.4.

54

Variables Distance Approximation (%)

10 624 69,5

9 652 68,2

8 832 59,4

7 868 57,6

6 948 53,7

2 1004 50,1

 Table	5.4: Grain-v1 NFSR I

It can be observed that the 𝑛 1 approximation has a big difference from the best approximation

that is possible for a function of 𝑑𝑒𝑔 6 which is:

1
1

2
100% 98,4%

One could see that the variable 𝑥 which was placed last doesn’t exist in a monomial which has

degree equal to deg 𝑔 . So, one could think that maybe it would be better to place a variable that

exists in a monomial with degree that equals deg 𝑔 . This is not always true. As an example, the

variables are permuted as is shown in Table 5.5.

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

Table	5.5: Grain-v1 NFSR II

The last variable was set to be 𝑥 to examine if the approximation function that depends on 𝑛 1

variables has less distance than the approximation that depends on 𝑛 1 variables when 𝑥 is set

to be last. The first approximation is very important because the approximations that depends on

less variables have greater distance of the ones with more variables. For example, if the

approximation of the function that depends on 𝑛 1 variables is 80%, then the approximations of

the functions that depends on 𝑛 𝑥 variables, where 𝑥 2,3, … , 𝑛 2, is 80% for the same

𝑥 .

The approximations of the permuted function (Table 5.5) are shown in Table 5.6.

55

Variables Distance Approximation (%)

10 752 63,3

9 832 59,4

8 856 58,2

7 864 57,8

6 964 52,9

5 980 52,1

3 996 51,4

 Table	5.6: Grain-v1 NFSR III

It can be seen that the approximation that depends on 𝑛 1 variables is not better than the one

computed in Table 5.4.

From Table 5.6, it can be observed that the approximation functions with the least distance are the

ones with 8 and 7 variables. This could be seen as a weakness for variable 𝑥 and that it could

compute a good approximation that depends on 𝑛 1 variables if it is set last. So, it would seem

interesting to place the 8 variable last to observe the approximations that will be calculated.

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

Table	5.7: Grain-v1 NFSR IV

The approximation that depends on 𝑛 1 variables of the permuted function (Table 5.7)

approximates 𝑔 𝑥 63,3%, like the one of the previously permuted function (Table 5.6). So, the

interaction with the variables that were after 𝑥 was the reason that the distance was little.

Finding a better approximation would be easy if it was known how each variable interacts with the

others and how many bits are affected by each variable. However, this is indeed difficult for 𝑔 𝑥

because it has many monomials of different degrees that varies from 1 to 6.

It would be interesting to observe which variable if set last has the best approximation that depends

on 𝑛 1 variables. Table 5.8 presents the variables that are placed last and the corresponding

distance and approximation of the functions that can be built and depend on 𝑛 1 variables.

56

Variable set last Distance Approximation (%)

𝑥 592 71,1

𝑥 592 71,1

𝑥 592 71,1

𝑥 544 73,4

𝑥 544 73,4

𝑥 576 71,9

𝑥 752 63,3

 Table	5.8: Grain-v1 NFSR V

Thus, the best approximation that can be computed with LPA for function 𝑔 𝑥 that depends on

𝑛 1 variables is 73,4%.

Filter function

The filter function is correlation immune of the 1 order. The filter function is defined as:

ℎ 𝑥

where the variables 𝑥 , 𝑥 , 𝑥 , 𝑥 and 𝑥 correspond to 𝑠 , 𝑠 , 𝑠 , 𝑠 and 𝑏

respectively. The output of the filter function produces the keystream of the cipher.

The SCPs of ℎ 𝑥 are shown in Table 5.9.

Variables Distance Minimum Distance Approximation (%)

4 8 2,733501 75

3 8

2 12 12 62,5

 Table	5.9: Grain-v1 Filter Function I

The 3rd column presents the lowest possible distance of an approximation function to ℎ 𝑥 based

on equation (1) of this thesis. It is observed that for the approximation function that depends on 2

variables the distance is the least possible. For the approximation function that depends on 4

57

variables it is observed that the distance can be lower. Thus, a better approximation with 4

variables may be calculated with LPA. For this, a different approach is used.

The truth table of function ℎ 𝑥 is a sequence of 32 bits. Thus, it is easier to observe how the

variables interact with each other. For this, variable 𝑥 is examined that was last in the function and

it needed 8 bits to be removed for the approximation function with 1 less variable. ℬ𝒜 depends

on these monomials:

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

 VARIABLES MONOMIALS

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
17 0 0 0 0 1

18 1 0 0 0 1

19 0 1 0 0 1

20 1 1 0 0 1

21 0 0 1 0 1

22 1 0 1 0 1

23 0 1 1 0 1

24 1 1 1 0 1

25 0 0 0 1 1

26 1 0 0 1 1

27 0 1 0 1 1

28 1 1 0 1 1

29 0 0 1 1 1

30 1 0 1 1 1

31 0 1 1 1 1

32 1 1 1 1 1

Table	5.10: Grain-v1 Filter Function II

In Table 5.10 is presented only the second half of the truth table because on the first half variable

𝑥 0 and no bits are affected. By the symbol is meant that the specific bit in the output column

of the truth table is affected by the variable and by the symbol is meant that the bit is restored in

its initial state. The shaded background of the boxes that include these symbols, indicates the last

state of the bit.

Thus, the variable 𝑥 affects:

 = 8

58

Of course, doing this for variables that exist in functions that depends on greater number of

variables is not so easy and it is time-consuming.

For variable 𝑥 , that only exists in three monomials in the function (𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥), it is

easier to compute ℬ𝒜 , that equals:

32
2

32
8

32
16

32
16

12

Monomial 𝑥 affects 16 bits of the truth table. Monomial 𝑥 𝑥 𝑥 restore 4 bits to their initial state.

At the monomial 𝑥 𝑥 𝑥 things get more complicated. However, it is easy to see that the previous

monomial 𝑥 𝑥 𝑥 restored 2 bits in the 1 half of the truth table and 2 bits in the 2 half. The

monomial 𝑥 𝑥 𝑥 affects 2 of the restored bits and restores 2 bits.

According to the above, the bits that are changed by 𝑥 are 12, so if 𝑥 is placed last, then the

approximation function that depends on 𝑛 1 variables should have a distance of 12 from ℎ 𝑥 .

After the appropriate permutation, the SCP that is computed by LPA is: (12,9).

It is concluded that the best approximation that depends on 4 variables has a distance of 8 from

ℎ 𝑥 . This is of course the best approximation that can be computed by using the LPA.

5.3	GRAIN‐128	

NFSR

The NFSR is defined as:

𝑔 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The LPA has a limitation to the length of sequence that can take as input, which is 2 meaning that

12 variables can be used. The function 𝑔 𝑥 has 19 variables and this complicates the procedure

because applying the LPA algorithm to a 2 -bit sequence is of high computational and memory

requirements for our testing system.

59

Observing the function, it can be seen that all variables exist only once in the ANF. It is also observed

that 5 variables in the function appear in monomials of degree 1. These 5 variables don’t contribute

to the computation of approximations, so all 5 can be ignored during the procedure, because they

are of no use in the process of finding approximation functions, like it is shown in Proposition 2.

At this point, it is also safe to estimate the approximations that will be computed before using the

LPA. For this function, it is ensured that there exist approximations with fewer number of variables,

whose approximation degrees are 75% and 62,5%. This is because all the variables (excluding the

5 previously mentioned) exist in monomials of degree 2. It is also expected to compute

approximations 62,5%.

The approximations can be estimated but the LPA is needed to calculate the number of variables

for each approximation function. That is not possible with the current version of LPA, because

excluding the 5 variables, there are still 14 variables.

Of course, the LPA is not necessary for the approximating function that depends on 𝑛 1 variables.

That is because each variable only appears once in the ANF, including the last one. Since it only

appears once in a monomial of degree 2, it means that the approximation is 75%.

To be able to run the LPA, the function needs to be shortened to 12 variables. Thus, the following

polynomial represent a part of the function 𝑔 𝑥 :

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

(It can be observed that this specific part of the function is actually a bent function if taken as it is)

The use of a part of the whole function in the LPA can provide the way the distance grows while the

variables that are needed decrease. This way, if there is a pattern, it is possible to find the

approximations of the whole function without running the LPA. Of course, for the process of

building these approximation functions the LPA is needed.

After running the part of the function in the LPA the following SCPs are calculated:

1024,769 , 1536,193 , 1792,49 , 1920,13 , 1984,4 . These results are illustrated in

Table 5.11.

60

Variables Distance Approximation (%)

10 1024 75

8 1536 62,5

6 1792 56,3

4 1920 53,1

2 1984 51,6

 Table	5.11: Grain-128 NFSR I

It is also necessary to mention CP: (2016,0) Approximation 50,8%.

From the SCPs calculated by a part of the function, it is possible to understand what SCPs will occur

if the truth table of the whole function is used in the LPA. That’s because there is a pattern. The

approximations depend on 12 2𝑥 variables and the distance is 2 for 𝑥

1,2,3,4,5 .

This pattern applied to the function 𝑔 𝑥 give us the results that are depicted in Table 5.12.

Variables Distance Approximation (%)

17
2
2

ή 2
2
2
 75

15 2
2
4
 62,5

13 2
2
8
 56,3

11 2
2
16

 53,1

9 2
2
32

 51,6

7 2
2
64

 50,8

5 2
2
128

 50,4

 Table	5.12: Grain-128 NFSR II

61

Essentially, these approximation functions are nothing more than the same function with less

variables. Each approximation function uses two less variables of one monomial of the polynomial,

like it was shown in Proposition 1.

Filter function

From the state of the cipher, 9 variables (2 from the NFSR and 7 from the LFSR) are used as input

in the Boolean function ℎ 𝑥 as follows:

ℎ 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

where 𝑥 ,𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 correspond to the tap positions 𝑏 , 𝑠 , 𝑠 , 𝑠 ,

𝑏 , 𝑠 , 𝑠 , 𝑠 , 𝑠 respectively.

The highest possible approximation that depends on 𝑛 1 variables for this function is:

1
1

2
100% 87,5%

After running the LPA with sequence of the truth table the results that are presented in Table 5.13

are calculated. As it is shown, there is a function that depends on 𝑛 1 variables and it

approximates ℎ 𝑥 87,5%

Variables Distance Approximation (%)

8 64 87,5

6 160 68,75

4 192 62,5

2 224 56,25

 Table	5.13: Grain-128 Filter Function I

Since the best approximation function that depends on 𝑛 1 variables is found, there is no reason

to permute the last variable. However, it is possible to find better approximations that depends on

less variables. For this, the order of the variables is changed as in Table 5.14.

62

𝑏 , 𝑠 𝑠 𝑠 𝑏 𝑠 𝑠 𝑠 𝑠

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

Table	5.14: Grain-128 Filter Function II

As it can be seen, 𝑏 and 𝑏 are 𝑥 and 𝑥 respectively. This permutation was done to test if

the variables that are in the same monomial and interact with 𝑥 can lead to better approximations.

Of course, both of them are used in another monomial and that’s something that complicates the

interaction and the outcome. Thus, the function after the permutation is as follows

ℎ 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

The results of the LPA are presented in Table 5.15.

Variables Distance Approximation (%)

8 64 87,5

7 128 75

6 160 68,75

4 192 62,5

2 224 56,25

												Table	5.15: Grain-128 Filter Function III

It is seen that not better approximations are computed, but there is one more approximation that

depends on 7 variables.

5.4	GRAIN‐128a	

For Grain-128a, only the NFSR is tested because the function ℎ 𝑥 is the same as in Grain-128.

The NFSR is defined as:

𝑔 𝑥 1 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥

63

The last three monomials are the addition to 𝑔 𝑥 of Grain-128. This function consists of 29

variables, 10 more than its previous version and once again all the variables only exist once in the

polynomial.

This means that the LPA is not necessary in this function, like in the NFSR of Grain-128, in the

process of computing the approximations. Like the NFSR of Grain-128, the number of the variables

and the distance of the approximations from 𝑔 𝑥 depends on the degree of the monomials.

For example, to have the highest possible 1 SCP, the variables of the monomial which is of degree

4 (since deg 𝑔 4 , are permitted and placed last. The first approximation will be equal to 1

100% 93,8%. This approximation function depends on 4 less variable of the function

𝑔 𝑥 which are the four prementioned variables. The distance of the approximation to the function

𝑔 𝑥 is bits. Thus, the 1st approximation depends on 25 variables, has a distance of bits and

approximates 𝑔 𝑥 93,8%. Specifically, this approximation function is the same as 𝑔 𝑥 without

the last monomial.

Using Proposition 1, the rest of the approximations can be calculated without LPA.

5.5	PALS	

The polynomial of the output combiner (ℎ and 𝑔 functions) is as follows:

ℎ 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥

𝑥 𝑥

𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑔 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ℎ

The way the output combiner of PALS is built (having the NFSR output as input in an LFSR), makes

the approximation techniques on function ℎ of limited cryptographic value for the cryptanalysis of

the cipher. However, it is still considered important to observe how the NFSR resist to this kind of

64

approximation technique because if the NFSR is compromised, then the difficulty to compromise

the whole output combiner is decreased.

The function ℎ consists of 9 variables and as it can be observed, it depends on many monomials of

different degrees and all variables appear many times. This leads to a complex interaction between

the variables, that complicates the procedure of finding better approximations with permutation.

Thus, the function ℎ is tested as it is.

The highest possible approximation that depends on 𝑛 1 variables for this function is:

1
1

2
100% 98,4%

However, it is not expected to have such a high approximation due to the interaction of the

variables.

After running the sequence of the truth table of the function in the LPA, the following SCPs are

computed: 128,131 , 160,97 , 188,40 , 208,17 , 240,9 . Table 5.16 illustrates the details

of each approximation function.

Variables Distance Approximation (%)

8 128 75

7 160 68,8

6 188 63,3

5 208 59,4

4 240 53,1

											Table	5.16: PALS I

The function that depends on 8 variables approximates ℎ 75%. This is not even close to the 98,4%.

The other approximations have a slightly bigger distance from ℎ from the approximations that

depends on one more variable, with the last one that depends on 4 variables approximating ℎ just

53,1%.

If the best approximations need to be calculated for this function with LPA, the ℬ𝒜 need to be

calculated for each variable and the interaction of these bits.

65

Chapter	6	
Conclusions	

The authenticated stream ciphers share similarities in their basic structures. The general

framework of authenticated stream ciphers, which is based on these similarities, is considered to

be very important and useful in the cryptographic community; many authenticated stream ciphers

lie in the class of lightweight ciphers and thus, they are candidates for adoption in Internet of Things

(IoT) applications, in which devices connected to the internet that can utilize limited resources for

the purpose of encryption and authentication are being used. Authenticated stream ciphers

combine security, high speed of execution and low hardware complexity. This means that such

ciphers can be built to be lightweight, like ACORN. As a result, there is much attention to this

category of ciphers by cryptographers and there will be much more in the upcoming years.

In this thesis, three authenticated stream ciphers are analysed and all of them are considered to be

secure. Even if there are some attacks on Grain-128a and ACORN that show good results, there is

no attack that comes close to compromising the ciphers. Of course, it should be mentioned that most

of the attacks that are used on the ciphers are designed for prior ciphers that don’t fall into the

category of authenticated stream ciphers and they had to be adjusted. Thus, the designers could

take into account these attacks and use the info to make sure that the ciphers would withstand

66

them. Future studies should concentrate more on the cryptanalytic methods on specifically

authenticated stream ciphers. Especially the fusion of authentication and encryption methods

should be properly examined for weaknesses that can be used to compromise the ciphers. This,

certainly doesn’t mean that attacks that are not designed specifically for authenticated stream

ciphers should not be considered important. Such an attack could be one using the approximation

technique that was described in Chapter 3.

The approximation technique is based on the relationship of binary sequences and the truth table

of Boolean functions. The technique takes advantage of the advanced study that has been done on

binary sequence and applies it to the truth table of Boolean functions. Specifically, the Error Linear

Complexity Spectrum (ELCS) is used to find approximation functions that depend on less variables.

This means that this technique could be widely used because of the vast use of Boolean functions in

cryptographic ciphers. Based on the previous, the approximation technique can be considered as

an evaluation tool for new ciphers but also can be used to existing algorithms in future studies.

In addition to the study of the technique, this thesis also introduces a theoretical framework that

can be used to have the optimal results in the calculation of the approximations. As it was described

in Chapter 3, the technique highly depends on the order of the variables of the function. Based on

this, it was proved in this thesis that the proper order of the input variables can be calculated for

some specific cases. It is shown how the bits affected by a variable in the truth table can lead to the

highest possible approximation function that depends on 1 less variable. The method of calculating

the number of the bits affected is given in detail in Chapter 3. However, to calculate approximation

functions that depends on more than 1 less variables, the interaction between the bits affected in

the truth table of the variables that will be disregarded must be calculate. In case the approximation

function depends on 1 less variable, the interaction of variables is not taken into account because

only one variable is disregarded.

Apart from the theoretical framework that is used to properly permute the input variables, there

are also some suggestions that are useful to determine the right order of the variables in the

approximation technique. It is also stated in which cases this technique is not necessary to compute

the approximations and which parts (if there are any) of Boolean functions don’t contribute to the

calculation of approximations. It is also shown that the approximation is linked to the degree of the

function and with that degree an upper bound limit (that concerns only the approximations that

can be found by LPA) of the approximations can be calculated even before using the technique. All

the previous, give a major advantage in the process of evaluating a function using this technique as

67

a cryptographic criterion. Furthermore, the work that is done in this thesis paves the way for further

studies on this subject. For example, a future study could focus on the way the disregarded variables

interact with one another.

Except the theoretical analysis of the approximation technique, the latter was also applied to the

three authenticated stream ciphers and also the two prior ciphers of Grain-128a that are described

in Chapter 4. The results of the application of the technique are written down in Chapter 5 and the

methods of the theoretical framework that are introduced in this thesis are used, so that the

technique is more effective. Each one of the ciphers has a different reaction to the technique that is

mentioned in brief in the following paragraphs.

Firstly, the approximation technique is applied to ACORN. Due to the function’s low degree, the

approximation’s upper bound limit for a function that depends on 1 less variable is only 75%.

However, a function of this approximation (75%) is possible and it is calculated. After this, a

function that approximates the function 𝑘𝑠 62,5% is calculated that depends on 4 less variables.

The approximation may be low, but 4 variables are disregarded. It is reminded that 𝑘𝑠 uses 8

variables, so only half of the variables are used in the approximation function that is indeed a critical

reduction. It is also remarked that these approximations are the best possible that can be calculated

by the technique.

The next ciphers that are tested are the ones of the Grain family and for start Grain-v1. For the

feedback function of the NFSR that has 11 input variables there are three different permutations of

the function 𝑓 𝑥 that are used for the technique, so as a result there are approximation functions

that vary in terms of the depending variables (2 to 10) and of the approximations (50,1 – 69,5%).

After that, the best possible approximation function that depends on 1 less variable is calculated

and it approximates 𝑓 𝑥 73,4%. For the filter function ℎ 𝑥 that has 5 input variables, the best

possible approximations that depends on 2 and 4 variables are calculated which approximate ℎ 𝑥

62,5% and 75% respectively. The one that depends on 4 variables is calculated after computing the

ℬ𝒜 of all the variables. The one with the least value is used as the last variable to calculate the

prementioned approximation function. As concerns the other approximation function that

depends on 2 variables, no further examination can be done after the first approximation on the

regular order of the variables, since (1) shows that the approximation function that is calculated

has the minimum distance.

68

After that, Grain-128 is used, whose feedback polynomial of the NFSR is drastically changed

compared to the one in Grain-v1. The feedback function has 19 input variables, the degree of the

function is 2 and all the variables only appear once in the function. The best approximation function

that depends on 17 variables is calculated and approximates 𝑔 𝑥 75%. Moreover, all the other

best possible approximations are written down. This is possible due to the form of function 𝑔 𝑥 -

the explanation is in Proposition 1. A significant pattern is also revealed during the calculation of

the approximations that can be used in other Boolean functions that have a similar form. The filter

function is composed of 9 variables and the best approximation function that depends on 8

variables is calculated and approximates ℎ 𝑥 87,5%. Other approximations are also calculated

that can lower the number of variables to 2 with a 56,25% approximation.

The last cipher of the Grain family is also the one that offers authentication and it is Grain-128a. The

feedback function is the same as in Grain-128 with the addition of three monomials in the

polynomial. Proposition 1 is also applicable on this function and the best possible approximations

can be calculated, although the use of the technique is not necessary like it is explained in Chapter

5. On the other hand, the filter function remains the same as in Grain-128 and so do the

approximations.

For the end, the approximation technique is applied to the output combiner of PALS. The combiner

function (ℎ) has 9 input variables and deg ℎ 7 . The approximations functions that are

calculated in the regular order of variables in ℎ depends on 4 to 8 variables and approximates ℎ

53,1 to 75%. This surely doesn’t even come close to the upper bound limit of the best

approximation that depends on 8 variables, but it needs to be mentioned that no permutation is

done to this function. Thus, much better approximations may be possible and could be calculated

in a future study.

From the results in Chapter 5, it is proved that the approximation technique can indeed calculate

approximation functions of cryptographic value. Immediately, it is safe to state that the

approximation technique can be used as a cryptographic criterion to evaluate functions in ciphers.

However, it is also necessary for future studies to focus on finding the way to calculate the best

possible permutation of variables in a function, so that the full potential of the approximation attack

can be achieved each time. The work that is done in this thesis can be a starting point. Except that,

future studies can also work on cryptanalytic techniques that can be combined with the

approximation technique with the purpose of compromising a cipher.

69

Bibliography	

[1] K. Limniotis and N. Kolokotronis, ‘The error linear complexity spectrum as a cryptographic

criterion of Boolean Functions’, Submitted	to	IEEE	Trans.	Inform.	Theory	(under	review).

[2] G. S. Vernam, ‘Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic

Communications’, Transactions	of	the	American	Institute	of	Electrical	Engineers, vol. XLV, pp. 295–

301, Jan. 1926.

[3] C. Paar and J. Pelzl, Understanding	Cryptography:	A	Textbook	for	Students	and	Practitioners.

Berlin: Springer, 2010.

[4] S. W. Golomb, Shift	Register	Sequences. Laguna Hills, CA, USA: Aegean Park Press, 1981.

[5] J. Massey, ‘Shift-register synthesis and BCH decoding’, IEEE	Transactions	on	Information	

Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[6] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook	of	Applied	Cryptography, 1st

ed. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[7] A. Braeken and J. Lano, ‘On the (Im)Possibility of Practical and Secure Nonlinear Filters and

Combiners’, in Selected	Areas	in	Cryptography, 2006, pp. 159–174.

[8] C. De Cannière, ‘Trivium: A Stream Cipher Construction Inspired by Block Cipher Design

Principles’, in Information	Security, 2006, pp. 171–186.

[9] M. Hell, T. Johansson, and W. Meier, ‘Grain: a Stream Cipher for Constrained Environments’,

Int.	J.	Wire.	Mob.	Comput., vol. 2, no. 1, pp. 86–93, May 2007.

[10] H. Fredricksen, ‘A Survey of Full Length Nonlinear Shift Register Cycle Algorithms’, SIAM	

Rev., vol. 24, no. 2, pp. 195–221, Apr. 1982.

[11] A. Tsuneda, K. Kudo, D. Yoshioka, and T. Inoue, ‘Maximal-Period Sequences Generated by

Feedback-Limited Nonlinear Shift Registers’, IEICE	Transactions	on	Fundamentals	of	Electronics	

Communications	and	Computer	Sciences, vol. E90A, pp. 2079–2084, 2007.

70

[12] R. A. Rueppel, New	Approaches	to	Stream	Ciphers. Swiss Federal Institute of Technology

Zurich, 1984.

[13] H. Beker and F. Piper, Cipher	 systems.	 The	 protection	 of	 communications. London,

Northwood Books, 1982, 1982.

[14] E. D. Erdmann, ‘Empirical Tests of Binary Keystreams’, Master’s thesis, University of

London, 1992.

[15] M. J. B. Robshaw, ‘Stream Ciphers’, RSA Laboratories, Redwood City, CA, Technical 701, Jul.

1995.

[16] M. Bellare and C. Namprempre, ‘Authenticated Encryption: Relations among Notions and

Analysis of the Generic Composition Paradigm’, in Journal	of	Cryptology, 2000, vol. 21, pp. 531–545.

[17] J. Katz and M. Yung, ‘Unforgeable Encryption and Chosen Ciphertext Secure Modes of

Operation’, in Fast	Software	Encryption, 2001, pp. 284–299.

[18] V. D. Gligor and B. G. Lindsay, ‘Object Migration and Authentication’, IEEE	Transactions	on	

Software	Engineering, vol. SE-5, no. 6, pp. 607–611, Nov. 1979.

[19] C. Campbell, ‘Design and specification of cryptographic capabilities’, IEEE	Communications	

Society	Magazine, vol. 16, no. 6, pp. 15–19, Nov. 1978.

[20] R. R. Jueneman, S. M. Matyas, and C. H. Meyer, ‘Message Authentication with Manipulation

Detection Code’, in 1983	IEEE	Symposium	on	Security	and	Privacy, Oakland, CA, USA, 1983, pp. 33–

33.

[21] M. Bellare and P. Rogaway, ‘Encode-Then-Encipher Encryption: How to Exploit Nonces or

Redundancy in Plaintexts for Efficient Cryptography’, in Advances	in	Cryptology	—	ASIACRYPT	2000,

2000, pp. 317–330.

[22] M. Bellare, T. Kohno, and C. Namprempre, ‘Authenticated Encryption in SSH: Provably

Fixing the SSH Binary Packet Protocol’, in Proceedings	of	the	9th	ACM	Conference	on	Computer	and	

Communications	Security, New York, NY, USA, 2002, pp. 1–11.

71

[23] H. Krawczyk, ‘The Order of Encryption and Authentication for Protecting Communications

(or: How Secure Is SSL?)’, in Advances	in	Cryptology	—	CRYPTO	2001, 2001, pp. 310–331.

[24] C. S. Jutla, ‘Encryption Modes with Almost Free Message Integrity’, in Advances	in	Cryptology	

—	EUROCRYPT	2001, 2001, pp. 529–544.

[25] P. Rogaway, M. Bellare, and J. Black, ‘OCB: A Block-cipher Mode of Operation for Efficient

Authenticated Encryption’, ACM	Trans.	Inf.	Syst.	Secur., vol. 6, no. 3, pp. 365–403, Aug. 2003.

[26] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, ‘UMAC: Fast and Secure Message

Authentication’, in Advances	in	Cryptology	—	CRYPTO’	99, 1999, pp. 216–233.

[27] D. Whiting, R. Housley, and N. Ferguson, Counter	with	cbc‐mac	(ccm). RFC Editor, 2003.

[28] D. A. Mcgrew and J. Viega, The	Galois/counter	mode	of	operation	(GCM). 2004.

[29] P. Rogaway, ‘Authenticated-encryption with Associated-data’, in Proceedings	of	the	9th	ACM	

Conference	on	Computer	and	Communications	Security, New York, NY, USA, 2002, pp. 98–107.

[30] D. A. McGrew and J. Viega, ‘The Security and Performance of the Galois/Counter Mode

(GCM) of Operation’, in Progress	in	Cryptology	‐	INDOCRYPT	2004, 2005, pp. 343–355.

[31] P. Rogaway, ‘Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes

OCB and PMAC’, in Advances	in	Cryptology	‐	ASIACRYPT	2004, 2004, pp. 16–31.

[32] P. Sarkar, ‘A Simple and Generic Construction of Authenticated Encryption with Associated

Data’, ACM	Trans.	Inf.	Syst.	Secur., vol. 13, no. 4, pp. 33:1–33:16, Dec. 2010.

[33] P. Sarkar, ‘Modes of operations for encryption and authentication using stream ciphers

supporting an initialisation vector’, Cryptography	and	Communications, vol. 6, no. 3, pp. 189–231,

Sep. 2014.

[34] P. Hawkes and G. Rose, ‘Primitive Specification for SOBER-128’, Cryptology ePrint Archive,

2003/081, 2003.

72

[35] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno, ‘Helix: Fast Encryption

and Authentication in a Single Cryptographic Primitive’, in Fast	Software	Encryption, 2003, pp. 330–

346.

[36] D. Whiting, B. Schneier, S. Lucks, and F. Muller, ‘Phelix-fast encryption and authentication in

a single cryptographic primitive’, eSTREAM ECRYPT, Stream Cipher Project 2005/020, 2005.

[37] 3GPP Task Force, ‘Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3. Document 2: ZUC Specification’. ETSI/SAGE, 2011.

[38] M. Ågren, M. Hell, T. Johansson, and W. Meier, ‘Grain-128a: a new version of Grain-128 with

optional authentication’, International	Journal	of	Wireless	and	Mobile	Computing, vol. 5, no. 1, pp. 48–

59, 2011.

[39] G. Sekar, ‘The Stream Cipher Core of the 3GPP Encryption Standard 128-EEA3: Timing

Attacks and Countermeasures’, in Information	Security	and	Cryptology, 2012, pp. 269–288.

[40] D. Watanabe and S. Furuya, ‘A MAC Forgery Attack on SOBER-128’, in Fast	 Software	

Encryption, 2004, pp. 472–482.

[41] F. Muller, ‘Differential Attacks against the Helix Stream Cipher’, in Fast	Software	Encryption,

2004, pp. 94–108.

[42] H. Wu and B. Preneel, ‘Differential-Linear Attacks Against the Stream Cipher Phelix’, in Fast	

Software	Encryption, 2007, pp. 87–100.

[43] D. J. Bernstein, ‘The Poly1305-AES Message-Authentication Code’, in Fast	 Software	

Encryption, 2005, pp. 32–49.

[44] H. Wu, ‘ACORN: a lightweight authenticated cipher (v3)’, Candidate	 for	 the	 CAESAR	

Competition.	See	also	https://competitions.cr.yp.to/round3/acornv3.pdf, 2016.

[45] H. Wu and T. Huang, ‘The authenticated cipher MORUS (v1)’, CAESAR	submission, 2014.

[46] R. A. Rueppel, Analysis	and	Design	of	Stream	Ciphers. Berlin, Heidelberg: Springer-Verlag,

1986.

73

[47] R. Games and A. Chan, ‘A fast algorithm for determining the complexity of a binary sequence

with period2^n(Corresp.)’, IEEE	Transactions	on	Information	Theory, vol. 29, no. 1, pp. 144–146, Jan.

1983.

[48] K. G. Paterson, ‘Perfect maps’, IEEE	Transactions	on	Information	Theory, vol. 40, no. 3, pp.

743–753, May 1994.

[49] T. Etzion, ‘Constructions for perfect maps and pseudorandom arrays’, IEEE	Transactions	on	

Information	Theory, vol. 34, no. 5, pp. 1308–1316, Sep. 1988.

[50] R. A. Rueppel, ‘Linear Complexity and Random Sequences’, in Advances	in	Cryptology	—	

EUROCRYPT’	85, 1986, pp. 167–188.

[51] M. Stamp and C. F. Martin, ‘An algorithm for the k-error linear complexity of binary

sequences with period 2/sup n/’, IEEE	Transactions	on	Information	Theory, vol. 39, no. 4, pp. 1398–

1401, Jul. 1993.

[52] H. Niederreiter, ‘Some Computable Complexity Measures for Binary Sequences’, in

Sequences	and	their	Applications, 1999, pp. 67–78.

[53] K. Kurosawa, F. Sato, T. Sakata, and W. Kishimoto, ‘A relationship between linear complexity

and k-error linear complexity’, IEEE	Transactions	on	Information	Theory, vol. 46, no. 2, pp. 694–698,

Mar. 2000.

[54] T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis, and K. G. Paterson, ‘Properties of the

Error Linear Complexity Spectrum’, IEEE	Transactions	on	Information	Theory, vol. 55, no. 10, pp.

4681–4686, Oct. 2009.

[55] A. G. B. Lauder and K. G. Paterson, ‘Computing the error linear complexity spectrum of a

binary sequence of period 2/sup n/’, IEEE	Transactions	on	Information	Theory, vol. 49, no. 1, pp.

273–280, Jan. 2003.

[56] J. L. Massey, D. J. Costello, and J. Justesen, ‘Polynomial weights and code constructions’, IEEE	

Transactions	on	Information	Theory, vol. 19, no. 1, pp. 101–110, Jan. 1973.

74

[57] A. Salagean, ‘On the computation of the linear complexity and the k-error linear complexity

of binary sequences with period a power of two’, IEEE	Transactions	on	Information	Theory, vol. 51,

no. 3, pp. 1145–1150, Mar. 2005.

[58] M. Matsui, ‘Linear Cryptanalysis Method for DES Cipher’, in Advances	 in	Cryptology	—	

EUROCRYPT	’93, 1994, pp. 386–397.

[59] C. Ding, G. Xiao, and W. Shan, ‘The Stability Theory of Stream Ciphers’, in Lecture	Notes	in	

Computer	Science, 1991, vol. 561.

[60] T. W. Cusick and P. Stanica, ‘Chapter 7 - Stream Cipher Design’, in Cryptographic	Boolean	

Functions	and	Applications	(Second	Edition), T. W. Cusick and P. Stanica, Eds. Academic Press, 2017,

pp. 143–185.

[61] A. Canteaut, ‘Lecture notes on Cryptographic Boolean Functions’, Inria,	Paris,	France, 2016.

[62] F. J. MacWilliams and N. J. A. Sloane, The	theory	of	error	correcting	codes. North-Holland,

Amsterdam: Elsevier, 1977.

[63] Siegenthaler, ‘Decrypting a Class of Stream Ciphers Using Ciphertext Only’, IEEE	

Transactions	on	Computers, vol. C–34, no. 1, pp. 81–85, Jan. 1985.

[64] J. Pieprzyk, ‘Non-linearity of Exponent Permutations’, in Advances	 in	 Cryptology,	

Proceedings	of	EuroCrypt’89,	LNCS, 1989, vol. 434, pp. 80–92.

[65] A. F. Webster and S. E. Tavares, ‘On the Design of S-Boxes’, in Advances	in	Cryptology	—	

CRYPTO	’85	Proceedings, 1986, pp. 523–534.

[66] Babbage, ‘On the relevance of the strict avalanche criterion’, Electronics	Letters, vol. 26, no.

7, pp. 461–462, Mar. 1990.

[67] T. W. Cusick and P. Stanica, ‘Chapter 3 - Avalanche and Propagation Criteria’, in

Cryptographic	Boolean	Functions	and	Applications	(Second	Edition), T. W. Cusick and P. Stanica, Eds.

Academic Press, 2017, pp. 31–54.

75

[68] R. A. Rueppel, ‘Correlation Immunity and the Summation Generator’, in Advances	 in	

Cryptology	—	CRYPTO	’85	Proceedings, 1986, pp. 260–272.

[69] T. Siegenthaler, ‘Correlation-immunity of nonlinear combining functions for cryptographic

applications (Corresp.)’, IEEE	Transactions	on	Information	Theory, vol. 30, no. 5, pp. 776–780, Sep.

1984.

[70] A. Canteaut, ‘On the correlations between a combining function and functions of fewer

variables’, in Proceedings	of	the	IEEE	Information	Theory	Workshop, 2002, pp. 78–81.

[71] A. Canteaut and M. Videau, ‘Symmetric Boolean functions’, IEEE	 Transactions	 on	

Information	Theory, vol. 51, no. 8, pp. 2791–2811, Aug. 2005.

[72] H. Wang, J. Peng, Y. Li, and H. Kan, ‘On 2k-Variable Symmetric Boolean Functions With

Maximum Algebraic Immunity k’, IEEE	Transactions	on	Information	Theory, vol. 58, no. 8, pp. 5612–

5624, Aug. 2012.

[73] O. S. Rothaus, ‘On “bent” functions’, Journal	of	Combinatorial	Theory,	Series	A, vol. 20, no. 3,

pp. 300–305, May 1976.

[74] N. Tokareva, Bent	functions:	results	and	applications	to	cryptography. Academic Press, 2015.

[75] A. M. Youssef and G. Gong, ‘Hyper-bent Functions’, in Advances	in	Cryptology	—	EUROCRYPT	

2001, 2001, pp. 406–419.

[76] M. I. Salam, K. K.-H. Wong, H. Bartlett, L. Simpson, E. Dawson, and J. Pieprzyk, ‘Finding State

Collisions in the Authenticated Encryption Stream Cipher ACORN’, in Proceedings	 of	 the	

Australasian	Computer	Science	Week	Multiconference, New York, NY, USA, 2016, pp. 36:1–36:10.

[77] I. Dinur and A. Shamir, ‘Cube Attacks on Tweakable Black Box Polynomials’, in Advances	in	

Cryptology	‐	EUROCRYPT	2009, 2009, pp. 278–299.

[78] Y. Todo, T. Isobe, Y. Hao, and W. Meier, ‘Cube Attacks on Non-Blackbox Polynomials Based

on Division Property’, IEEE	Transactions	on	Computers, vol. 67, no. 12, pp. 1720–1736, Dec. 2018.

76

[79] M. I. Salam, H. Bartlett, E. Dawson, J. Pieprzyk, L. Simpson, and K. K.-H. Wong, ‘Investigating

Cube Attacks on the Authenticated Encryption Stream Cipher ACORN’, in Applications	 and	

Techniques	in	Information	Security, 2016, pp. 15–26.

[80] V. A. Ghafari and H. Hu, ‘A new chosen IV statistical distinguishing framework to attack

symmetric ciphers, and its application to ACORN-v3 and Grain-128a’, Journal	 of	 Ambient	

Intelligence	and	Humanized	Computing, Jun. 2018.

[81] E. Filiol, ‘A New Statistical Testing for Symmetric Ciphers and Hash Functions’, in

Information	and	Communications	Security, 2002, pp. 342–353.

[82] X. Zhang, X. Feng, and D. Lin, ‘Fault Attack on ACORN v3’, The	Computer	Journal, vol. 61, no.

8, pp. 1166–1179, May 2018.

[83] E. Biham and A. Shamir, ‘Differential fault analysis of secret key cryptosystems’, in Advances	

in	Cryptology	—	CRYPTO	’97, 1997, pp. 513–525.

[84] J. J. Hoch and A. Shamir, ‘Fault Analysis of Stream Ciphers’, in Cryptographic	Hardware	and	

Embedded	Systems	‐	CHES	2004, 2004, pp. 240–253.

[85] A. Siddhanti, S. Sarkar, S. Maitra, and A. Chattopadhyay, ‘Differential Fault Attack on Grain

v1, ACORN v3 and Lizard’, in Security,	Privacy,	and	Applied	Cryptography	Engineering, 2017, pp.

247–263.

[86] S. Maitra, A. Siddhanti, and S. Sarkar, ‘A Differential Fault Attack on Plantlet’, IEEE	

Transactions	on	Computers, vol. 66, no. 10, pp. 1804–1808, Oct. 2017.

[87] M. Hell, T. Johansson, A. Maximov, and W. Meier, ‘A Stream Cipher Proposal: Grain-128’, in

2006	IEEE	International	Symposium	on	Information	Theory, 2006, pp. 1614–1618.

[88] Y. Lee, K. Jeong, J. Sung, and S. Hong, ‘Related-Key Chosen IV Attacks on Grain-v1 and Grain-

128’, in Information	Security	and	Privacy, 2008, pp. 321–335.

[89] O. Küçük, ‘Slide Resynchronization Attack on the Initialization of Grain 1.0’, eSTREAM-

ECRYPT Stream Cipher Project, 2006/044, 2006.

77

[90] S. Banik, S. Maitra, S. Sarkar, and T. Meltem Sönmez, ‘A Chosen IV Related Key Attack on

Grain-128a’, in Information	Security	and	Privacy, 2013, pp. 13–26.

[91] S. Knellwolf, W. Meier, and M. Naya-Plasencia, ‘Conditional Differential Cryptanalysis of

NLFSR-Based Cryptosystems’, in Advances	in	Cryptology	‐	ASIACRYPT	2010, 2010, pp. 130–145.

[92] I. Dinur and A. Shamir, ‘Breaking Grain-128 with Dynamic Cube Attacks’, in Fast	Software	

Encryption, 2011, pp. 167–187.

[93] I. Dinur, T. Güneysu, C. Paar, A. Shamir, and R. Zimmermann, ‘An Experimentally Verified

Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware’, in Advances	in	Cryptology	–	

ASIACRYPT	2011, 2011, pp. 327–343.

[94] S. Banik, S. Maitra, and S. Sarkar, ‘A Differential Fault Attack on Grain-128a Using MACs’, in

Security,	Privacy,	and	Applied	Cryptography	Engineering, 2012, pp. 111–125.

[95] M. Ashouri, Design	of	a	New	Stream	Cipher:	PALS. 2018.

A-1

Appendix	A	
Lauder	and	Paterson	Algorithm	

The LPA has a significant part in the approximation technique that is analysed and used in this

thesis. Thus, the source code of the algorithm that was used is given.

Α.1	Source	Code	

/* program to compute CELCS of costed binary sequences */
/* modified to output tree info */
/* restricted to integer costs (but easily modified) */
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define N 4096/* N is the period of the input sequence */
 /* and the maximum size of any arrays we need */

void celcs(int *s,int *cost, int l, int tsf, int lim, int c);
int min(int a, int b);

 FILE *fp;
 FILE *fp_output;

main()
{
 int i,k;

A-2

 char c;
 int s[N];
 int cost[N];

 fp=fopen("input.txt","r");
 fp_output=fopen("output.txt","w");

 /* input the initial sequence of N bits, setting all costs to 1 */
 for (i=0; i< N; i++)
 {
 c=fgetc(fp);
 if (c=='1')
 s[i]=1;
 else
 s[i]=0;
 cost[i]=1;
 }

 /* now run the celcs algorithm */
 celcs(s,cost,N,0,N,0);

 fclose(fp);
 fclose(fp_output);

}

void celcs(int *s,int *cost, int l, int tsf, int lim, int c)
{
 int i;
 int L[N]; // N/2
 int R[N];
 int B[N]; // N/2
 int Lcost[N]; // N/2
 int Bcost[N]; //N /2
 int T=0;

 if (l >1)
 {
 /* calculate B(S) and L(S) */

 for (i=0;i < (l/2); i++)
 {
 L[i]=s[i];
 R[i]=s[i+(l/2)];
 B[i]=L[i]^R[i];
 }

 /* calculate costs for B and L, and calculate T */

 for (i=0; i < (l/2); i++)
 {
 Bcost[i]=min(cost[i],cost[i+(l/2)]);
 T+=B[i]*Bcost[i];
 }

 for (i=0; i < (l/2); i++)
 {
 if (B[i]==1)
 {

A-3

 if (cost[i] <= cost[i+(l/2)])
 {
 L[i]=R[i];
 Lcost[i]=cost[i+(l/2)]-cost[i];
 }
 else
 {
 Lcost[i]=cost[i]-cost[i+(l/2)];
 }
 }
 else
 Lcost[i]=cost[i]+cost[i+(l/2)];
 }

 /* output the tree information - omit this if only need spectrum
*/
 fprintf(fp_output,"B(S):");
 for (i=0; i < l/2; i++)
 fprintf(fp_output,"%1d_%1d ",B[i],Bcost[i]);
 fprintf(fp_output,"\n");

 fprintf(fp_output,"L(S):");
 for (i=0; i < l/2; i++)
 fprintf(fp_output,"%1d_%1d ",L[i],Lcost[i]);
 fprintf(fp_output,"\n");

 fprintf(fp_output,"T: %d\n\n",T);

 /* the main decision point in the algorithm */
 if (T > 0)
 {
 fprintf(fp_output,"CELCS(B(S),%d,%d,%d)\n",tsf,min(lim,tsf+T-
1),c+(l/2));
 celcs(B,Bcost,l/2,tsf,tsf+T-1,c+(l/2));
 }
 if (tsf + T <= lim)
 {
 fprintf(fp_output,"CELCS(L(S),%d,%d,%d)\n",tsf+T,lim,c);
 celcs(L,Lcost,l/2,tsf+T,lim,c);
 }
 }
 else
 {
 /* the case l=1 */
 fprintf(fp_output,"s[0]=%d,cost[0]=%d\n",s[0],cost[0]);
 if (s[0]==0)
 fprintf(fp_output,"CP: (%d,%d)\n",tsf,c);
 if ((s[0]==1) && (cost[0] > 0))
 fprintf(fp_output,"CP: (%d,%d)\n",tsf,c+1);
 if ((s[0]==1) && (tsf+cost[0] <= lim))
 fprintf(fp_output,"CP: (%d,%d)\n",tsf+cost[0],c);
 fprintf(fp_output,"\n");
 }
 return;
}

int min(int a, int b)
{
if (a < b)

A-4

 return(a);
else
 return(b);
}

