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Summary	

Financial	Institutions	today	are,	more	than	ever	before,	subject	to	various	types	of	risks	

which	 shareholders,	 investors	 and	 regulators	 expect	 to	 be	 timely	 and	 accurately	

evaluated	in	order	to	prevent	financial	crises.	Market	Risk	has	become	one	of	the	most	

important	 risk	 sources	 for	 Financial	 Institutions	 and	 Basel	 Committee	 on	 Banking	

Supervision	Accords	have	been	evolved	to	take	into	account	lessons	from	the	past.	This	

Thesis	analyzes	Expected	Shortfall,	the	new	risk	measure	introduced	by	BCBS	in	a	recent	

paper	 (Fundamental	 Review	of	 the	Trading	Book,	 2012)	 in	order	 to	 capture	 ‘tail	 risk’	

more	effectively.	Various	models	for	Value	at	Risk	and	Expected	Shortfall	estimation	are	

presented	 and	 evaluated	 by	 backtesting	 techniques	 in	 two	 separate	 periods,	

representing	US	subprime	loan	crisis	and	after	crisis	market	conditions	respectively,	for	

a	 univariate	 equity	 portfolio,	 using	data	 of	 S&P	 index	 returns.	 The	 findings	 show	 that	

parametric	methods	like	normal	and	t	distributions	as	well	as	the	non	parametric	model	

of	historical	simulation	fail	to	produce	reliable	VAR	and	Expected	Shortfall	estimates	for	

the	crisis	period,	as	they	do	not	respond	timely	in	growing	market	volatility.	Contrary	to	

these	 results,	 econometric	 models	 capturing	 volatility	 dynamics,	 represented	 by	 an	

EGARCH	model,	seem	to	perform	best.	For	this	kind	of	models,	Expected	Shortfall	and	

VAR	 estimation	 and	 backtesting	 results	 indicate	 that	 these	 models	 could	 have	 acted	

proactively	 in	 the	 beginning	 of	 the	 US	 subprime	 loan	 crisis,	 determining	 reliable	 and	

accurate	 market	 risk	 limits	 and	 equivalent	 capital	 requirements.	 This	 conclusion	

becomes	 very	 important	 for	 future	 revisions	 of	 the	 BCBS	 framework,	 as	 the	 vast	

majority	of	banks	adapt	 the	 simple	but	 inefficient	method	of	Historical	 Simulation	 for	

the	 calculation	 of	 their	 Market	 Risk	 capital	 requirements	 (ΕΒΑ	 Report,	 2017:	 31,	

Perignon&Smith,	 2009:	 367).	 Contrary	 to	 that,	 the	 EGARCH	 model	 fails	 to	 produce	

reliable	risk	measure	estimates	in	a	low	volatility,	tranquil	market	condition.	
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Chapter	1	
Introduction	

	

 

 

Financial	 risk	 management	 as	 a	 discipline	 has	 been	 evolving	 since	 late	 1960s	 as	 the	

outcome	 of,	 among	 other	 factors,	 increased	 trading	 activity,	 markets	

interconnectedness,	 volatile	 global	 economic	 environment	 and	 the	 advent	 of	 financial	

derivatives.	Banks,	Mutual	Funds	and	investment	firms	are	now,	more	than	ever	before,	

vulnerable	 to	various	 types	of	 risk	 that	 threaten	 their	mare	existence.	Major	Financial	

Institutions	 have	 been	 hit	 by	 great	 losses	 in	 trading,	 such	 us	 Barings	 Bank,	 the	 UK	

merchant	 bank	 that	 was	 forced	 into	 bankruptcy	 in	 2005,	 mainly	 as	 a	 result	 of	 huge	

losses	 in	 Japanese	 stock	 index	 futures,	 whereas	 in	 1996	 Sumitomo	 Corp	 (a	 Japanese	

bank)	lost	$2,6	billion	in	commodity	futures	(Saunders	&	Cornett,	2003:	232).	The	burst	

of	Credit	Crisis	 in	USA	 in	2008	 led	several	 institutions	to	 insolvency	and	stock	market	

capitalization	was	wiped	out	in	a	short	period.		

	

The	 most	 important	 risks	 faced	 by	 Financial	 Institutions	 can	 be	 classified	 into	 four	

categories	(RiskMetrics,	1996:	5):	

	

• Credit	 risk,	 which	 is	 the	 potential	 loss	 which	 stems	 from	 the	 counterparty	

inability	to	meet	its	obligations.	

• Operational	risk,	which	results	 from	errors	made	 in	payments,	 transactions	and	

procedures	in	general.	

• Liquidity	 risk,	 which	 arises	 from	 the	 inability	 to	 meet	 short	 term	 financial	

demands	because	of	the	level	of	illiquid	assets.			

• Market	 risk,	 which	 involves	 the	 uncertainty	 of	 a	 Financial	 Institution	 trading	

portfolio	returns,	caused	by	changes	in	market	conditions,	such	as	stock	indexes,	

exchange	 rates,	 interest	 rates	 and	 commodity	 price	 volatilities.
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Income	 from	 trading	 activities	 has	 increased	 to	 a	 considerable	 extent	 compared	 to	

income	 from	 traditional	 Financial	 Institution	 activities	 of	 deposit	 taking	 and	 lending.	

Market	 risk	 arises	 when	 assets	 and	 liabilities	 are	 actively	 traded	 than	 held	 on	 the	

balance	 sheet	 for	 longer	 term	 investment,	 funding	 or	 hedging	 purposes	 (Saunders	 &	

Cornett,	2003:	233).		

	

In	 the	 late	 1970s	 and	 1980s,	 many	 Financial	 Institutions	 started	 developing	 internal	

models	for	the	measurement	and	aggregation	of	market	risk	in	their	trading	portfolios.	

This	became	appropriate,	as	the	underestimation	of	the	underlying	risk	could	have	had	

severe	 consequences.	 Senior	management	 of	 these	 institutions	 needed	 a	 sense	 of	 the	

probability	of	losses	at	the	firmwide	level	in	order	to	set	appropriate	limits,	to	allocate	

resources	efficiently	and	to	evaluate	performance	in	a	risk-return	basis	(Dowd,	2005:	9).	

The	RAROC	formula	developed	by	Bankers	Trust	(an	American	bank)	in	the	late	1970s	

can	be	placed	in	the	direction	described	above.		

	

The	 advent	 of	 the	 Value	 at	 Risk	measure	 originated,	 according	 to	 a	 banking	 industry	

legend,	when	the	chairman	of	JP	Morgan,	Dennis	Weatherstone	asked	his	staff	to	submit	

a	short	scaled	report	indicating	risk	and	potential	losses	over	the	next	24	hours,	across	

the	 bank’s	 trading	 portfolio.	 This	 led	 to	 the	 development	 of	 Value	 of	 Risk	 by	

RiskMetricsTM	in	1994.	Essentially,	VAR	gives	a	dollar	denominated	amount	that	can	be	

potentially	lost	with	x%	probability	over	a	given	time	horizon.		

	

The	 widespread	 use	 of	 VAR	 as	 an	 internal	 measure	 of	 risk	 was	 given	 regulatory	

recognition	by	the	BCBS	under	the	1996	Market	Risk	Amendment	to	the	Capital	Accord	

(BCBS,	 1996).	 Under	 these	 guidelines,	 banks	were	 expected	 to	 estimate	 their	 Market	

Risk	 regulatory	 capital	 based	 on	 a	 standardized	 approach	 or	 an	 internal	 models	

approach	with	the	use	of	VAR.	The	Variance	Covariance	or	Normal	distribution	approach	

of	 RiskMetrics	 and	 the	 non	 parametric	 and	 simple	 to	 apply	 Historical	 Simulation	

methods	have	dominated,	since	then,	the	bank	internal	models	approach.		

	

Apart	 from	 its	 advantages	 though,	 VAR	 was	 soon	 criticized	 of	 having	 three	 serious	

drawbacks.	The	 first	was	 that	 the	estimation	error	 in	VAR	produced	by	different	VAR	

models	 could	 send	 inaccurate	 information	 to	 senior	 management	 of	 Financial	

Institutions,	 leading	 them	 to	 inappropriate	 investment	 decisions	 (Jorion,	 1996,	
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Berkowitz	&	O’Brien,	2001).	The	second	was	that	it	failed	to	account	for	losses	above	the	

X	 percentile	 of	 the	 loss	 distribution	 and	 thus	 significantly	 underestimates	 tail	 risk.	

Finally,	its	third	shortcoming	is	that	it	lacks	the	property	of	subadditivity	that	coherent	

measures	of	risk	have	(Artzner	et	al.,	1999:	209).	This	means	that	it	does	not	account	for	

diversification	benefits	after	the	merge	of	two	or	more	portfolios.		

	

The	 last	 two	VAR	drawbacks	 led	 to	 the	development	of	 a	 candidate	 risk	measure	 that	

accounts	 for	 tail	 risk	 and	 is	 at	 the	 same	 time	 coherent	 (Acerbi	 &	 Tasche,	 2001:	 6),	

Expected	Shortfall.	It	is	also	referred	as	Conditional	VAR	or	Expected	Tail	Loss	and	it	is	

the	 expected	 loss	 during	 time	 T	 conditional	 on	 the	 loss	 being	 greater	 than	 a	 certain	

quantile	 of	 the	 loss	 distribution	 (Hull,	 2012:	 187).	 Despite	 these	 superior	 to	 VAR	

characteristics,	Expected	Shortfall	was	proved	by	Gneiting	(2011)	to	lack	a	mathematical	

property	called	‘elicitability’.	This	result	sparked	a	confusing	debate	as	to	whether	it	is	

also	 backtestable,	 until	 Acerbi	 &	 Szekely	 (2014)	 proved	 that	 the	 lack	 of	 elicitability	

property	is	more	a	concern	for	model	selection	than	for	model	testing.		

	

Meanwhile,	 the	US	 financial	crisis	in	2008	signaled	significant	weaknesses	 in	 the	1996	

BCBS	 framework,	 leading	 to	 a	 revision	 of	Market	 Risk	 regulatory	 framework	 in	 2011	

referred	to	as	‘Basel	2.5	(BCBS,	2011).	Among	other	changes	this	revision	involved	the	

calculation	of	 an	additional	VAR	measure	by	banks	 called	 ‘stressed	VAR’	which	would	

account	for	market	losses	in	a	stressed	period	of	250	days.		

	

Following	previous	revisions,	 the	BCBS	 incorporated	 finally	 the	expected	shortfall	risk	

measure	 in	 its	 Market	 Risk	 regulatory	 framework	 in	 2012	 (BCBS,	 2012:	 20).	 In	 this	

consultative	 document	 the	 Committee	 recognized	 the	 fact	 that	 ‘Expected	 Shortfall	

accounts	 for	 tail	risk	 in	a	more	comprehensive	manner’.	The	Committee	preserved	the	

VAR	though	as	a	measure	to	backtest	in	the	common	way.	This	was	attributed	by	some	

researches	 (eg	 Righi	 &	 Caretta,	 2014:	 15)	 to	 the	 on	 going	 investigation	 for	 Expected	

Shortfall	certain	estimators’	superiority	relative	to	others	as	well	as	to	the	ambiguity	as	

to	whether	it	can	be	applied	for	backtesting.		

	

In	 2016,	 the	 BCBS	 issued	 its	 ‘Minimum	 Capital	 Requirements	 for	Market	 Risk’	 (BSBS,	

2016).	Within	this	document	the	Committee	sets	out	the	transitional	arrangements	 for	

the	revised	Market	Risk	framework	which	national	supervisors	are	expected	to	put	into	
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practice	and	finalize	their	implementation	by	January	2019,	while	the	banks	under	their	

supervision	are	expected	to	report	under	the	new	standards	by	the	end	of	2019.		

	

The	 figure	 below	 depicts	 the	 most	 important	 changes	 in	 the	 Market	 Risk	 framework	

through	its	evolution.	

	

	
Figure	1:	The	Evolution	of	Market	Risk	Management	Framework	

	

During	 these	years,	much	 research	has	been	done	upon	 the	accuracy	and	efficiency	of	

various	VAR	models	in	correctly	forecasting	adverse	return	movements.	The	superiority	

of	certain	models	over	others	was	examined	considering	three	important	characteristics	

of	financial	returns	described	by	Manganelli	&	Engle	(2001:	8):	

	

• Financial	return	distributions	are	leptokurtic,	that	is	they	present	fat	tails	

• Equity	returns	are	typically	negatively	skewed.	

• Squared	 returns	 present	 serial	 autocorrelation,	 which	 means	 that	 return	

volatility	tends	to	cluster	in	certain	periods.		

	

These	characteristics	 led	to	the	advent	of	econometric	models	 for	VAR	estimation	that	

account	 for	 volatility	 dynamics,	 like	 ARCH	 (Autoregressive	 Conditional	

Heteroskedasticity)	 and	 GARCH	 (Generalized	 Conditional	 Hetersoskedasticity),	

following	the	pioneering	works	of	Engle	(1982)	and	Bollerslev	(1986)	respectively.		

	

Although	 VAR	 has	 been	 exhaustively	 studied,	 with	 respect	 to	 Expected	 Shortfall	 risk	

measure	 there	 is	 still	 an	 on	 going	 academic	 research	 on	 the	 superiority	 of	 certain	

estimators	relative	to	others	(Righi	&	Caretta,	2014:	15).	This	is	probably	due	to	the	fact	
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that	 Expected	 Shortfall	 is	 a	 new	 risk	 measure	 that	 banks	 are	 required	 to	 estimate	

according	to	the	resent	BCBS	regulatory	framework.						

	

This	Master	 Thesis	 is	 planned	 to	 quote	 a	 significant	 part	 of	 the	 relevant	 literature	 on	

certain	 VAR	 and	 Expected	 Shortfall	 estimation	 models	 and	 their	 accuracy.	 In	 the	

empirical	 part	 of	 the	 Thesis	 four	 types	 of	 models	 are	 tested	 during	 and	 after	 the	 US	

credit	 crisis	 of	 2008	so	 as	 to	 assess	 their	 reliability	 through	 a	 stressed	 and	 a	 tranquil	

period	respectively	for	an	equity	portfolio	represented	by	S&P	index,	simulating	a	bank’s	

equity	 trading	 desk.	 The	 Thesis	 is	 organized	 as	 follows.	 Chapter	 2	 describes	 the	

evolution	 of	 Market	 Risk	 regulatory	 framework	 in	 more	 detail	 and	 also	 presents	 the	

properties	 of	 VAR	 and	 Expected	 Shortfall	 risk	 measures.	 Chapter	 3	 introduces	 the	

theoretical	 background	 of	 various	 VAR	 and	 Expected	 Shortfall	 estimation	 methods,	

based	 on	 certain	 models.	 It	 also	 refers	 to	 the	 relevant	 literature	 on	 the	 test	 of	 these	

models.	 	Chapter	4	describes	the	backtesting	methods	 for	VAR	and	Expected	Shortfall.	

Chapter	5	analyzes	the	purpose	of	the	empirical	study	and	the	methodology	used	as	well	

as	 the	study	 limitations.	Chapter	6	presents	 the	estimation	results	with	the	equivalent	

figures.	Chapter	7	reviews	the	empirical	backtesting	results.	Finally	Chapter	8	concludes	

the	Thesis.		
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Chapter	2	
The	Evolution	of	Market	Risk	

Regulatory	Framework	
	

	

	

In	 this	 chapter	 the	evolution	of	BCBS	 framework	 for	market	 risk	 is	presented	and	 the	

two	risk	measures	used	in	the	framework,	VAR	and	Expected	Shortfall,	are	analyzed.	The	

major	 changes	 in	 the	BCBS	 standards	 for	market	 risk	 are	 found	 in	 1996	 Amendment	

(BCBS,	1996),	Basel	2.5	(BCBS,	2011)	and	the	Fundamental	Review	of	the	Trading	Book	

(BCBS,	2012).		

	

2.1	The	Basel	Committee	on	Banking	Supervision	1996		
Amendment		
	

Following	 the	 Basel	 Accord	 ‘International	 Convergence	 of	 Capital	 Measurement	 and	

Capital	Standards’	 in	1988,	known	as	Basel	 I,	which	stipulated	 international	standards	

for	the	estimation	of	regulatory	capital	for	credit	risk	in	banks,	the	Committee	issued	an	

Amendment	 to	 the	 Basel	 I	 Accord	 in	 1996	 (BCBS,	 1996),	 known	 as	 the	 ‘1996	

Amendment’	 in	 order	 to	 set	 a	 framework	 for	 the	 estimation	 of	 a	 capital	 charge	 for	

market	 risk.	 In	 this	 way	 the	 Committee	 acknowledged	 the	 increasing	 importance	 of	

market	risk	which	grew	in	accordance	with	bank	trading	activities.		

	

The	Amendment	required	banks	to	use	‘marking	to	market’	practice	of	revaluing	assets	

and	 liabilities	on	a	daily	 basis.	This	meant	 that	banks	were	expected	 to	use	 fair	value	

accounting	 for	all	 assets	and	 liabilities	held	 in	 their	 trading	book.	The	Committee	also	

distinguished	 among	 four	 types	 of	market	 risk:	 Interest	 rate	 risk,	 equity	 risk,	 foreign	

exchange	risk	and	commodities	risk.		

	

Two	methods	 for	measuring	 the	 capital	 charge	 for	 market	 risk	 were	 outlined	 by	 the	

framework:	 Τhe	 Standardized	 Approach	 and	 the	 Internal	 Models	 Approach.	 The	

Standardized	Approach	 assigns	 capital	 separately	 for	 each	of	 interest	 rate	 risk,	 equity	
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risk,	foreign	exchange	risk,	commodities	risk	and	options,	due	to	a	certain	methodology.	

More	sophisticated	banks	with	well-established	risk	management	systems	could	use	the	

Internal	 Models	 approach,	 upon	 approval	 from	 their	 supervisory	 authorities.	 This	

involves	a	Value	at	Risk	measure	 computed	on	a	daily	basis	 at	 the	99th	percentile	one	

tailed	confidence	interval,	for	a	historical	observation	period	constrained	to	a	minimum	

length	 of	 one	 year	 and	 a	 10	 day	 holding	 period	 (BCBS,	 1996	 :44).	 The	 capital	

requirement	for	the	Internal	Models	Approach	is	calculated	as	follows:	

max	(VaRt-1,	mc	x	VaRavg)	+	SRC	

where	mc	 is	 a	multiplicative	 factor	 and	 SRC	 is	 a	 specific	 risk	 charge	 set	 by	 individual	

supervisory	authorities	on	the	basis	of	their	assessment	of	the	bank’s	risk	management	

systems.	The	variable	VaRavg	is	the	average	Value	at	Risk	over	the	last	60	business	days	

and	VaRt-1	is	the	previous	day	VaR.	Finally,	according	to	the	Amendment,	a	10	day	99%		

VaR	can	be	calculated	as	√10	times	the	one	day	99%	VaR.	

	

The	 1996	Amendment	 officially	 introduced	Value	 at	 Risk	measure	 in	 an	 international	

regulatory	market	risk	framework.			

		

2.1.1	Value	at	Risk	

	

VAR	is	probably	the	most	widely	used	risk	measure	in	Financial	Institutions.	In	the	Basel	

regulatory	framework	VAR	has	a	prominent	role,	as	it	is	used	for	the	calculation	of	the	

market	risk	weighted	capital	and	also	for	the	credit	risk	weighted	capital,	the	later	after	

the	Internal	Ratings	Based	approach	of	Basel	II.		

	

VAR	summarizes	the	worst	expected	 loss	over	a	specified	horizon	within	a	confidence	

interval.	It	summarizes	in	a	single	number	the	probability	of	adverse	moves	in	financial	

variables	 (Jorion,	 1996:	 47).	When	using	VAR	 as	 a	 risk	measure,	we	 are	 interested	 in	

making	a	 statement	of	 the	 form:	 ‘We	are	X	percent	 certain	 that	we	will	not	 lose	more	

than	V	dollars	in	time	T’	(Hull,	2012:	183).		

	

VAR	 can	 be	 calculated	 from	 either	 the	 probability	 distribution	 of	 gains	 or	 losses	

(negative	gains)	during	time	T.	In	the	later	case	the	calculation	of	VAR	is	depicted	in	the	

following	diagram.	
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	Figure	2.	Calculation	of	VAR	from	the	probability	distribution	of	portfolio	losses.	
	 							Confidence	level	is	X%.	VAR	level	is	V	(Hull,	2012:	185).	

	

It	becomes	obvious	that	VAR	calculation	requires	an	assumption	about	the	distribution	

of	 portfolio	 returns.	 Additionally,	 the	 fact	 that	 return	 distributions	might	 change	over	

makes	its	estimation	even	more	challenging	(Manganelli	&	Engle,	2001:	6).		

	

Given	 random	 numbers	 X	 with	 distribution	 function	 FX,	 and	 a	 confidence	 level	 α%,	

VARα(X)	 can	 be	 expressed	 by	 the	 following	 mathematical	 formula	 (Kellner	 &	 Rosch,	

2016:	47):	

	

	

	

According	to	Dowd	(2005:	12),	VAR	has	a	number	of	significant	attractions	which	can	be	

summarized	as	follows:	

	

• It	provides	a	common	consistent	measure	of	risk	across	different	positions.	

• It	enables	a	risk	manager	to	aggregate	the	risks	of	subportfolios	 into	an	overall	

measure	of	total	portfolio	risk.		

• It	takes	full	account	of	all	driving	risk	factors	inherent	in	a	portfolio.	

• It	 is	 probabilistic	 and	 gives	 useful	 information	 on	 the	 probabilities	 associated	

with	specified	levels	of	portfolio	losses.		

( ) inf( : ( ) )a XVAR X x F x a= ÎÂ ³
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• It	can	simply	be	expressed	 in	a	money	unit	measure	of	risk,	concentrating	daily	

informative	 reports	 for	 market	 risk	 to	 risk	 executive	 officers	 into	 a	 single	

monetary	value.	

		

However	 VAR	 exhibits	 the	 serious	 drawback	 of	 not	 examining	 the	 tail	 risk,	 which	 is	

expressed	 by	 losses	 above	 the	 confidence	 level.	 In	 addition	 to	 that,	 VAR	 lacks	

‘coherence’,	 which	 is	 summarized	 on	 a	 number	 of	 properties	 that	 best	 risk	measures	

should	have	(Artzner	et	al.,	1999:	203-228).	In	mathematical	terms,	these	properties	are	

presented	 by	 Acerci	 &	 Tasche	 (2001:	 3).	 Considering	 a	 set	 V	 of	 real-valued	 random	

variables	and	X,Y	two	portfolios’	return	outcomes,	a	function	ρ:	V→R	is	called	a	coherent	

risk	measure	if	it	is	

	

• Monotonous:	 	

• Translation	invariant:	 	

• Positive	homogeneous:	 	

• Subadditive:	 	

	

VAR		lacks	the	last	property	of	subadditivity	and	thus	it	is	not	a	coherent	risk	measure.		

This	missing	property	of	VAR	constitutes	it	as	an	improper	measure	of	risk,	as	it	neglects	

the	 diversification	 benefits	 of	 aggregating	 two	 of	more	 portfolios.	 The	merge	 of	 these	

portfolios	should	produce	a	risk	measure	minor	to	the	sum	of	the	individual	ones.		This	

can	be	intuitively	conceived	by	the	use	of	the	following	characteristic	example	described	

by	Acerbi	&	Tasche	(2001:	3):	if	we	consider	a	bank	with	several	branches,	each	having	

its	 own	 capital	 requirement,	 the	 regulating	 authority	 should	 be	 confident	 that	 the	

overall	bank	risk	should	be	more	than	sufficiently	covered	by	the	sum	of	branch	capital	

requirements.	Nevertheless,	 if	 the	subadditivity	property	 is	not	 fulfilled,	 the	total	bank	

risk	could	turn	out	 to	be	bigger	than	the	sum	of	 its	branches	and	therefore	VAR	could	

imply	an	underestimation	of	the	real	inherent	risk.		

	

Yamai	 &	 Yoshiba	 (2005:	 1000)	 also	 show	 that	 utility	 maximizing	 investors	 of	 a	

concentrated	 credit	 portfolio,	 choose	 to	 invest	 in	 securities	 with	 a	 high	 potential	 for	

large	 losses	 beyond	 the	 VAR	 level,	 when	 they	 are	 imposed	 VAR	 constraints	 in	 their	

investment.		

, , ( ) ( )Y V Y X Y Xr rC Î ³ Þ £

, ( ) ( )V a r a r aCÎ ÎÂÞ C+ = C -

, 0, ( ) ( )V h hX V hX hr rCÎ > Î Þ = C

, , ( ) ( ) ( ) ( )V r r rC U C+U Î Þ C+U £ C + U
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We	will	 see	 that	Expected	Shortfall	does	not	present	 the	above	drawbacks	and	 this	 is	

one	 of	 the	 main	 reasons	 Basel	 Committee	 on	 Banking	 Supervision	 has	 recently	

incorporated	it	in	the	market	risk	regulatory	framework	(BCBS,	2012).			

	

2.2	Basel	2.5	
	

Starting	 in	 2007,	 the	 United	 States	 experienced	 the	 ‘worst	 financial	 crisis	 since	 the	

1930s’	 (Hull	2012:	121).	The	 crisis	 spread	 rapidly	 throughout	 the	world	and	 from	the	

financial	 markets	 to	 the	 real	 economy,	 posing	 a	 great	 deal	 of	 criticism	 to	 the	 risk	

management	 practices	 of	 Financial	 Institutions	 and	 the	 effectiveness	 of	 the	 risk	

management	regulatory	framework.		

	

It	was	soon	recognized	that	some	changes	were	necessary	to	 the	calculation	of	capital	

for	market	risk	in	the	BCBS	framework.	In	2011,	the	Committee	published	the	‘Revisions	

to	the	Basel	II	market	risk	framework’,	a	set	of	modifications	to	the	1996	Amendment,	

known	also	as	‘Basel	2.5’.	The	Committee	recognized	that	the	financial	crisis	began	in	the	

mid-2007	accumulated	excessive	risks	in	the	banks’	trading	books	and	that	 ‘the	capital	

framework	 for	 market	 risk,	 based	 on	 the	 1996	 Amendment	 to	 the	 Capital	 Accord	 to	

incorporate	market	risks,	does	not	capture	some	key	risks’	(BCBS,	2011:1).		

	

The	major	modifications	to	the	older	framework	involved:	

1. The	calculation	of	a	‘stressed	VAR’	

2. A	new	incremental	risk	charge		

		

As	 most	 banks,	 during	 the	 financial	 crisis,	 used	 the	 historical	 simulation	 method	 to	

calculate	VAR,	 this	led	to	a	significant	negligence	of	rising	market	volatility	 in	stressed	

market	 conditions.	 Under	 the	 new	 framework,	 the	 Committee	 required	 banks	 to	

calculate	a	stressed	VAR,	 taking	 into	account	a	one-year	observation	period	relating	to	

significant	portfolio	losses	(BCBS,	2011:	1).			

	

Basel	2.5	actually	required	banks	to	calculate	2	VARs.	One	is	the	usual	VAR	(based	on	the	

previous	one	to	 four	years	of	market	return	observations).	The	other	one	is	a	stressed	
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VAR	,	calculated	from	a	stressed	period	of	one	year).	The	two	measures	are	combined	to	

form	a	total	capital	charge	c.	This	is	calculated	according	to	the	following	formula:	

c	=	max	(VaRt-1,	mc	x	VaRavg)	+	max	(s	VaRt-1,	ms	x	sVaravg)	(BCBS,	2011:	15)	

The	multiplication	factors	mc	and	ms	are	set	by	individual	supervisory	authorities	on	the	

basis	of	their	assessment	of	the	quality	of	the	bank’s	risk	management	system,	subject	to	

an	absolute	minimum	of	3.		

	

Because	 stressed	 VAR	 is	 at	 least	 as	 great	 as	 VAR,	 the	 formula	 shows	 that	 assuming	

mc=ms,	the	capital	requirement	under	Basle	2.5	is	at	least	doubled	(Hull,	2012:	287).	

	

Additionally,	 the	 new	 guidelines	 accounted	 for	 risk	 inherent	 in	 instruments	 in	 the	

trading	book	sensitive	to	default	risk.	As	credit-dependent	 instruments	were	criticized	

for	being	responsible,	to	a	large	extent,	for	the	advent	of	the	crisis,	regulators	accounted	

for	 this	 fact	 by	 demanding	 the	 calculation	 of	 an	 incremental	 risk	 charge	 for	 credit	

sensitive	products	in	the	trading	book.	For	the	calculation	of	this	charge	banks	would	be	

expected	to	estimate	a	liquidity	horizon	for	each	product	as	well,	representing	the	time	

required	to	sell	the	position	or	hedge	effectively.		

	

2.3	The	Fundamental	Review	of	the	Trading	Book	
	

Although	 the	 revisions	 in	 Basel	 2.5	 constituted	 an	 important	 improvement	 in	market	

risk	 regulatory	 framework	 that	 could	 act	 proactively	 in	 stressed	 periods	 of	 increased	

market	 volatility,	 the	 Committee	 soon	 recognized	 that	 they	 did	 not	 fully	 address	 the	

shortcomings	 inherent	 in	 the	 framework.	 In	 2012,	 the	 BCBS	 published	 the	 first	 of	 a	

series	of	consultative	documents	named	‘The	Fundamental	Review	of	the	Trading	Book’	

(BCBS,	 2012).	 Under	 the	 new	 guidelines,	 VAR	 was	 maintained	 as	 a	 risk	 measure	 in	

market	 risk	 regulatory	 framework,	 but	 also	 Expected	 Shortfall	 was	 introduced	 in	 the	

framework	for	the	first	time.		

	

According	 to	 this	document	 ‘a	number	of	weaknesses	have	been	 identified	with	using	

value-at-risk	 (VAR)	 for	 determining	 regulatory	 capital	 requirements,	 including	 its	

inability	to	capture	tail	risk’	(BCBS,	2012:	3).	For	this	reason,	the	Committee	introduced	

an	 alternative	 metric,	 in	 particular	 Expected	 Shortfall	 (ES).	 ES	 simply	 measures	 the	

expected	value	of	losses	beyond	a	certain	confidence	level.	
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The	 Committee	 acknowledged	 the	 effectiveness	 of	 a	 10-day	 holding	 period	 VAR	

calculation	for	internal	day	to	day	risk	management	purposes	but	it	also	questioned	its	

ability	to	meet	the	objectives	of	prudential	regulation	‘which	seeks	to	ensure	that	banks	

have	sufficient	capital	to	survive	low	probability,	or	tail	events’	(BCBS,	2012:	9).	One	of	

the	key	weaknesses	of	 the	VAR	metric	 includes	the	provision	of	 incentives	to	banks	to	

take	on	tail	risk,	which	is	risk	above	the	threshold	of	VAR.	Indeed	VAR	does	not	examine	

the	distribution	of	losses	above	its	threshold.		

	

Under	 a	 second	 consultative	 document	 published	 in	 2013	 (BCBS,	 2013),	 Expected	

Shortfall	 was	 set	 to	 be	 calculated	 at	 a	 97,5%	 confidence	 level	 for	 the	 calibration	 of	

market	 risk	 capital	 requirements	 of	 the	 internal	 models	 approach,	 using	 current	 12	

month	 (most	 recent)	 observation	 period	 and	 also	 for	 a	 stressed	 period,	 following	

guidelines	for	VAR	in	Basel	2.5	framework.		

	

Finally,	 the	 ‘Minimum	 capital	 requirements	 for	 market	 risk’	 standards	 published	 in	

2016,	 (BCBS,	2016)	 required	banks	 to	 calculate	 two	daily	VARs	 for	each	 trading	desk,	

calibrated	to	one	tail	99.0	and	97.5	percent	confidence	level	and	a	daily	ES	calibrated	to	

an	 equivalent	 97.5	 percent	 level	 (BCBS,	 2016:	 56).	 The	 Committee	 expects	 national	

supervisors	to	set	the	implementation	of	the	new	standards	by	January	2019.		

	

2.3.1	Expected	Shortfall	

	

In	 the	previous	section	we	saw	that	Basel	Committee	on	Banking	Supervision	adopted	

Expected	 Shortfall	 as	 a	 new	 risk	 measure	 in	 its	 regulatory	 market	 risk	 framework	

primarily	because	of	the	inefficiency	of	VAR	to	account	for	tail	risk.	Basel	2.5	framework	

was	soon	criticized	for	this	drawback.	According	to	Danielsson	(2016:	13),	this	control	

mechanism	 produced	 moral	 hazard	 for	 senior	 management	 or	 traders	 who	 were	

incentivized	to	target	low	probability	–	high	impact	portfolio	outcomes.		

	

This	significant	inefficiency	of	VAR	as	a	risk	measure	is	plainly	presented	by	Hull	(2012,	

187)	 through	a	representative	example.	 Suppose	 that	 a	bank’	 trader	 is	 imposed	a	 risk	

limit	described	by	a	one	day	99%	VAR	of	$10	million.	In	order	to	increase	its	expected	

return,	 the	 trader	might	 construct	 a	portfolio	where	 there	 is	 a	99.1%	probability	 that	
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daily	 loss	 is	 less	 than	$10	million	and	a	0.9%	probability	 that	 it	 is	 $500.	Although	 the	

bank	risk	 limit	 is	satisfied	by	the	trader,	 it	 is	obvious	that	 is	 taking	unacceptable	risks	

above	this	limit.	VAR	in	figure	2	below	is	the	same	as	VAR	in	figure	1,	but	it	obvious	that	

the	riskiness	of	the	portfolio	is	increased.		

	

	
Figure	3.		Probability	distribution	of	losses	in	portfolio	value	during	time	T.		
	 							Confidence	level	is	X%.	Portfolio	has	the	same	VAR	level	V,	as	in	
																			figure	1,	but	a	larger	loss	is	more	likely	(Hull,	2012:	187).	

	

Expected	 Shortfall	 is	 the	 expected	 loss	 during	 time	 T	 conditional	 on	 the	 loss	 being	

greater	 than	the	X%	percentile	of	 the	 loss	distribution.	 It	 is	also	known	as	conditional	

VAR.		

	

Given	 random	numbers	X	with	distribution	 function	Fx	 and	a	 confidence	 level	α%,	 the	

Expected	Shortfall	can	be	defined	by	the	following	mathematical	formulas,	according	to	

Kellner	&	Rosch	(2016:	47)	and	McNeal	et	al.	(2015:	69)	respectively:	

	

(i) 	

(ii) 	

	

where	 is	the	quantile	function	of	F(x).	
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Expected	shortfall	was	proved	to	be	a	coherent	risk	measure	in	2001	(Acerbi	&	Tasche,	

2001).	 Thus	 it	 satisfies	 the	 properties	 of	 monotonicity,	 subadditivity,	 positive	

homogeneity	and	translation	invariance	that	a	coherent	risk	measure	should	exhibit.	As	

it	 also	 accounts	 for	 tail	 risk	 in	 a	 portfolio	 loss	 distribution,	 the	 Basel	 Committee	 on	

Banking	 Supervision	 incorporated	 Expected	 Shortfall	 in	 its	 regulatory	 framework	 in	

2012	(BCBS,	2012).		

	

Despite	its	significant	benefits,	Expected	Shortfall	lacks	a	mathematical	property	known	

as	elicitability.	Risk	professionals	had	 ignored	this	property	until	2011,	when	Gneiting	

(2011)	proved	that	Expected	Shortfall	is	not	elicitable,	as	opposed	to	VAR.		

	

Elicitability	 allows	 a	 measure	 to	 have	 a	 scoring	 function	 that	 makes	 comparison	 of	

different	models	in	their	forecasting	ability	possible.	Much	like	the	squared	or	absolute	

error,	 point	 forecasts	 are	 compared	 and	 assessed	 with	 the	 use	 of	 an	 error	 measure,	

which	 is	 averaged	 over	 forecast	 cases	 (Gneiting,	 2011:	 746).	 We	 say	 that	 we	 have	

forecasts	 that	we	call	x	and	verifying	observations	that	we	call	y.	The	scoring	 function	

now	is	S(x,y)	and	the	performance	criterion	takes	the	following	form:	

	

	

	

The	 lack	 of	 elicitability	 for	 Expected	 Shortfall	 means	 that	 it	 is	 not	 possible	 to	 find	 a	

scoring	function	S(x,y)	such	that	Expected	Shortfall	is	defined	as	the	forecast	x,	given	a	

distribution	 of	 verifying	 observations	 y,	 that	 minimizes	 the	 above	 scoring	 function.	

According	 to	 Gneiting	 (2011:	 756),	 this	 negative	 result	 could	 impact	 its	 use	 as	 a	

predictive	measure	of	risk	and	explain	the	lack	of	academic	literature,	until	then,	on	the	

evaluation	of	Expected	Shortfall	forecasts,	as	opposed	to	other	risk	measures	(e.g.	VAR).		

	

Intuitively,	 this	 drawback	 can	 be	 understood	 as	 follows:	 Expected	 Shortfall	 aims	 at	

capturing	the	full	extent	of	risks	beyond	the	VAR	level,	 in	the	tail	of	a	loss	distribution,	

including	severe	 losses	that	are	theoretically	possible	but	not	observed	 in	the	relevant	

backtesting	sample	period	(Ming,	2014:	197).	

	

1

1 ( , )n
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The	discovery	that	Expected	Shortfall	is	not	elicitable	led	many	researchers	to	conclude	

that	 it	could	not	be	backtestable	and	sparked	a	debate	 in	academic	 literature.	Under	a	

second	 consultative	 document	 published	 in	 2013,	 Basel	 Committee	 on	 Banking	

Supervision	 added	 Expected	 Shortfall	 to	 VAR,	 as	 a	 risk	 measure	 that	 banks	 have	 to	

calculate	in	the	internal	models	approach.	At	the	same	time,	the	Committee	maintained	

VAR	as	the	measure	to	backtest	in	the	usual	way.		

	

Finally,	 Acerbi	 &	 Szekely	 (2014)	 proved	 that	 elicitability	 is	 irrelevant	 to	 backtesting	

(Acerbi	&	Szekely,	2014:	9)	and	proposed	three	tests	for	Expected	Shortfall	backtesting	

procedure.	 This	 work	 was	 pioneering,	 as	 it	 gave	 an	 end	 to	 a	 strong	 criticism	 of	 the	

inclusion	of	Expected	Shortfall	in	the	Basel	regulatory	framework.			
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Chapter	3	
VAR	and	Expected	Shortfall	

Estimation	Methods	
	

	

	

Due	to	Basel	Committee	on	Banking	Supervision	market	risk	regulatory	framework,	no	

particular	 type	 of	 VAR	 or	 Expected	 Shortfall	model	 is	 prescribed	 for	 banks	 to	 adopt.	

‘Supervisors	 may	 permit	 banks	 to	 use	 models	 on	 either	 historical	 simulation,	 Monte	

Carlo	simulation,	or	other	appropriate	analytical	methods’	(BCBS,	2016:	54).		

	

While	 VAR	 and	 Expected	 Shortfall	 are	 the	 risk	 measures	 that	 the	 Basel	 regulatory	

framework	requires	banks	to	estimate,	there	is	little	consensus	on	the	preferred	method	

for	 calculating	 them.	 Traditional	 methods	 like	 historical	 simulation	 and	 Normal	

distribution	 were	 criticized	 for	 producing	 too	 conservative	 VAR	 calculations	 during	

periods	 of	 unusual	 market	 movements.	 This	 gave	 rise	 to	 new	 approaches	 such	 as	

econometric	 models	 capturing	 volatility	 dynamics,	 extreme	 value	 theory	 (Embrechts,	

Resnick,	&	Samorodnitsky,	1999)	and	the	filtered	historical	simulation	method	(Barone-

Adesi	et	al.,	1998).	

	

In	 this	 chapter	 various	 models	 for	 the	 estimation	 of	 VAR	 and	 Expected	 Shortfall	 are	

presented.	 The	 fact	 that	 financial	 return	 distributions	 exhibit	 leptokurtosis	 and	 their	

volatilities	 tend	 to	 change	 over	 time,	 has	 embarked	 an	 academic	 research	 on	 the	

superiority	of	certain	models	relative	to	others.	
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3.1	 Nonparametric	 Methods	 –	 The	 Historical	
Simulation	Approach	
	

While	VAR	and	Expected	Shortfall	are	mathematically	defined	and	intuitively	conceived,	

their	 calculation	 has	 been	 proved	 a	 challenging	 statistical	 problem.	 According	 to	

Manganelli	&	Engle	(2001:	8),	their	calculation	entails	the	following	steps:	

	

• Marking-to	Market	the	portfolio	

• Estimation	of	the	portfolio	returns	distribution	

• Estimation	of	VAR	and	Expected	Shortfall	

	

The	historical	 simulation	 is	 a	nonparametric	method	that	makes	no	assumption	about	

the	distribution	of	portfolio	returns.	It	rather	implies	that	history	repeats	itself	in	a	way	

that	 the	 calculation	of	 a	 risk	measure	 for	 a	 particular	 day	 t	 is	 based	 on	 the	 empirical	

distribution	of	portfolio	returns	throughout	the	previous	250	days	(if	a	rolling	window	

of	this	width	is	chosen).	According	to	the	Basel	regulatory	framework,	the	choice	of	the	

sample	period	(observation	period)	 for	calculating	both	risk	measures	 is	confined	to	a	

minimum	length	of	one	year.	The	regulatory	backtesting	procedure	of	models	reliability	

is	 based	 on	 the	 previous	 250	 day	 period.	 Banks	 may	 also	 apply	 a	 one	 year	 rolling	

window	of	observations	to	calculate	VAR	and	Expected	Shortfall.		

	

The	procedure	of	calculating	risk	measures	according	to	historical	simulation	starts	with	

the	 sorting	 of	 negative	 returns	 in	 the	window	 in	 an	 ascending	 order	 (in	 this	way	we	

calculate	 VAR	 and	 Expected	 Shortfall	 from	 the	 probability	 distribution	 of	 losses	 in	

portfolio	 value).	 For	VAR	 calculation,	 the	 α	 =	 (1-p)	 quantile	 of	 interest	 is	 deduced	 by	

leaving	p%	observations	on	the	right	side	of	 the	distribution	and	(1-p)%	observations	

on	 the	 left	 side.	Expected	Shortfall	 can	be	 calculated	as	 the	average	of	 the	highest	p%	

observations.	To	compute	these	risk	measures	for	the	following	day,	the	whole	window	

is	moved	forward	by	one	observation	and	the	procedure	is	repeated.		

	

VAR	calculation	according	to	the	historical	simulation	approach	is	plainly	described	by	

the	 following	 example:	 Suppose	 we	 are	 at	 time	 t:	 02/01/2009	 (first	 business	 day	 of	

2009).	 A	 bank	wants	 to	 calculate	 the	 daily	 VAR	 at	 time	 T	 on	 its	 equity	 portfolio	 that	

tracks	 the	 S&P	 index,	 based	 on	 the	 last	 250	 daily	 observations	 (observation	
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window=250).	 The	 histogram	 of	 portfolio	 losses	 in	 this	window	 is	 depicted	 below	 in	

diagram	1.	

										

					

	

		

	

	

	

	

	

	

	

Figure	 4:	 Distribution	 of	 losses	 (negative	 returns)	 for	 a	 S&P	 index	 tracking	 portfolio		
	 						during	year	2008.	
	
	
We	 can	 observe	 that	 the	 distribution	 of	 losses	 presents	 positive	 skewness	 and	 excess	

kyrtosis,	as	 the	observation	period	coincides	with	the	peak	of	 the	US	 financial	crisis.	A	

bank	would	simply	calculate	 the	99%	quantile	of	 the	distribution,	 that	 is,	 the	negative	

return	that	cuts	off	the	1%	of	highest	losses.	This	can	be	easily	computed	to	be	0,0851.		

	

Given	a	distribution	of	portfolio	losses	f,	a	confidence	level	of	α	=	(1-p)%,	and	t=1,2,…..,T	

observations	in	the	rolling	window,	the	VAR	of	a	portfolio	at	time	t	can	be	estimated	as	

the	 α	 =	 (1-p)	 percentage	 point	 of	 the	 empirical	 distribution	 of	 losses	 in	 the	window,	

according	to	the	following	formula:	

	

	

	

Historical	simulation	approach	was	criticized	for	being	slowly	reactive	to	fast	changing	

market	conditions.	The	simplifying	assumption	that	the	empirical	distribution	of	losses	

in	the	observation	window	can	be	used	to	make	reliable	forecasts	of	extreme	losses,	has	

concentrated	 much	 of	 this	 criticism.	 This	 assumption	 means	 that	 the	 particular	

approach	considers	portfolio	return	distribution	to	be	constant	over	the	window.		

	

(1 )
(1 ) 1({ } )p

t p tVAR f y t t
- T

- - ==

0

10

20

30

40

50

60

70

-0.10 -0.05 0.00 0.05 0.10

Series: SPNEGRETURNS
Sample 1 250
Observations 250

Mean       0.002081
Median   0.000150
Maximum  0.094700
Minimum -0.109600
Std. Dev.   0.025911
Skewness   0.017345
Kurtosis   6.670131

Jarque-Bera  140.3236
Probability  0.000000



 

20 
 

Moreover,	assuming	market	is	moving	from	a	period	of	low	volatility	to	a	period	of	high	

volatility,	VAR	estimates	based	on	this	 approach	would	be	biased	downwards,	since	 it	

would	take	a	period	of	time	before	the	observations	of	the	low	volatility	window	leave	

the	window	(Manganelli	&	Engle,	2001:	10).		

	

For	the	historical	simulation	approach,	the	decision	about	rolling	window	size	is	crucial	

about	 the	 accuracy	 of	 VAR	 and	 Expected	 Shortfall	 estimation.	 A	 larger	 estimation	

window	has	the	advantage	of	not	being	too	sensitive	to	extreme	observations,	while	at	

the	 same	 time	 risk	 measures	 take	 longer	 to	 adjust	 to	 structural	 changes	 in	 risk	

(Danielsson,	2011:	98).		

	

Another	 important	disadvantage	of	historical	simulation	approach	 is	 that	 it	 assigns	an	

equal	probability	weight	of	1/T	in	each	observation	in	the	window,	which	is	equivalent	

to	assuming	that	returns	are	independently	and	identically	distributed	(Pritsker,	2006:	

563).	 This	 particular	 disadvantage	 can	 be	 omitted	 by	 placing	 more	 weight	 in	 more	

recent	 returns	and	 represent	 today’s	portfolio	 risk	better,	 following	 the	approach	 that	

was	introduced	by		Boudoukh,	Richardson,	&	Whitelaw	(1998:	6).	For	each	of	the	most	

recent	 K	 returns	 of	 the	 portfolio,	 yt,	 yt-1,….,yt-K+1,	 an	 associated	 weight	 of,	

,	 is	placed	respectively.	To	 find	the	(1-p)%	VAR	of	 the	

portfolio	we	just	sum	the	corresponding	weights	until	p%	is	reached,	starting	from	the	

largest	 negative	 returns.	 This	method	 has	 been	 proved	 to	 respond	 strongly,	 rising	 in	

magnitude,	to	crisis	period	market	conditions	(Pritsker,	2006:	564).				

	

As	 the	majority	of	banks	use	 the	methodological	 approach	of	historical	 simulation	 for	

the	 calculation	 of	 market	 risk	 regulatory	 capital	 (EBA	 Report,	 2017:	 31,	 Perignon	 &	

Smith,	2009:	367),	serious	 considerations	arise	as	 to	whether	 this	 capital	 is	 efficiently	

adjusted	in	periods	of	volatility	clusters.	Indeed,	during	the	1998	Russian	crisis,	market	

risk	was	modeled	with	relatively	stable	financial	data,	but	when	the	crisis	hit,	volatility	

for	some	assets	increased	sharply,	breaking	many	risk	limits	(Danielsson,	2002:	1276).		

	

	

	

11 1 1,( ) ,....., ( )
1 1 1

l l ll l
l l l

K-
K K K

- - -
- - -



 

21 
 

3.2	Parametric	Methods	
	

Unlike	 historical	 simulation	 approach	 which	 makes	 no	 assumption	 about	 the	

distributional	properties	of	portfolio	returns	in	the	rolling	window,	parametric	methods	

consider	 that	 returns	 follow	 a	 certain	 distribution	 and	 its	 parameters	 are	 estimated	

from	 the	 observations	 in	 the	window.	 The	 popularity	 of	 these	methods	 relies	 also	on	

their	simplicity.	They	also	suffer	from	the	similar	drawbacks	with	historical	simulation	

method,	 as	 they	 assume	 a	 constant	 distribution	 of	 returns	 and	 a	 non-time	 variant	

volatility.	The	most	applied	parametric	methods	for	the	calculation	of	VAR	and	Expected	

Shortfall	are	the	normal	and	student’s	t	distributions.		

	

3.2.1	Normal	Distribution	Approach	

	

The	normal	or	Gaussian	distribution	approach	was	introduced	by	RiskMetrics	(1996:	6).		

The	 approach	 is	 based	 on	 the	 assumption	 that	 returns	 in	 the	 rolling	 window	 are	

normally	distributed.	It	is	a	very	attractive	method	as	it	only	requires	the	estimation	of	

two	independent	parameters,	a	mean	μ	and	a	standard	deviation	σ,	in	every	daily	VAR	

and	 Expected	 Shortfall	 calculation.	 The	 normal	 distribution	 is	 also	 convenient	 as	 it	

produces	 straightforward	 formulas	 for	 the	 calculation	 of	 both	 risk	 measures.	 The	

corresponding	formulas	for	the	calculation	of	VAR	and	Expected	Shortfall	are	presented	

in		McNeil	et	al.		(2015:	65,	70)	as	follows:	

	

	 	 (i)	

	 (ii)	

	

Where	α	is	the	confidence	level,	Φ-1	is	the	standard	normal	variate,	or	inverse	standard	

normal	density	function,	corresponding	to	the	chosen	confidence	level	(e.g.,	Φ-1(0,95)	=	

1,645)	and	φ(.)	is	the	value	of	the	standard	normal	density	function.		

	

Αn	 assumption	 underlying	 the	 normal	 distribution	 approach	 is	 that	 market	 variables	

follow	 the	 normal	 distribution	 and	 confidence	 intervals	 for	 financial	 returns	 can	 be	

constructed	after	the	calculation	of	μ	and	σ.	For	example	there	is	a	5%	probability	that	a	
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financial	return	will	move	up	by	more	than	1,645	standard	deviations	from	its	mean.	In	

practice,	 though,	 financial	 variables	 are	 more	 likely	 to	 experience	 big	 moves	 than	 a	

normal	 distribution	 would	 suggest,	 as	 they	 present	 excess	 kurtosis	 (fat	 tails).	 The	

following	method	of	student’s	t	distribution	partly	accounts	for	this	drawback	as	it	more	

leptokurtic	than	the	normal.		

	

3.2.1	Student’s	t	Distribution	Approach	

	

The	student’s	t	distribution	approach	for	the	calculation	of	VAR	and	Expected	Shortfall	

captures	 extreme	 moves	 in	 financial	 returns	 more	 efficiently,	 as	 it	 exhibits	 more	

probability	mass	 in	 the	tails.	Under	 this	 approach,	 a	 generalized	 t	distribution	 is	used,	

for	which	we	have	to	specify	the	mean	(μ),	the	standard	deviation	(σ)	and	the	number	of	

degrees	 of	 freedom	 (v).	 Following	 McNeil	 et	 al.	 	 (2015	 :	 66,	 71),	 the	 corresponding	

formulas	for	VAR	and	Expected	Shortfall	calculation	for	the	t-distribution	approach	are	

presented	below:		

	

	 	 							 	 																															(i)	

	 (ii)	

	

where	 denotes	the	t	inverse	cumulative	distribution	function	and	gv	the	density	of	the	

standard	t.		

	

As	 ν	 (degrees	 of	 freedom)	 gets	 large,	 the	 kurtosis	 approaches	 3	 and	 the	 distribution	

approximates	the	normal	and	as	ν	falls	to	5,	the	kurtosis	rises	to	9.	According	to	Dowd	

(2005:	160)	we	can	approximately	match	ν	to	an	empirical	kurtosis	by	setting	v	as	the	

integer	closest	to	the	value ,	where	k	is	the	kurtosis	coefficient.		

	

In	the	next	figure	we	can	see	the	comparison	of	a	normal	distribution	with	a	heavy-tailed	

distribution	of	the	t-locationscale	distribution	family	that	presents	leptokurtosis.		
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Figure	5.	 	Comparison	of	normal	distribution	 to	a	heavy-tailed	distribution	exhibiting	
	 								leptokurtosis	(Hull,	2012:	211).	
	
	
Despite	 its	 advantage	 to	 handle	 excess	 kurtosis	 in	 financial	 returns,	 the	 t	 distribution	

approach	has	its	own	problems	outlined	by	Dowd	(2005:	160):	

	

• It	 can	 produce	misleadingly	 very	 conservative	 estimates	 of	 VAR	 and	Expected	

Shortfall	at	periods	of	low	market	volatility.	

• When	 used	 at	 very	 high	 or	 low	 confidence	 levels,	 it	 fails	 to	 deliver	 results	

equivalent	to	extreme	value	theory,	a	characteristic	exhibited	also	by	the	normal	

distribution.	

• The	 t	 distribution	 exhibits	 non	 stable	 properties	 (i.e.	 the	 sum	 of	 two	 or	more	

random	 variables	 that	 follow	 the	 t-distribution	 is	 not	 necessarily	 t-distributed	

itself).		

	

3.3	The	Monte	Carlo	Simulation	Approach	
	

An	 alternative	 method	 to	 previous	 approaches	 for	 VAR	 and	 Expected	 Shortfall	

estimation	is	the	Monte	Carlo	approach.	Assuming	that	market	variables	xi	affecting	the	

value	of	a	portfolio	follow	a	normal	distribution,	this	method	simulates	the	distribution	

of	portfolio	returns	in	the	following	way,	described	by	Hull	(2012	:	340):		



 

24 
 

	

1. The	 portfolio	 today	 is	 marked	 to	 market	 using	 the	 current	 value	 of	 market	

variables	xis.	

2. We	sample	once	from	the	multivariate	normal	distribution	of	Δxis.	

3. The	sampled	values	of	Δxis	are	then	used	to	revalue	each	market	variable.	

4. Portfolio	is	revalued	according	to	the	new	estimates	of	market	variables.	

5. Portfolio	value	in	step	4	is	subtracted	from	that	defined	in	step	1,	to	determine	a	

sample	ΔP.	

6. We	 repeat	 this	 procedure	 many	 times	 in	 order	 to	 simulate	 a	 probability	

distribution	of	ΔP	(for	example	5.000	iterations).	

	

The	final	step	is	to	calculate	VAR	and	Expected	Shortfall	from	the	simulated	probability	

distribution	 of	 portfolio	 returns,	 using	 the	 correspondent	 quantile	 to	 the	 confidence	

level	that	is	chosen.		

	

Monte	 Carlo	 simulation	 approach	 has	 the	 advantage	 of	 more	 closely	 replicating	 the	

distribution	of	portfolio	returns	and	thus	produces	more	reliable	estimates	of	VAR	and	

Expected	 Shortfall.	 Its	 serious	 drawback	 is	 that	 it	 is	 computationally	 slow	 and	 the	

underlying	assumption	of	multivariate	normally	distributed	market	variables	does	not	

account	 for	 fatter	 tails.	 This	 last	 drawback	 can	 be	 partly	 overcome	 by	 assuming	 that	

market	variables	follow	a	multivariate	t	distribution.		

	

3.4	Methods	Capturing	Volatility	Dynamics	
	

All	methods	 examined	 so	 far	 assume	 that	 financial	 returns	 in	 the	 estimation	window	

follow	 a	 specific	 distribution	 with	 an	 unconditional	 constant	 volatility.	 An	 important	

characteristic	 of	 financial	markets	 though	 is	 that	 volatilities	of	market	 factors	 tend	 to	

cluster,	especially	during	stressed	periods	(Manganelli	&	Engle,	2001:	8).	The	inability	of	

simple,	 but	 at	 the	 same	 time	 inefficient,	methods	 of	 historical	 simulation	 and	 normal	

distribution	 to	 produce	 reliable	 VAR	 and	 Expected	 Shortfall	 estimates	 after	 the	 1996	

BCBS	Amendment,	 led	to	 the	advent	of	academic	research	 in	the	application	of	models	

capturing	 volatility	 dynamics	 in	 VAR	 and	Expected	 Shortfall	 estimation.	These	 studies	

were	based	on	Autoregressive	Conditional	Heteroscedasticity	 (ARCH)	and	Generalized	
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Autoregressive	 Conditional	 Heterscedasticity	 (GARCH)	 models	 introduced	 by	 Engle	

(1982)	and	Bollerslev	(1986)	respectively.		

	

Financial	returns	(rt)	are	said	to	follow	an	ARCH(q)	process	when:	

	

																		where	 	with	 	and	 	

μ	is	the	mean	of	returns	and	εt	the	innovation	process.	For	the	conditional	variance	to	be	

positive,	the	parameters	must	satisfy:	α0>0	and	αi≥0	for	i=1,…,q.	

	

Empirical	 evidence	has	shown	 that	a	high	q	must	be	 selected	 in	order	 to	estimate	 the	

conditional	variance	properly.	This	 characteristic	 led	Bollerslev	 (1986)	 to	propose	 the	

generalized	ARCH,	or	GARCH(p,q),	model:	

	

	where	 	with	 	and	 	

For	the	conditional	variance	to	be	positive,	 the	parameters	must	satisfy:	α0>0,	αi≥0	 for	

i=1,…,q	and	bj≥0	for	j=1,…,p.		

	

A	 GARCH(p,q)	model	 successfully	 captures	 several	 characteristics	 of	 financial	 returns	

such	as	thick	tails	and	volatility	clustering	(Angelidis,	Benos	&	Degiannakis,	2004:	3).	

	

In	 the	 conditional	 mean	 equation	 of	 the	 above	 model,	 financial	 returns	 might	 be	

considered	to	be	an	AR(k)	autoregressive	process,	so	the	GARCH(p,q)	model	would	be	

transformed	to	an	AR(k)	GARCH(p,q)	model:	

	

	where	 	with	 	and	 	
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	This	specification	allows	for	possible	autocorrelation	in	daily	returns.		

	

In	the	above	models,	though,	variance	only	depends	on	the	magnitude	and	not	the	sign	

of	 εt,	 which	 somewhat	 at	 odds	 with	 the	 empirical	 behavior	 of	 financial	 returns	

(especially	 stock	 returns),	 where	 the	 ‘leverage	 effect’	 might	 be	 present	 (Xekalaki	 &	

Degiannakis,	 2010:	 42).	 The	 ‘leverage	 effect’	 was	 introduced	 by	 Black	 (1976).	 Black	

noticed	 that	 changes	 in	 stock	 returns	 often	 display	 a	 tendency	 to	 be	 negatively	

correlated	with	changes	in	volatility.	This	means	that	volatility	tends	to	rise	in	response	

to	bad	news	and	 fall	 in	 response	 to	good	news.	The	most	popular	model	proposed	 to	

capture	 this	 asymmetry	 is	 Nelson’s	 (1991)	 exponential	 GARCH	 or	 EGARCH(p,q).	 The	

model	is	plainly	presented	by	Angelidis,	Benos	&	Degiannakis	(2004:	4)	as	follows:	

	

	with	 	and	 	

	

In	 contrast	 to	 GARCH,	 no	 restrictions	 are	 imposed	 on	 the	 parameters	 of	 the	 model	

estimation,	since	logarithmic	transformation	ensures	the	non-negativity	of	variance.	

	

In	 such	 a	 model,	 the	 presence	 of	 leverage	 effect	 can	 be	 investigated	 by	 testing	 the	

hypothesis	that	γ<0.		

	

The	 parameters	 of	 all	 the	 above	models	 can	 be	 estimated	 by	 the	maximum	 likelihood	

estimation	method.	 	 Since	parameters	are	 to	be	estimated,	models	 capturing	volatility	

dynamics	are	classified,	by	many	researchers,	as	a	special	part	of	parametric	methods.		

	

Many	 researchers	 have	 proposed	 the	 calculation	 of	 VAR	 and	 Expected	 Shortfall	 risk	

measures	 based	 on	 conditional	 variance	 models	 (Kellner	 &	 Rosch	 (2016),	 Righi	 &	

Caretta	 (2014),	 Degiannakis,	 Floros	 &	 Livada	 (2011)	 to	 name	 a	 few).	 They	 use	 the	

following	formulas	for	the	calculation	of	VAR	and	Expected	Shortfall	forecasts	at	time	t:	
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where	 and	 are	 the	 forecasted	 VAR	 and	 Expected	 Shortfall	 of	 the	

innovation	distribution	 respectively.	As	 the	 innovation	process	 is	 assumed	 to	 follow	a	

specific	distribution	like	standard	normal	or	standardized	student’s	t,	we	can	substitute	

	 and	 	 with	 VARεα	 and	 ESεα	 respectively,	 with	 α	 representing	 the	

upper	quantile	of	the	innovation	distribution	that	by	assumption	does	not	depend	on	t.	

With	 the	 use	 of	 a	 rolling	 window	 of	 certain	 width,	 the	 coefficients	 of	 a	 model	 are	

estimated	each	time	t	on	the	previous	x	observations	(belonging	to	the	window)	and	σt+1	

is	estimated	using	one	step	ahead	forecast.	

	

We	can	observe	that	the	forecasted	risk	measure	at	time	t	relies	on	the	calculation	of	the	

forecasted	 mean,	 the	 forecasted	 standard	 deviation	 of	 returns	 from	 the	 conditional	

variance	model	and	the	upper	quantile	of	the	innovation	distribution.		

	

As	 for	 the	 innovation	 distribution	 it	 can	 be	 assumed	 to	 be	 the	 standard	 normal.	 The	

maximum	likelihood	estimation	 is	based	on	this	assumption.	McNeal	&	Frey	(2000:	5)	

propose	 a	 standardized	 t	distribution	with	 v>2	 degrees	of	 freedom,	 to	 account	 for	 fat	

tails.	GARCH	type	models	with	t	 innovations	can	also	be	 fitted	by	maximum	likelihood	

and	the	parameter	of	v	can	be	estimated.		

	

In	order	to	analyze	the	existence	of	correlation	in	volatility,	which	would	indicate	that	a	

conditional	variance	model	is	appropriate	to	be	adapted,	Xekalaki	&	Degiannakis	(2010:	

35)	 propose	 the	 analysis	 of	 a	 proxy	 for	 variance,	 which	 is	 squared	 demeaned	 log-

returns.	A	histogram	of	these	returns	would	be	indicative	of	time	varying	variance.		

	

For	a	formal	test	of	the	above,	Pindyck	&	Rubinfeld	(1998:	496)	propose	the	use	of	Box	-

Pierce	statistic	to	assess	if	the	k	autocorrelations	of	squared	log	returns	are	statistically	

significant.	The	statistic	is	calculated	as	follows:	
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,	where	T	is	the	number	of	observations	and	ρκ	is	the	kth	autocorrelation	coefficient.	

This	statistic	is	approximately	distributed	as	a	chi-square	with	K	degrees	of	freedom.	If	

we	reject	the	null	hypothesis	at	the	5%	level	of	significance,	we	can	be	95%	certain	that	

K	autocorrelation	coefficients	are	not	all	zero.						

	

Berkowitz	 &	 O’Brien	 (2001)	 examined	 the	 statistical	 accuracy	 of	 large	 bank	 holding	

companies	VAR	 forecasts	 in	 the	 period	 1998-2000.	 They	 compared	 the	VAR	 forecasts	

from	banks’	structural	models	with	those	from	a	standard	GARCH	model	and	concluded	

that	the	latter	provided	more	accurate	forecasts.		

	

Kellner	&	Rosch	(2016)	fitted	conditional	variance	models	to	returns	from	three	indices	

and	 two	 exchange	 rates	 between	 2001-2015,	 to	 produce	 one	 day	 ahead	 VAR	 and	

Expected	 Shortfall	 forecasts.	 Their	 results	 indicated	 that	 Expected	 Shortfall	 (at	 the	

97,5%	confidence	level)	is	higher	than	VAR	(at	the	99%	confidence	level),	which	leads	to	

higher	 capital	 requirements,	 something	 that	 is	 in	 line	with	 the	 scope	 and	 intention	of	

recent	 changes	 in	Basel	 regulatory	 framework.	 They	 also	 concluded	 that	 heaviness	 in	

the	tails	of	the	innovation	distribution	can	lead	to	a	trade-off	between	capturing	extreme	

events	on	one	hand	and	the	 increase	of	model	risk	in	Expected	Shortfall	estimation	on	

the	other.		

	

Righi	 &	 Caretta	 (2015)	 analyzed	 data	 from	 equity,	 fixed	 income,	 exchange	 rates	 and	

commodities	 markets	 from	 2000	 to	 2012.	 They	 tested	 the	 performance	 of	 non	

parametric,	 parametric	 and	 conditional	 variance	 models	 with	 fat-tailed	 innovation	

distributions	on	Expected	Shortfall	 forecasts.	They	 concluded	 that	 the	 non	 parametric	

historical	 simulation	 approach	 reacts	 slowly	 to	 the	 2008	 crisis	 and	 after	 that	 retains	

conservative	 forecasts.	 The	 conditional	 variance	 models,	 on	 the	 other	 hand,	 follow	

market	fluctuations	more	efficiently,	considering	the	crisis	but	recovering	after	it.		

	

Degiannakis,	 Floros	&	 Livada	 (2011)	used	 data	 from	mature	 (USA,	UK,	 Germany)	 and	

emerging	(Greece	and	Turkey)	equity	markets	for	the	period	2004-2008.	They	produced	

VAR	forecasts	based	on	three	conditional	variance	models	for	the	period	2004-2007	and	

for	the	year	2008	separately,	as	the	authors	wanted	to	test	the	models	in	a	small	period	

of	market	 turbulence.	Overall,	 their	 findings	 suggest	 that	 conditional	 variance	models	

gave	satisfactory	results	before	and	during	the	highly	volatile	year	of	2008.	
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Angelidis,	 Benos	&	Degiannakis	 (2003)	 conducted	VAR	 forecasts	 for	 five	 equity	 index	

returns	(CAC40,	DAX30,	FTSE100,	NIKKEI225	and	S&P)	over	a	period	of	1987	to	2002,	

using	various	conditional	variance	models.	They	conclude	that	innovation	distributions	

allowing	for	fatter	tails	produce	better	results.	Furthermore,	for	each	index	portfolio,	a	

different	model	produces	the	most	accurate	forecasts.		

	

Finally,	Degiannakis,	Floros	&	Dent	 (2013)	 tested	various	 conditional	variance	models	

on	their	ability	to	forecast	VAR	and	Expected	Shortfall	accurately	and	they	reached	the	

conclusion	 that	 long	memory	volatility	models	does	not	appear	 to	outperform	a	 short	

memory	GARCH	model,	even	for	longer	forecasting	horizons.		

	

Academic	 literature	on	VAR	estimating	techniques	and	their	reliability	has	by	 far	been	

more	 developed	 than	 Expected	 Shortfall	 equivalents.	 Various	 types	 of	 more	

sophisticated	models	like	conditional	volatility	models	have	been	recently	examined	for	

their	 accurate	 risk	 measure	 estimates.	 According	 to	 Angelidis,	 Degiannakis	 &	 Floros	

(2011:	446),	the	suitability	of	a	model	depends	on	the	examined	period	and	the	market	

characteristics.							

	

3.5	The	Filtered	Historical	Simulation	Approach	
	

The	most	important	drawback	of	historical	simulation	approach	is	that	it	considers	past	

observations	 as	 a	 set	 of	 independently	 and	 identically	 distributed	 returns	 that	 can	 be	

applied	 to	 current	 asset	 prices	 and	 simulate	 their	 future	 returns	 (Barone-Adesi,	

Bourgoin	&	Giannopoulos,	1998:	100).		

	

Filtered	historical	simulation	 is	a	hybrid,	semi-parametric	approach	that	combines	the	

benefits	of	historical	simulation	with	the	power	of	conditional	volatility	models	such	as	

GARCH	 and	 circumvents	 the	 above	 drawback	 of	 historical	 simulation.	 It	 does	 so	 by	

bootstrapping	 from	 a	 distribution	 of	 independently	 and	 identically	 distributed	

standardized	residuals	which	have	been	scaled	by	their	conditional	volatility.		

	

The	 first	step	 in	 the	process	 is	 to	 fit	a	conditional	variance	model	 to	 the	data.	Barone-

Adesi,	 Bourgoin	 &	 Giannopoulos	 (1998:100)	 use	 a	 GARCH	 model	 that	 allows	 for	
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asymmetric	behavior	in	the	conditional	variance	equation.	The	specification	they	use	is	

depicted	below:	

	

			

	

where	γ	is	an	additional	term	that	allows	for	a	surprise	to	have	an	asymmetric	positive	

or	negative	effect	on	volatility.		

	

The	 second	 step	 is	 to	 extract	 the	 fitted	 residuals	 and	 to	 use	 the	 model	 to	 forecast	

volatility		for	each	day	in	the	sample	period.	Then,	standardized	residual	returns	of	the	

following	form	set	the	series	of	independently	and	identically	distributed	innovations:	

	

	

	

If	 we	 assume	 a	 1day	 VAR	 holding	 period,	 the	 third	 step	 involves	 bootstrapping	 with	

replacement	 from	 the	 set	 of	 standardized	 innovations.	 The	 independently	 and	

identically	 distributed	 property	 of	 z	 is	 important	 for	 bootstrapping,	 and	 allows	 us	 to	

avoid	sampling	from	a	population	where	observations	are	serially	dependent.	We	then	

multiply	 a	 bootstrapped	 standardized	 innovation	 with	 the	 square	 root	 of	 our	 model	

forecast	of	tomorrow	volatility	in	order	to	produce	a	forecast	of	tomorrow	innovation:	

	

	

	

Thus	 a	 simulated	 innovation	 is	 created	 by	 a	 randomly	 drawn	 (with	 replacement)	

standardized	residual	z,	rescaled	by	next	period’s	forecasted	volatility,	in	order	to	reflect	

current	 market	 conditions.	 We	 then	 substitute	 this	 simulated	 innovation	 in	 the	

conditional	 variance	 equation	 of	 our	 model	 in	 order	 to	 create	 a	 forecasted	 portfolio	

return	rt+1.		

	

In	 the	 fourth	 step	 we	 create	 a	 large	 number	 (M)	 of	 simulated	 returns	 by	 taking	 M	

drawings	from	the	standardized	residual	return	distribution.	
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Finally	 the	 last	 step	 involves	 the	 calculation	 of	 VAR	 and	 Expected	 Shortfall	 from	 the	

simulated	distribution	of	portfolio	returns.	Giannopoulos	&	Tunaru	(2005)	proved	that	

filtered	 historical	 simulation	 can	 be	 used	 for	 the	 estimation	 of	Expected	 Shortfall	 and	

that	this	estimator	is	a	coherent	measure.		

	

Filtered	 historical	 simulation	 can	 produce	 risk	 measures	 consistent	 with	 the	 current	

states	 of	 markets	 at	 any	 large	 confidence	 level	 (Barone-Adesi	 &	 Giannopoulos,	 2002:	

179).	 Its	 advantages	 allow	 it	 to	dominate	 classic	 historical	 simulation	 approach	 easily	

and	compete	with	models	capturing	volatility	dynamics,	as	it	simulates	portfolio	returns	

according	 to	 existing	market	 conditions.	 Indeed,	 Nozari,	 Raei,	 Jahangiri	 &	 Bahramgiri	

(2010)	 used	 returns	 of	 European	 and	 Asian	 emerging	market	 indices	 to	 compare	 the	

performance	 of	 selected	 VAR	 methods	 and	 concluded	 that	 the	 filtered	 historical	

simulation	 model	 outperformed	 a	 classic	 GARCH(1,1)	 model	 with	 a	 t-distribution	

innovation	process.		
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	 	 	 	 	 	 	 	 			Chapter	4	
Backtesting	

	

	

	

As	 many	 banks	 adopt	 the	 internal	 models	 approach	 to	 estimate	 their	 market	 risk	

regulatory	 capital,	 a	 technique	 is	 needed	 for	 setting	 benchmarks	 for	 the	 evaluation	 of	

these	models.	Backtesting	is	a	reality	check	that	compares	a	bank’s	daily	VAR	measure	

with	the	subsequent	daily	portfolio	profit	or	loss	(BCBS,	1996b:	2).	This	is	a	test	of	how	

the	method	 for	 calculating	VAR	would	have	performed	 if	 it	had	been	used	 in	 the	past	

(Hull,	2012:	197).		

	

The	 importance	 of	 the	 backtesting	 procedure	 for	 the	 internal	 models	 approach	 was	

recognized	by	the	Basel	Committee	on	Banking	Supervision	under	the	publication	of	the	

backtesting	supervisory	framework	(BCBS,	1996b)	in	the	same	year	with	the	setting	of	

the	market	risk	capital	requirements	framework	(BCBS,	1996a).	In	this	way	regulators	

were	 able	 to	 assess	 the	 efficiency	 of	 bank	 market	 risk	 models	 due	 to	 certain	

benchmarking	 criteria	 and	 intervene	 timely	 and	 accurately	 to	 prevent	 insufficient	

market	risk	capital	coverage.	Due	to	the	Committee,	backtesting	acts	 like	a	controlling	

mechanism	that	sets	certain	limits	to	the	internal	models	approach	(BCBS,	1996b).		

	

The	 drawbacks	 presented	 by	 VAR	 and	 the	 incorporation	 of	 Expected	 Shortfall	 risk	

measure	 in	 the	 Basel	 regulatory	 framework	 in	 2012	 (BCBS,	 2012:	 20),	 called	 for	 the	

development	of	a	backtesting	framework	based	on	this	measure.	The	discovery,	though,	

that	Expected	Shortfall	is	not	elicitable	(Gneiting,	2011),	sparked	an	academic	debate	as	

to	 whether	 it	 is	 backtestable.	 This	 is	 the	 reason	 why	 Basel	 Committee	 on	 Banking	

Supervision	has	retained	VAR	in	its	backtesting	framework	(BCBS,	2016:	95).	

	

Acerbi	&	 Szekely	 (2014)	 proved	 that	 Expected	 Shortfall’s	 lack	 of	 elicitability	 property	

does	not	impede	efficient	backtesting.	They	also	proposed	three	backtesting	methods.	
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In	this	chapter	various	methods	for	VAR	and	Expected	Shortfall	backtests	are	presented.	

Regarding	 VAR,	 the	 Traffic	 Light	 test	 outlined	 by	 the	 Basel	 Committee	 on	 Banking	

Supervision	is	described.	Subsequently,	unconditional	and	conditional	tests	proposed	by	

Kupiec	 (1995)	and	Christoffersen	 (1998)	 respectively	are	analyzed.	Finally,	 two	of	 the	

three	Expected	Shortfall	backtesting	methods	proposed	by	Acerbi	&	Szekely	(2014)	are	

presented.		

	

4.1	Backtesting	Value	at	Risk	
	

Value	 at	 Risk	 backtesting	 refers	 to	 the	 frequency	 of	 portfolio	 losses	 exceedances	 over	

VAR.	If	a	daily	loss	exceeds	the	one	day	99%	VAR	estimated	under	a	certain	model,	this	

observation	 is	 called	an	exception.	 If	 the	number	of	 exceptions	 is	statistically	equal	 to	

the	1%	worst	case	losses	of	the	portfolio	loss	distribution	over	our	data	sample,	then	the	

model	can	be	considered	as	accurate.		

	

If	we	denote	the	daily	loss	of	a	portfolio	as	xt,t+1,	then	we	can	define	the	‘hit’	function	as	

follows	(Campbell,	2015:	3):	

	

	

	

where	α	is	the	upper	α%	quantile	of	the	daily	portfolio	loss	distribution.	The	sequence	of	

the	hit	 function	(e.g.	0,0,1,0,0,….,1)	 is	 the	 information	criterion	of	 the	 loss	exceedances	

over	VAR.		

	

Mehta,	Neukirchen,	Pfetsch,	&	Poppensieker,	(2012:	16)	analyze	the	performance	of	VAR	

models	based	on	the	following	evaluation	criteria:	

	

• Accuracy:	 The	 absolute	 difference	 between	 VAR	 estimate	 and	 daily	 portfolio	

actual	 loss.	An	accurate	model	 traces	daily	portfolio	 return	 fluctuations	 closely,	

being	highly	reactive	in	market	movements.		

• Stability:	 The	 change	 in	 VAR	 from	 day	 to	 day	 should	 not	 be	 overly	 reactive	 to	

small	short-term	changes	in	market	conditions.		
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• Outliers:	 The	 number	 of	 times	 in	 a	 given	 period	 that	 actual	 losses	 exceed	VAR	

estimates.	

	

The	 backtesting	 methods	 presented	 below	 examine	 the	 third	 criterion,	 which	 is	 the	

observed	percentage	of	exceptions	in	comparison	with	the	theoretical	one.			

	

4.1.1	Regulatory	Framework	–	The	Traffic	Light	Test	

	

As	 previously	 mentioned,	 VAR	 backtesting	 regulatory	 framework	 was	 developed	

simultaneously	 with	 the	 market	 risk	 capital	 requirements	 standards	 by	 the	 Basel	

Committee	 on	Banking	 Supervision	 in	 1996.	 This	 framework	 is	 known	 as	 the	 ‘Traffic	

Light	Test’	and	has	been	retained	by	the	Committee	till	today.		

	

The	primary	reference	point	in	the	process	is	the	use	of	the	number	of	exceptions	as	the	

basis	for	appraising	a	bank’s	model.	According	to	the	Committee	(BCBS,	1996b:	5),	the	

appealing	 characteristic	 of	 this	 procedure	 is	 its	 simplicity	 and	 straightforwardness	 as	

well	as	its	relatively	few	strong	assumptions.	The	primary	assumption	in	the	process	is	

the	 independent	outcomes	of	 the	 ‘hit’	 function.	More	 specifically,	 if	we	define	α	as	 the	

α%	quantile	of	the	return	loss	distribution	above	VAR	level,	then	the	‘hit’	sequence	It(α)	

is	 assumed	 to	 be	 independently	 and	 identically	 distributed	 as	 a	 Bernoulli	 random	

variable	with	probability	α	(Campbell,	2015:	4):	

	
	 	 	 	 	 	 	i.d.d.	

	

	

Assuming	 a	 binomial	 distribution,	 with	 probability	 α	 indicating	 the	 theoretical	

percentage	of	 exceedances	over	VAR	 (e.g.	1%),	n	 indicating	 the	number	of	days	 in	 the	

observation	period	and	m	the	number	of	exceedances,	the	probability	of	the	percentage	

of	exceedances	being	greater	that	α	can	be	found	using	the	formula	below:	
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Considering	a	 level	of	coverage	of	99%	(α=1%)	and	a	sample	of	250	observations,	 the	

number	 of	 exceptions	 and	 the	 corresponding	 cumulative	 probability,	 are	 presented	 in	

the	following	table:	

	

Zone	 Number	of	exceptions	 multiplier	 Cumulative	

probability	

Green	zone	 0	

1	

2	

3	

4	

1.50	

1.50	

1.50	

1.50	

1.50	

8.11%	

28.58%	

54.32%	

75.81%	

89.22%	

Yellow	zone	 5	

6	

7	

8	

9	

1.70	

1.76	

1.83	

1.88	

1.92	

95.88%	

98.63%	

99.60%	

99.89%	

99.97%	

Red	zone	 10	or	more	 2.00	 99.99%	

Table	1.	The	Basel	Committee	on	Banking	Supervision	Traffic	Light	 test	 (BCBS,	2016:	

77).	

	

At	the	5%	confidence	level	we	can	see	that	a	model	exhibiting	5	or	more	exceptions	is	

rejected	from	being	accurate	(at	the	green	zone).		

	

The	range	from	5	to	9	exceptions	constitutes	the	yellow	zone.	In	this	zone	the	accuracy	

of	a	model	is	questionable.	As	the	number	of	exceptions	tends	to	reach	the	lower	bound	

of	9,	the	accuracy	is	severely	deteriorated.		

	

Finally	 the	 red	 zone	 starts	 from	 the	 point	 of	 10	 or	more	 exceptions.	 In	 this	 zone	 the	

framework	dictates	supervisory	authorities	to	investigate	the	reasons	of	the	poor	model	

performance	and	require	the	bank	to	improve	its	accuracy.		

	

In	the	table	above	we	can	observe	that	the	multiplication	factor	is	increased	from	1.5	in	

the	green	zone	to	2	 in	 the	red	zone.	This	multiplication	 factor	 leads	to	greater	market	

risk	 capital	 requirements	 as	 exceptions	 increase.	 According	 to	 the	 latest	 published	



 

37 
 

Standards	 of	 the	 Committee	 (BCBS,	 2016:	 64),	 the	 market	 risk	 capital	 charge	 is	

calculated	as	follows:	

	

	

	

where	 IMCC	 is	 the	 aggregate	 capital	 charge	 for	modellable	 risk	 factors	 and	 SES	 is	 the	

aggregate	 regulatory	measure	 for	 K	 risk	 factors	 in	model	 eligible	 desks	 that	 are	 non	

modellable.		

	

It	 is	 worthwhile	 to	 mention	 that	 until	 the	 second	 consultative	 document	 of	 the	

Committee’s	 ‘Fundamental	 Review	of	 the	Trading	Book’	 framework	 (BCBS,	 2013),	 the	

multiplication	factor	for	the	green	zone	had	been	set	to	3,	scaling	up	to	4	in	the	red	zone.	

	

4.1.2	Unconditional	Coverage	Test	–	Kupiec	Test	

	

To	test	whether	the	probability	of	realizing	a	loss	in	excess	of	the	reported	VARt(α)	must	

be	precisely	α	X	100%,	or	that	the	cumulative	probability	of	the	hit	sequence	is	equal	to	

α	[Pr(It+1(α)=1)=α],	Kupiec(1995)	proposed	a	powerful	two	tailed	test.	Denoting	α	as	the	

theoretical	probability	of	 an	exception	and	m	the	number	of	 exceptions	observed	 in	n	

trials,	 the	 following	 statistic	 should	 be	 distributed	 asymptotically	 as	 a	 chi-square	

distribution	with	one	degree	of	freedom:	

 

	

	

In	the	case	where	exceptions	occur	more	frequently	than	the	reported	VAR	suggest,	then	

this	would	 suggest	 that	 the	 VAR	measure	 understates	 the	 actual	 level	 of	 risk.	 On	 the	

contrary,	fewer	exceptions	than	those	suggested	by	α	would	be	a	signal	of	conservative	

VAR	measure.	 The	 Kupiec’s	 two	 tailed	 test	 of	 unconditional	 coverage	 reject	 the	 VAR	

model	 for	either	lower	or	greater	percentage	of	 failures	than	those	 implicit	 in	 the	VAR	

confidence	level.		

	

	

1 1max( ; )A t t avg avc gC IMCC SES m IMCC SES- -= + +

22ln[(1 ) ( ) ] 2ln[(1 ) ] (1)n m m n m mm m a a x
n n

- -- - - !



 

38 
 

4.1.3	Conditional	Coverage	Test	–	Christoffersen	Test	

	

The	 traffic	 light	 and	 unconditional	 coverage	 tests	 make	 the	 assumption	 that	 VAR	

violations	 are	 independent	with	 each	 other.	 This	means	 that	 two	 elements	 in	 the	 ‘hit’	

sequence	(It+g(α),	It+k(α))	do	not	exhibit	bunching,	requiring	that	previous	VAR	violations	

must	not	convey	any	 information	 for	an	additional	VAR	violation.	 In	practical	 terms,	 if	

volatility	 is	 low	 in	 some	 period	 and	 high	 in	 others,	 VAR	 forecasts	 should	 respond	

accurately	to	changing	market	conditions,	not	presenting	clusters.			

			

Christoffersen	(1998:	845)	proposed	a	test	for	the	independence	of	VAR	violations.	We	

denote	uij	as	the	number	of	observations	in	which	we	go	from	a	day	we	are	in	state	i	to	a	

day	we	are	in	state	j.	State	0	is	a	day	with	no	VAR	violation	and	1	is	a	day	where	there	is	

a	violation.	The	test	of	VAR	violation	independence	can	be	conducted	with	the	use	of	the	

following	likelihood	function	which	follows	a	chi	distribution	with	1	degree	of	freedom:		

	

	

where:	

	

	

According	 to	 Christoffersen	 (1998:	 846),	 we	 can	 test	 the	 combined	 hypothesis	 of	

unconditional	coverage	and	correct	conditional	coverage	using	the	following	likelihood	

test	statistic	that	follows	a	chi-square	distribution	with	2	degrees	of	freedom:	

	

	

	

where	 Luc	 is	 the	 likelihood	 function	 used	 in	 the	 unconditional	 coverage	 test	 in	 the	

previous	 section.	 This	 approach	 enables	 us	 to	 test	 both	 coverage	 and	 independence	

hypothesis	at	the	same	time.		
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4.1.4	The	Empirical	Coverage	Probability	

	

Models	which	pass	the	conditional	coverage	test	can	be	ranked	according	to	an	indicator	

of	the	relative	frequency	of	violations	(empirical	coverage	probability).	The	best	model	

is	the	one	with	the	lowest	ratio	between	VAR	violations	and	size	of	observations	in	the	

data	sample	window.	A	VAR	measure	must	perform	smaller	number	of	violations	than	

those	implied	by	the	VAR	confidence	level.		

	

4.2	Backtesting	Expected	Shortfall	
	

We	have	seen	that	Expected	Shortfall	was	adopted	 in	the	Basel	Committee	on	Banking	

Supervision	market	risk	regulatory	framework	in	2012	(BCBS,	2012).	Nevertheless,	the	

Basel	Committee	preserved	VAR	as	 the	measure	 to	backtest	 in	 the	 common	way.	This	

was	 attributed	 to	 the	 scientific	 debate	 as	 to	 whether	 Expected	 Shortfall	 lack	 of	

elicitability	would	 impede	 reliable	backtesting.	 In	addition	 to	 that,	 academic	 literature	

on	expected	shortfall	backtesting	had	not	been	conclusive	on	certain	methods.		

	

In	 a	 pioneering	 article,	 Acerbi	 &	 Szekely	 (2014)	 concluded	 that	 elicitability	 of	 a	 risk	

measure	 is	 relevant	 only	 for	 model	 selection	 (i.e.	 comparison	 of	 different	 models	

forecasting	the	same	process).	From	a	regulatory	point	of	interest,	though,	bank	models	

are	tested	on	an	absolute	validation	basis	(model	testing),	setting	elicitability	irrelevant	

for	the	backtesting	process.		

	

Furthermore,	 the	 authors	 proposed	 three	 non-parametric	 methods	 of	 backtesting	

Expected	 Shortfall	which	 are	 distribution	 independent.	 In	 this	 section	we	 present	 the	

first	two	tests,	following	from	the	representation	of	Expected	Shortfall	as	a	conditional	

and	unconditional	expectation	respectively.		

	

Lets	denote	Xt	as	a	bank’s	portfolio	loss	in	day	t	of	a	testing	period	(t=1,….,T),	forecasted	

by	a	model	predictive	distribution	Pt,	also	used	to	compute	VAR	and	Expected	Shortfall	

risk	measures.		

	

Test	 1	 of	 Acerbi	 &	 Szekely	 (2014)	 is	 derived	 from	 the	 conditional	 expectation	

representation	of	Expected	Shortfall	below:	
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After	some	algebraic	transformations	we	reach	the	following	equation:	

	

	

	

We	now	assume	 that	VAR	has	already	been	 tested	and	we	want	 to	separately	 test	 the	

magnitude	 of	 the	 verified	 violations	 against	 model	 predictions.	 Defining	

	as	 the	 indicator	 function	of	a	VAR	violation,	 the	authors	construct	

the	following	test	statistic:	

	

	

	

where	 	

	

Under	 the	 null	hypothesis	H0,	 the	 expected	 value	 of	 the	 test	 statistic	 is	 zero,	whereas	

under	the	alternative	hypothesis	H1	the	expected	value	of	the	test	statistic	is	positive.	A	

possible	acceptance	of	the	alternative	hypothesis	would	indicate	risk	underestimation.	

	

	

	

From	the	above	we	can	conclude	that	the	conditional	test	has	two	parts:	a	VAR	backtest	

and	 a	 standalone	 conditional	 test	 using	 the	 statistic	 Z1.	 The	 conditional	 test	 accepts	 a	

model	when	these	two	tests	accept	it	separately.		

	

Test	 2	 follows	 from	 the	 representation	 of	 Expected	 Shortfall	 as	 an	 unconditional	

expectation	of	the	following	form:	
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From	the	above	equation	the	authors	construct	the	following	statistic:	

	

	

	

The	 expected	 value	 of	 the	 test	 statistic	 under	 the	 null	 and	 alternative	 hypothesis	 is	

presented	below:	

	

	

	

In	order	to	test	the	significance	of	the	tests	and	accept	or	reject	the	models,	M	simulated	

scenarios	of	the	N	observations	are	made	according	to	the	model	predictive	distribution	

Pt	 ( 	with	 ,	 	and	 ).	For	each	simulated	

scenario	 	 we	 compute	 the	 test	 statistic	 of	 interest	 = ,	 s=1,…,M.	 The	 p-

value	is	defined	as	the	proportion	of	scenarios	under	which	the	simulated	test	statistic	Zs	

is	larger	than	the	test	statistic	evaluated	through	the	observation	period	1,…,T,	defined	

as	Zobs	( ).		

	

	

	

	

where	 	 is	an	 indicator	 function	with	value	1	 if	 and	zero	otherwise.	Defining	

ptest	as	the	1	minus	the	test	confidence	level,	we	reject	the	model	if	p<	ptest.	

	

According	 to	 the	 authors,	 critical	 values	 for	 Z2	 display	 remarkable	 stability	 across	

different	distributional	assumptions	(eg.	Normal	or	t	with	low	degrees	of	freedom).	This	

means	that	for	the	unconditional	test,	the	above	simulation	procedure	can	be	avoided.	

, [ ]
1
t t

a t
X IES
a

= E
-

1 ,
2 ( ) 1

(1 )

T
t t

t a t

X I
ES

X
T a
=Z = -

-

å!!"

0

1

2

2

[ ] 0

[ ] 0
H

H

E Z

E Z

=

>

1( ,..., ,..., )S s s s
t TX X X X= s

t tX P! 1,...,t T= 1,...,s M=

SX 1,2
sZ 1,2 ( )sZ X

1( ,..., )obs
TZ Z X X=

I s obsZ Z>

1

1 ( )
M

s obsp I Z Z
M

= >å



 

42 
 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



 

43 
 

Chapter	5	
Empirical	Study	Framework	

	

	

	

In	 this	 part	 of	 the	 Thesis,	 the	 performance	 of	 various	 types	 of	models	 in	market	 risk	

estimation	 is	 evaluated	 through	 a	 stressed	 and	 a	 tranquil	 market	 condition	 period	

separately.	 The	 risk	 measures	 used	 in	 the	 analysis	 are	 VAR	 and	 Expected	 Shortfall,	

defined	in	the	Basel	Committee	on	Banking	Supervision	regulatory	framework.		

	

For	the	stressed	market	condition	period,	the	US	financial	crisis,	which	started	in	2007,	

was	chosen.	This	crisis	led	large	corporations	such	as	Citigroup,	UBS	and	Merrill	Lynch	

to	incur	vast	losses	and	Lehman	Bothers	to	collapse.	Banking	regulatory	framework	was	

later	accused	of	presenting	serious	inefficiencies	that	facilitated	the	escalation	of	events.	

Hull	 (2012:	132)	 considers	 regulatory	arbitrage	as	 the	major	 inefficiency.	Banks	were	

actually	 induced	 to	 securitize	 mortgages,	 sell	 these	 to	 Special	 Purpose	 Vehicles,	

effectively	 setting	 them	 off	 their	 banking	 book	 and	 then	 buy	 created	 collateralized	

mortgage	 obligation	 tranches,	 moving	 these	 instruments	 to	 the	 trading	 book.	 This	

procedure	 significantly	 reduced	 their	 overall	 capital	 requirements.	 As	 referred	 in	

chapter	2,	 this	 issue	was	resolved	 in	Basel	2.5	by	the	 inclusion	of	an	IRC	(Incremental	

Risk	Charge)	in	the	market	risk	regulatory	framework.		

	

For	the	tranquil	market	condition	period,	the	period	following	the	US	crisis	was	chosen.	

In	 this	way,	 the	comparison	of	 the	efficiency	of	certain	models	 in	accurately	capturing	

different	market	conditions	is	made	possible.		

	

This	 chapter	 exhibits	 the	 purpose	 of	 the	 study,	 as	 well	 as	 the	 study	 limitations	 and	

methodology.						
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5.1	Purpose	of	the	Study	
	

This	study	aims	at	examining	the	efficiency	of	different	models	in	estimating	market	risk	

in	a	stressed	and	a	tranquil	market	condition	period,	using	VAR	and	Expected	Shortfall	

risk	 measures.	 Expected	 Shortfall	 is	 a	 risk	 measure	 officially	 introduced	 in	 the	 Basel	

Committee	on	Banking	 Supervision	market	 risk	 regulatory	 framework	 in	 2016	 (BCBS,	

2016)	after	two	consultative	documents	in	2012	(BCBS,	2012)	and	2013	(BCBS,	2013).	

Academic	literature	has	recently	begun	to	study	the	performance	of	market	risk	models	

using	Expected	Shortfall	(e.g.	Righi	&	Caretta	(2015),	Kellner	&	Rosch	(2016)).	Under	its	

growing	 importance	 as	 risk	 measure	 capturing	 tail	 risk,	 this	 study	 uses	 Expected	

Shortfall	 in	 addition	 to	 VAR	 in	 order	 to	 examine	 the	 accuracy	 of	market	 risk	models	

using	corresponding	backtesting	procedures,	in	stressed	and	tranquil	market	condition	

periods.	 The	models	 examined	 are	 non	 parametric	 (Historical	 Simulation),	 parametric	

(Normal	 and	 t-distribution)	 and	 an	 EGARCH	model	 capturing	 volatility	 dynamics.	 For	

the	analysis,	data	of	S&P	index	is	used,	simulating	a	univariate	equity	portfolio	of	a	bank	

trading	desk.	

	

Historical	 Simulation	 has	 been	 criticized	 for	 slow	 reaction	 to	 fast	 changing	 market	

conditions	(Pritsker	(2005),	Manganelli	&	Engle	(2001)).	Nevertheless,	the	vast	majority	

of	 banking	 institutions	 adopt	 this	 method	 for	 estimating	 market	 risk	 capital	

requirements	(EBA	(2017),	Perignon	&	Smith	(2010)).	In	this	study,	the	comparison	of	

Historical	Simulation	VAR	and	Expected	Shortfall	estimation	results	with	the	equivalent	

of	other	models,	especially	during	the	US	financial	crisis,	gives	us	insight	into	the	level	of	

possible	market	risk	underestimation	during	this	period.		

	

The	purpose	of	this	study	is	to	examine	the	extent	at	which	certain	market	risk	models	

and	Expected	Shortfall,	 as	 a	newly	 introduced	 risk	measure,	 could	act	 as	a	preventing	

mechanism	for	upcoming	crises	in	the	banking	industry	that	stem	from	market	risk.	The	

reliability	 of	 these	 models	 is	 examined	 with	 the	 use	 of	 VAR	 and	 Expected	 Shortfall	

backtesting	 techniques.	 Additionally,	 these	 models	 are	 also	 tested	 on	 their	 ability	 to	

track	portfolio	losses	in	a	tranquil	market	condition	period.					
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5.2	Study	Limitations	
	

Due	 to	 a	 great	 number	 of	 approaches	 proposed	 by	 academic	 literature	 for	 VAR	

estimation	and	the	ongoing	investigation	in	Expected	Shortfall	estimation	methods,	this	

study	 focus	 its	 analysis	 to	 certain	models	 varying	 from	 simple	 and	more	 applied	 (eg.	

Historical	 Simulation,	 Normal	 Distribution	 approach)	 to	 more	 sophisticated	 ones	

capturing	heaviness	in	tail	distribution	and	volatility	clustering	(EGARCH	model).	

	

Models	based	on	Extreme	Value	Theory	that	estimate	the	tail	of	a	distribution	are	not	

examined	in	this	study.	Extreme	Value	Theory	is	a	field	in	risk	management	that	focuses	

on	the	distinctiveness	of	high	impact	and	low	probability	events	and	has	recently	gained	

considerable	 applicability	 in	 VAR	 and	 Expected	 Shortfall	 estimation	 methods	

(Harmantzis,	 Miao	 &	 Chien	 (2006),	 McNeil	 &	 Frey	 (2000),	 Nozari	 ,	 Raei,	 Jahangiri	 &	

Bahramgiri	(2010),	to	name	a	few	studies).		

	

Finally,	to	simplify	the	analysis,	data	is	restricted	in	S&P	equity	index	for	two	separate	

periods,	 indicating	 crisis	 and	after	 crisis	market	 conditions.	This	 index	 consists	of	500	

US	 large	company	stocks,	representing	US	equity	market	 to	a	significant	extent.	As	 the	

study	 analysis	 is	 focused	 in	 the	 US	 financial	 crisis,	 the	 use	 of	 this	 index	 is	 intuitively	

justified	as	a	simulation	of	a	bank’s	equity	trading	desk.	

	

5.3	Study	Methodology	
	

In	 this	 section,	 the	methodology	 for	 the	estimation	of	VAR	and	Expected	Shortfall	 risk	

measures	according	to	certain	models	is	described.	The	methodology	is	based	on	certain	

assumptions	made	for	the	following	factors	affecting	the	estimation	results:	

	

• Forecast	time	horizon:	A	time	horizon	(holding	period)	of	one	day	is	selected	for	

VAR	 and	 Expected	 Shortfall	 forecasts,	 consistent	 with	 the	 Basel	 Committee	 on	

Banking	Supervision	market	risk	regulatory	framework.		

	

• Rolling	window:	This	 is	 the	 subsample	observation	 length	used	 to	estimate	 the	

model	 parameters.	 The	 rolling	 window	 used	 in	 this	 analysis	 is	 250	 daily	
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observations,	 following	 the	 Basel	 Committee	 on	 Banking	 Supervision	 VAR	

backtesting	procedure,	which	requires	this	length	of	the	window	for	the	purposes	

of	backtesting	(BCBS,	2016:	73).	For	example	we	estimate	the	VAR	and	Expected	

Shortfall	 for	 the	 first	 time	 on	 the	 251st	 day	 based	 on	 the	 last	250	 returns.	 The	

window	 is	moved	 one	 day	 forward	 and	 using	 the	 data	 from	 day	 2	 to	 251	 we	

estimate	VAR	and	ES	for	day	252.		

	
• Confidence	level:	VAR	and	Expected	Shortfall	are	estimated	for	each	model	using	

a	confidence	level	of	97,5%	and	99%	for	VAR	and	97,5%	for	Expected	Shortfall.	

According	 to	 the	 most	 recent	 market	 risk	 regulatory	 standards	 issued	 by	 the	

Basel	Committee,	banks	are	 required	 to	estimate	 for	each	business	day	and	 for	

each	 trading	 desk	 two	daily	 VARs	 corresponding	 to	 a	 one	 tail	 97,5%	 and	 99%	

confidence	 level	 and	 a	 daily	 Expected	 Shortfall	 that	 corresponds	 to	 a	 97,5%	

confidence	level	(BCBS,	2016:	56).		

	

Apparently,	 the	 above	 assumptions	 are	 also	 used	 for	 VAR	 and	 Expected	 Shortfall	

backtesting	procedures.	

	

The	analysis	is	conducted	through	MATLAB	and	Eviews.					
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Chapter	6	
Empirical	Results	–	VAR	and	

Expected	Shortfall	Estimation	
	

	

			
After	 presenting	 the	 scope,	 limitations	 and	 methodology	 of	 the	 Thesis,	 this	 chapter	

exhibits	the	data	analysis	and	the	VAR	and	Expected	Shortfall	estimation	results	of	five	

types	of	models	in	the	two	separate	periods	chosen.	Risk	measure	estimation	procedure	

contains	a	certain	assumption	about	the	distribution	and	properties	of	portfolio	returns	

(Manganelli	&	Engle,	2001:	7)	and	this	can	lead	to	important	discrepancies	among	model	

results.		

	

Using	 a	 time	 horizon	 of	 one	 trading	 day,	 a	 rolling	 window	 of	 250	 days	 and	 certain	

confidence	 levels	 (97,5%	 and	 99%	 for	 VAR	 and	 97,5%	 for	 Expected	 Shortfall),	

estimation	results	are	presented	for	each	model	for	the	crisis	and	after	crisis	period.	The	

chapter	concludes	with	the	comparison	of	model	results	that	produces	valuable	findings	

with	respect	to	significant	market	risk	underestimation	of	certain	models	during	the	US	

financial	crisis.		

	

6.1	Data	Analysis	
	

Data	 consist	 of	 negative	 daily	 log	 returns	 of	 the	 S&P	 index	 in	 the	 periods	 2006-2010	

(crisis	 period)	 and	 2011-2015	 (after	 crisis	 period)	 and	 were	 retrieved	 from	 Yahoo	

Finance	database.	For	the	estimation	of	VAR	and	Expected	Shortfall,	we	are	interested	in	

examining	 positive	 losses	 and	 not	 negative	 profits	 in	 a	 hypothetical	 profit	 and	 loss	

distribution,	so	daily	negative	 log	returns	are	estimated.	 In	 the	next	 two	figures,	 these	

returns	are	presented	for	the	crisis	and	after	crisis	period.		
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Figure	6.	S&P	negative	log	returns,	Crisis	Period.	

	

	
		Figure	7.	S&P	negative	log	returns,	After	Crisis	Period.	

	

In	 figure	6	we	can	observe	 the	peak	of	 the	 crisis	 in	mid	year	2008,	when	 it	 started	 to	

spiral	out	of	control.	In	November	2008	the	US	Treasury	Troubled	Asset	Relief	Program	

was	 passed	 into	 law	 with	 the	 Emergency	 Economic	 Stabilization	 Act.	 Under	 this	

Program,	US	Treasury	was	given	a	large	purchasing	power	in	order	to	buy	highly	illiquid	

mortgage	 backed	 securities,	 thus	 reducing	 potential	 large	 losses	 for	 the	 financial	

institutions	 that	 owned	 them.	 S&P	 index	 return	 losses	 began	 to	 smooth	 out	 in	 the	

beginning	of	2009.		
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In	figure	7,	the	large	return	losses	incurred	in	August	2011	were	caused	by	stock	prices	

fall	in	stock	exchanges	across	United	States,	Europe,	Asia	and	Middle	East,	due	to	fears	of	

contagion	of	 the	European	sovereign	debt	 crisis.	Not	 surprisingly,	 return	 losses	 in	 the	

after	 crisis	period	are	of	much	 lesser	magnitude	 than	 in	 crisis	period.	 In	 the	next	 two	

figures,	descriptive	statistics	 for	 the	S&P	index	return	 losses	(negative	 log	returns)	 for	

the	two	periods	under	study	are	exhibited.	

	

				

	

	

	

	

		

	

		

	

	

	

	

Figure	8.	Descriptive	statistics	for	S&P	negative	log	returns,	Crisis	Period.	

	

	

	

	

	

	

	

	

	
	

	

	

	

Figure	9.	Descriptive	statistics	for	S&P	negative	log	returns,	After	Crisis	Period.	
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The	descriptive	statistics	show	that	mean	is	approximately	equal	to	zero	in	both	periods	

and	 distributions	 exhibit	 high	 kurtosis	 and	 are	 rightly	 skewed.	 Kurtosis	 coefficient	 is	

higher	 for	 return	 losses	 in	 crisis	period,	 implying	 that	 large	 losses	are	more	 frequent.	

Additionally	 the	 Jarque-Bera	 statistic	 rejects	 the	 Normality	 condition	 in	 both	 periods.	

The	heavier	tail	characteristic	of	return	losses	is	depicted	in	the	next	quantile-quantile	

plots	for	both	periods.	It	is	obvious	that	the	distribution	is	more	leptokurtic	in	the	crisis	

period.		

	

	
Figure	10.	Quantile-Quantile	plot,	S&P	index	negative	log	returns,	Crisis	Period	

	

	
Figure	11.	Quantile-Quantile	plot,	S&P	index	negative	log	returns,	After	Crisis	Period	
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So	 far,	 return	 loss	 distributions	 for	 the	 two	 periods	 have	 presented	 two	 typical	

characteristic	properties	of	financial	returns:	positive	skewness	and	excess	kyrtosis.	One	

more	characteristic	to	be	examined	is	the	autocorrelation	of	return	volatilities,	as	these	

tend	to	cluster,	especially	during	stressed	market	conditions	(Manganelli	&	Engle,	2001).	

Squared	 log	 returns	 or	 squared	 demeaned	 log	 returns	 are	 popular	 proxies	 for	 daily	

volatility	(Xekalaki	&	Degiannakis,	2010:	35).		

	

	 	
Figure	12.	S&P	squared	returns,	Crisis	Period.	

	

	
Figure	13.	S&P	squared	returns,	After	Crisis	Period.	
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We	can	observe	that	the	volatility	clustering	property	of	returns	is	more	apparent	in	the	

crisis	 period.	 Next	 we	 can	 test	 for	 the	 statistical	 significance	 of	 the	 squared	 return	

autocorrelations	using	the	Box-Pierce	statistic	referred	 in	chapter	3.	 In	 the	next	 tables	

we	can	see	that	the	null	hypothesis	of	zero	squared	return	autocorrelations	is	rejected	

due	 to	 values	 of	 the	 Box-Pierce	 statistic	 in	 both	 periods,	 implying	 an	 autoregressive	

pattern	in	daily	volatilities.		

	

S&P squared return correlogram, crisis period 

Sample: 1 1259 
     

  
Included observations: 1259 

   
  

  
     

  
Autocorrelation Partial Correlation AC   PAC  Q-Stat  Prob 
        |*     |         |*     | 1 0.189 0.189 45.048 0.000 
        |***   |         |***   | 2 0.388 0.365 234.71 0.000 
        |*     |         |      | 3 0.164 0.058 268.60 0.000 
        |**    |         |*     | 4 0.316 0.181 395.09 0.000 
        |**    |         |**    | 5 0.348 0.276 548.29 0.000 
        |**    |         |*     | 6 0.322 0.152 679.57 0.000 
        |**    |         |*     | 7 0.334 0.144 821.41 0.000 
        |**    |         |      | 8 0.220 0.020 883.04 0.000 
        |**    |         |*     | 9 0.324 0.108 1016.1 0.000 
        |**    |         |*     | 10 0.278 0.090 1114.0 0.000 
Table	2.	S&P	squared	return	correlogram,	Crisis	Period.		

	

S&P squared return corellogram, after crisis period 
Sample: 1 1257 

     
  

Included observations: 1257 
   

  
  

     
  

Autocorrelation Partial Correlation AC   PAC  Q-Stat  Prob 
        |**    |         |**    | 1 0.301 0.301 113.99 0.000 
        |***   |         |***   | 2 0.425 0.368 341.88 0.000 
        |**    |         |*     | 3 0.269 0.098 433.02 0.000 
        |*     |         |      | 4 0.183 -0.047 475.19 0.000 
        |*     |         |      | 5 0.182 0.032 517.25 0.000 
        |*     |         |      | 6 0.163 0.071 550.97 0.000 
        |*     |         |      | 7 0.128 0.014 571.72 0.000 
        |**    |         |*     | 8 0.239 0.155 643.81 0.000 
        |*     |         |      | 9 0.093 -0.049 654.68 0.000 
        |*     |         |      | 10 0.159 0.000 686.63 0.000 
Table	3.	S&P	squared	return	correlogram,	After	Crisis	Period.		
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6.2	Crisis	Period	Models	
	

In	 this	 section,	 the	 estimation	 results	 of	 four	 different	 models	 for	 daily	 VAR	 and	

Expected	 Shortfall	during	 the	 crisis	 period	 are	 presented.	Using	 1259	 observations	 of	

the	S&P	index	for	the	period	2006-2010	and	a	rolling	window	of	250	trading	days,	the	

actual	 risk	 measure	 estimates	 are	 1009.	 A	 confidence	 level	 of	 97,5%	 for	 Expected	

Shortfall	estimation	and	two	confidence	levels,	97,5%	and	99%,	for	VAR	estimation	are	

used,	 following	 the	 recent	 Basel	 Committee	market	 risk	 regulatory	 framework	 (BCBS,	

2016:	56).					

	

The	models	employed	to	simulate	the	 loss	 function	of	S&P	daily	returns	are	Historical	

Simulation,	Normal	distribution,	t	distribution	and	an	EGARCH	model.	

	

6.2.1	Historical	Simulation	

	

As	 presented	 in	 Chapter	 3,	 this	 is	 a	 non	 parametric	 method	 that	 is	 based	 on	 the	

assumption	 that	 the	 actual	 distribution	 of	 portfolio	 losses	 in	 day	 t	 can	 be	 efficiently	

proxied	by	the	empirical	distribution	of	portfolio	returns	throughout	the	previous	250	

return	 loss	 observations	 in	 the	 rolling	window.	 The	 calculation	 of	 VAR	 and	 Expected	

Shortfall	 are	based	on	 this	simplifying	assumption.	The	estimation	results	 for	VAR	are	

depicted	in	the	next	figure.	

	
Figure	14.	S&P	VAR	estimation	under	Historical	Simulation	method,	Crisis	Period.	
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We	can	observe	that	the	Historical	Simulation	curve	has	a	piecewise	profile.	The	reason	

for	this	is	that	quantiles	do	not	change	for	extended	periods	until	extreme	events	occur.		

According	 to	Perignon	and	Smith	 (2010:	367),	73%	of	banks	 that	disclosed	 their	VAR	

method	used	the	Historical	Simulation.	More	recently,	in	a	benchmarking	exercise	by	the	

European	 Banking	 Authority	 (EBA,	 2017),	 66%	 of	 participating	 banks	 were	 found	 to	

follow	 this	 methodological	 approach.	 Historical	 Simulation	 has	 been	 criticized	 for	 its	

inability	 to	 capture	 volatility	 clustering	 and	 react	 timely	 in	 fast	 changing	 market	

conditions.	 It	 is	obvious	 that	banks’	market	 risk	 regulatory	 capital	 requirements	were	

not	accurately	adjusted	to	restrict	crisis	escalating	events.		

	

Additionally,	 after	 the	 crisis	peak	 in	 late	2008	and	 the	 subsequent	 introduction	of	 the	

Troubled	 Asset	 Relief	 Program	 (TARP),	 VAR	 and	 Expected	 Shortfall	 estimates	 do	 not	

follow	 the	 reduction	 in	 return	 losses	 and	 volatility	 observed.	 Contrary	 to	 that,	 they	

follow	a	conservative	pattern	based	on	extreme	observations	in	the	last	250	day	rolling	

window.					

	

6.2.2	Normal	Distribution	

	

The	normal	or	Gaussian	distribution	approach,	is	a	parametric	approach	introduced	by	

RiskMetrics	(1996:	6)	and	 is	based	on	the	assumption	that	return	 losses	 in	 the	rolling	

window	are	normally	distributed.	Under	this	assumption	the	only	parameters	that	have	

to	 be	 estimated	 for	 the	 risk	 measure	 estimation	 is	 distribution	 mean	 and	 standard	

deviation	 over	 the	 last	 250	 observations.	 Formulas	 for	 the	 derivation	 of	 VAR	 and	

Expected	Shortfall	for	this	method	are	straightforward,	as	already	presented	in	Chapter	

3.	 The	 only	 assumption	we	make	 is	 that	mean	 return	 is	 zero	 for	 every	 risk	measure	

calculation.	 The	 estimation	 results	 for	 VAR	 at	 97,5%	 and	 99%	 confidence	 levels	 are	

exhibited	in	the	next	figure.		
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Figure	15.	S&P	VAR	estimation	under	Normal	Distribution	method,	Crisis	Period.	

	

Like	 the	 Historical	 Simulation	 approach,	 this	 method	 also	 seems	 to	 underestimate	

market	 risk	 during	 the	 crisis	 peak,	 as	 return	 losses	 surpass	 VAR	 estimates.	 Using	

standard	 deviation	 of	 the	 last	 250	 observations	 to	 calculate	 both	 risk	 measures,	 the	

Normal	Distribution	method	presents	the	drawback	of	considering	a	stable	volatility	and	

moreover	 neglects	 any	 fat	 tailed	 return	 pattern.	 To	 partly	 overcome	 the	 second	

drawback,	the	t-distribution	method	is	employed	below.	

	

6.2.3	Student’s	t	Distribution.	

	

The	 t-distribution	 approach	 is	 a	 parametric	 approach	 based	 on	 the	 properties	 of	 a	 t-

distribution	 and	 allows	 for	 capturing	more	 extreme	 losses	 than	 those	 implied	 by	 the	

normal	 distribution.	 A	 typical	 characteristic	 of	 financial	 returns	 is	 the	 excess	 than	

normal	 kurtosis	 of	 their	 distribution	 (fat	 tails).	 Defining	 the	 number	 of	 degrees	 of	

freedom	in	a	t-distribution,	we	can	adjust	the	kurtosis	of	the	distribution	to	the	observed	

data.	 In	 this	Thesis	 the	degrees	of	 freedom	ν	 are	matched	 to	an	 empirical	kurtosis	by	

setting	 ν	 as	 the	 integer	 closest	 to	 the	 value ,	where	k	 is	 the	 kurtosis	 coefficient,	

following	Dowd	(2005:	160).	For	the	crisis	period	this	integer	is	5.		

	

Formulas	 for	 the	 calculation	 of	 VAR	 and	 Expected	 Shortfall	 for	 the	 t-distribution	

approach	are	also	straightforward,	like	the	normal	distribution	method,	as	presented	in	

4 6
3

k
k
-
-
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Chapter	3.	The	estimation	results	for	VAR	calculation	under	t-distribution	approach	are	

exhibited	in	the	figure	below.		

	
Figure	16.	S&P	VAR	estimation	under	t	Distribution	method,	Crisis	Period.	

	

The	results	show	that	VAR	estimates	account	for	extreme	losses	in	the	crisis	peak	period	

more	efficiently	than	the	two	previous	methods.	Nevertheless,	VAR	violations	are	also	of	

an	 important	 magnitude.	 After	 the	 crisis	 peak	 period,	 the	 model	 produces	 very	

conservative	 VAR	 estimates	 that	 follow	 a	 pattern	 of	 extreme	 returns	 and	 volatility	

observed	in	the	previous	250	day	period.	These	extreme	values	leave	estimation	results	

with	a	significant	lag	and	this	is	the	reason	for	the	lack	of	risk	measure	accuracy	under	

this	approach.	

	

	6.2.4	EGARCH	model	

	

An	important	characteristic	of	financial	return	series	is	that	its	volatilities	are	not	stable	

over	 time.	 Especially	 during	 stressed	 market	 conditions,	 return	 volatilities	 tend	 to	

cluster.	The	models	examined	so	 far	do	not	account	 for	 this	specific	property.	 Instead	

they	implicitly	assume	that	volatility	in	the	rolling	window	is	stable.	

	

In	this	section	a	model	capturing	volatility	dynamics	is	employed.	Specifically	we	adopt	

an	EGARCH	(1,1)	model	in	order	to	capture	thick	tail	and	volatility	clustering	properties	

of	 S&P	return	 losses.	 In	addition	 to	 that,	 an	EGARCH	model	 also	 captures	asymmetric	
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effects	in	the	conditional	variance	equation	(Nelson,	1991:	354).	The	model	specification	

used	in	the	analysis	is	the	following:	

	

	where	 	with	 	and	 	

	

More	 specifically,	 the	 innovation	 distribution	 is	 considered	 to	 be	 t-distributed	with	 5	

degrees	of	freedom	,	to	account	for	the	fat	tailed	distribution	property.	The	presence	of	

leverage	 effect	 can	 be	 investigated	 by	 testing	 the	 hypothesis	 that	 γ1>0,	 as	 our	 data	

consist	of	negative	log	returns.		

	

First	we	proceed	with	the	estimation	of	the	model	using	all	the	observations	in	the	crisis	

period	 (apart	 from	 the	 first	 250	 observations	 in	 year	 2006).	 The	 results	 are	 the	

following:	

	

S&P CRISIS PERIOD EGARCH MODEL  
EGARCH(1,1) Conditional Variance Model: 
Conditional Probability Distribution:  

Parameter Value Standard Error t-Statistic 
Constant -0.187897       0.0492172         -3.81772 
GARCH{1}        0.978201         0.00568167         172.168 
ARCH{1}          0.149686       0.0348218           4.29864 

Leverage{1}        0.183574       0.0291854           6.28991 
                DoF                        5 Fixed Fixed 
Table	4.	S&P	Crisis	Period	EGARCH	model	estimation	results		

	

We	 can	 observe	 that	 all	 the	 coefficients	 are	 statistically	 significant.	 The	 leverage	

coefficient	 is	 positive.	 This	 coincides	 with	 the	 leverage	 effect	 theory	 of	 Black	 (1976),	

since	our	data	consist	of	negative	log	returns.	Consequently,	a	negative	shock	is	implied	

by	εt	>0	and	volatility	rises	with	respond	to	bad	news.		

	

The	VAR	and	Expected	Shortfall	risk	measure	 forecasts	are	estimated	for	each	trading	

day	according	to	the	following	formulas:	
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where	 	 is	 the	upper	quantile	of	 the	 innovation	distribution	 that	 corresponds	 to	

a%	 confidence	 level	 and	 by	 definition	 does	 not	 depend	 on	 t.	 is	 the	 equivalent	

Expected	Shortfall	of	this	distribution.	 is	the	EGARCH	model	forecast	of	next	period	

volatility.	This	one	day	ahead	volatility	forecasts	of	the	model	are	presented	in	the	next	

figure.		

	

	
Figure	17.	S&P	forecasted	conditional	variances	under	EGARCH	model,	Crisis	Period		

	

From	the	above	figure,	volatility	clustering	in	crisis	period	peak	period	is	obvious.	The	

estimation	results	for	VAR	according	to	the	EGARCH	model	are	presented	below.	
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Figure	18.	S&P	VAR	estimation	under	EGARCH	model,	Crisis	Period.	

VAR	estimation	under	the	EGARCH	model	seems	to	produce	more	accurate	results	than	

the	previous	models	 in	our	analysis.	These	estimates	tend	to	track	returns	closely	and	

account	for	changing	volatility.		

	

6.3	After	Crisis	Period	Models	
	

This	section	presents	the	results	from	VAR	and	Expected	Shortfall	estimation	during	the	

after	crisis	(tranquil)	period.	As	we	also	want	to	examine	the	models	for	their	efficiency	

to	 produce	 reliable	 risk	measure	 estimates	 in	a	 period	with	 reduced	market	 volatility	

and	 fewer	 extreme	 values,	 this	 section	 exhibits	 the	 level	 of	 model	 accuracy	 through	

equivalent	plots.	Data	consists	of	daily	negative	 log	returns	of	 the	S&P	index	 in	period	

2011-2015	(1257	observations).	Using	the	defined	rolling	window	of	250	trading	days,	

1007	VAR	and	Expected	Shortfall	estimates	are	produced	for	each	model.		

	

6.3.1	Historical	Simulation	

	

Being	the	approach	most	widely	used	for	market	risk	estimation	in	the	banking	industry,	

the	results	of	this	model	are	very	important	for	our	analysis.	In	crisis	period	this	method	

presented	the	serious	drawback	of	following	rather	than	confining	the	escalation	of	the	

crisis.	The	results	of	 the	VAR	estimation	 in	the	after	crisis	period	are	presented	 in	the	

following	figure.	
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Figure	19.	S&P	VAR	estimation	under	Historical	Simulation	method,	After	Crisis	Period.	

	

From	the	above	 figure	we	can	observe	that	VAR	violations	under	Historical	Simulation	

are	 fewer	 in	 this	 period	 as	 there	 are	 less	 extreme	 return	 loss	 observations.	 VAR	

estimates	 from	 January	 2012	 to	 August	 2012	 clearly	 overestimate	 the	 underlying	

market	risk,	being	 influenced	by	the	observations	in	 the	rolling	window	that	belong	to	

August	 2011,	 a	month	with	 stressed	 conditions	 in	 stock	markets	 in	 USA,	 Europe	 and	

Asia.		

	

6.3.2	Normal	Distribution	

	

Normal	 distribution	 method	 VAR	 and	 Expected	 Shortfall	 estimates	 are	 based	 on	 the	

standard	 deviation	 of	 observations	 in	 the	 rolling	 window.	 Considering	 the	 reduced	

market	volatility	in	after	crisis	period,	we	expect	more	reliable	risk	measure	estimates	in	

this	 period	 under	 this	 method.	 Next	 the	 VAR	 estimation	 results	 under	 the	 normal	

distribution	method	are	presented.		
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Figure	20.	S&P	VAR	estimation	under	Normal	Distribution	method,	After	Crisis	Period.	

	

Clearly	 the	 VAR	 estimates	 in	 the	 beginning	 of	 2012	 are	 influenced	 by	 the	 increased	

volatility	observed	in	August	2011,	but	this	time	to	a	lesser	extent	than	their	Historical	

Simulation	equivalents.	This	method	seems	to	produce	more	reliable	estimates	 for	 the	

tranquil	period	than	for	the	stressed	one,	where	its	late	reaction	to	stressed	conditions	

created	many	VAR	breaks.			

	

6.3.3	Student’s	t	Distribution.	

	

This	method	accounts	for	more	extreme	values	in	the	tails	and	thus	the	excess	kurtosis	

property	of	 financial	 returns	 is	 captured	 to	a	 considerable	extent.	 In	 the	data	 analysis	

section	 of	 the	 Thesis,	 the	 distribution	 of	 return	 losses	 in	 the	 after	 crisis	 period	 was	

presented	 to	 have	 lower	 kurtosis	 coefficient	 than	 in	 crisis	 period.	 Nevertheless,	 the	

excess	 than	 normal	 kurtosis	 is	 present	 in	 data	 and	 t-distribution	 must	 intuitively	

perform	better	 than	 previous	methods.	 Again	 the	 degrees	 of	 freedom	 ν	 are	 estimated	

according	to	Dowd	(2005:	160)	and	defined	to	be	5.			
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Figure	21.	S&P	VAR	estimation	under	t	Distribution	method,	After	Crisis	Period.	

	

We	 can	 observe	 that	 VAR	 estimates	 are	 greater	 than	 the	 normal	 method	 in	 both	

confidence	 levels	 and	VAR	breaks	at	 the	99%	confidence	 level	 seem	 to	be	 reduced	by	

this	method.	The	pattern	of	the	t-distribution	VAR	estimation	plot	is	similar	to	previous	

method	plots	in	the	first	months	of	year	2012.	It	is	also	obvious	that	it	performs	much	

better	in	after	crisis	period	than	in	crisis	period.		

	

6.3.4	EGARCH	model	

	

The	 EGARCH	model	 efficiently	 captures	 the	 volatility	 clustering	 effect	 of	 our	 financial	

returns	series	and	provides	more	accurate	VAR	estimates	than	other	models	in	the	crisis	

period,	which	means	 that	 tracks	 the	 fast	 changing	market	 conditions	more	accurately.	

Next	 the	 estimation	 results	 of	 the	 EGARCH	model	 using	 all	 the	 observations	 in	 after	

crisis	period	(except	the	first	250	observations	in	year	2011)	are	exhibited.	

	

S&P AFTER CRISIS PERIOD EGARCH MODEL  
EGARCH(1,1) Conditional Variance Model: 
Conditional Probability Distribution:  

Parameter Value Standard Error t-Statistic 
Constant -0.941507 0.13828 -6.80868 
GARCH{1}        0.90414 0.0143389 62.8646 
ARCH{1}          0.0514903 0.0430107 1.19715 

Leverage{1}        0.383097 0.0368107 10.4072 
                DoF                        5 Fixed Fixed 
	Table	5.	S&P	After	Crisis	Period	EGARCH	model	estimation	results		



 

63 
 

	

We	 can	 observe	 that	 the	 ARCH	 coefficient	 is	 not	 statistically	 significant,	 possibly	

indicating	 that	 a	 conditional	 volatility	 model	 is	 not	 appropriate	 in	 a	 tranquil	 market	

condition	period.		

	

The	one	day	ahead	volatility	forecasts	of	the	model	are	presented	in	next	figure.		

	

	 	
Figure	22.	S&P	forecasted	conditional	variances	under	EGARCH	model,	After	Crisis		
	 								Period		
	

	

Indeed	we	observe	that	forecasted	volatility	is	low,	following	our	results	from	the	data	

analysis	section,	where	the	plot	of	negative	log	returns	indicates	higher	volatility	only	in	

August	2011,	 a	month	 that	 is	not	 included	 in	 forecasted	volatilities	 (we	use	data	 from	

year	2012	onwards	for	the	estimation	results).		

	

Next	 the	 VAR	 estimation	 results	 for	 the	 EGARCH	model	 in	 the	 after	 crisis	 period	 are	

exhibited.			
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Figure	23.	S&P	VAR	estimation	under	EGARCH	model,	After	Crisis	Period.	

	

We	 can	 observe	 the	 VAR	 estimation	 accuracy	 again	 in	 this	 period,	 as	 VAR	 estimates	

closely	track	return	series.	But	this	time	this	comes	at	a	cost	of	possibly	many	outliers,	

which	are	the	number	of	times	daily	return	losses	exceed	VAR	estimates.	Of	course	the	

results	 of	 this	 reliability	 analysis	 is	 presented	 in	 the	 next	 Chapter	where	 backtesting	

results	 for	VAR	and	Expected	Shortfall	gives	as	 insight	 in	which	methods	perform	best	

and	in	which	periods.		

	

6.4			Comparison	of	VAR	and	Expected	Shortfall			
	 estimation	results	
	

In	this	section	the	estimation	results	for	VAR	and	Expected	Shortfall	for	all	models	under	

analysis	 are	 presented	 in	 same	 plots	 in	 order	 to	 reach	 valuable	 conclusions	 for	 their	

accuracy	 in	 the	 crisis	 and	 after	 crisis	 period.	 These	 plots	 could	 indicate	 possible	 risk	

underestimation	 in	 the	 crisis	 period	 for	 some	 models,	 highlighting	 the	 need	 for	 the	

regulatory	authorities	to	address	this	issue.		

	

In	the	next	two	figures,	VAR	estimates	at	both	confidence	levels	and	for	all	models	under	

analysis	are	presented	for	the	crisis	period.		
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Figure	24.	S&P	VAR	estimation	under	different	models	at	97,5%	confidence	level,	Crisis	
	 							Period.	
	

	
Figure	25.	S&P	VAR	estimation	under	different	models	at	99%	confidence	level,		 												
	 							Crisis	Period.	
	

Especially	 for	 the	 99%	 confidence	 level,	 it	 is	 obvious	 that	 the	 EGARCH	 model	

outperforms	its	counterparts	for	the	crisis	period	peak.	The	model	accurately	tracks	the	

volatility	 clustering	 and	 high	 kurtosis	 effects	 and	 responds	 timely	 in	 stressed	market	

conditions.	 Next	 the	 equivalent	 estimation	 results	 for	 the	 after	 crisis	 period	 are	

exhibited.		
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Figure	26.	S&P	VAR	estimation	under	different	models	at	97,5%	confidence	level,	After	

	 								Crisis	Period.	

	

	
Figure	27.	S&P	VAR	estimation	under	different	models	at	99%	confidence	 level,	After	
	 								Crisis	Period.	
		

In	the	after	crisis	period,	models	other	than	EGARCH	seem	to	perform	better,	as	the	low	

volatility	market	condition	possibly	leads	to	many	VAR	breaks	under	the	later	model.	In	

the	 next	 two	 figures	 the	 Expected	 Shortfall	 estimation	 results	 for	 all	 models	 are	

presented	 for	 the	 crisis	 and	 after	 crisis	 periods.	 The	 Expected	 Shortfall	 estimates	 are	

conducted	 in	 the	 97,5%	 confidence	 level,	 due	 to	 Basel	 Committee	 recent	 regulatory	

framework	(BCBS,	2016:	56).		
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Figure	28.	S&P		Expected	Shortfall	estimation	under	different	models	at	97,5%		
	 								confidence	level,	Crisis	Period.	
	

	
	Figure	29.	S&P		Expected	Shortfall	estimation	under	different	models	at	97,5%		
	 								confidence	level,	After	Crisis	Period.	
	

	

Remarkably	 in	 the	 period	 of	 crisis	 peak,	 Expected	 Shortfall	 under	 EGARCH	 model	

produces	 estimates	 that	 are	 rarely	 breached	 and	 are	 higher	 than	 VAR	 equivalents,	

leading	 to	 increased	 market	 risk	 capital	 requirements.	 This	 is	 a	 very	 significant	

conclusion,	 as	 the	 new	 Basel	 Committee	 regulatory	 framework	 requires	 banks	 to	

estimate	their	market	risk	capital	requirements	under	this	risk	measure.		
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Having	analyzed	the	estimation	results	 for	VAR	and	Expected	Shortfall	under	different	

models,	the	next	step	is	to	test	their	accuracy	by	a	reliability	test.	This	test	is	conducted	

through	backtesting,	a	procedure	presented	for	both	risk	measures	in	Chapter	4.	In	the	

next	Chapter	 backtesting	 results	 are	exhibited	 for	VAR	 and	Expected	Shortfall	 in	both	

periods	under	analysis.		
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Chapter	7	
Empirical	Results	–	Backtesting	

VAR	and	Expected	Shortfall	
	

	

	

Backtesting	 is	 a	 procedure	 for	 the	 examination	 of	 the	 reliability	 of	 a	 risk	 measure	

estimate.	Since	the	late	1990s	a	variety	of	tests	have	been	proposed	for	backtesting	VAR,	

the	most	 important	of	which	were	presented	 in	Chapter	4.	Under	the	Basel	Committee	

on	Banking	Supervision	market	risk	regulatory	 framework,	 the	Traffic	Light	 test	 is	the	

one	required	by	banks	to	perform.	Expected	Shortfall	is	a	new	measure	that	under	the	

new	regulatory	market	 risk	 standards	 (BCBS,	2016)	will	 substitute	VAR	 in	 calculating	

capital	requirements	for	market	risk.	Nevertheless,	Basel	Committee	retained	VAR	as	the	

risk	measure	for	backtesting	purposes.	As	analyzed	in	Chapter	4,	this	was	possibly	due	

to	 the	 ongoing	 discussion	 on	 Expected	 Shortfall	 lack	 of	 elicitability	 property	 and	 the	

subsequent	 scientific	 doubts	 about	 its	 backtesting	 potential.	 In	 a	 pioneering	 article	

though,	 Acerbi	 &	 Szekely	 (2014)	 proved	 that	 elicitability	 of	 a	 risk	 measure	 is	 not	

relevant	 to	an	absolute	model	validation	procedure,	which	 is	backtesting.	The	authors	

also	proposed	three	tests	for	Expected	Shortfall	backtesting.		

	

In	 this	Chapter	 the	backtesting	 results	 for	VAR	and	Expected	Shortfall	 estimates	of	 all	

models	 under	 analysis	 are	 presented	 for	 the	 crisis	 and	 after	 crisis	 periods	 separately.	

For	 VAR	 backtesting	 we	 focus	 on	 Traffic	 Light	 test,	 Kupiec’s	 (1995)	 unconditional	

coverage	 test	 and	 Christoffersen’s	 (1998)	 conditional	 coverage	 test.	 For	 Expected	

Shortfall	backtesting,	we	use	Test	2	of	Acerbi	&	Szekely	(2014:	4)	with	a	small	variation:	

As	 the	 test	 statistic	Z2	 (analytically	displayed	 in	Chapter	4)	 is	 found	by	 the	authors	 to	

display	remarkable	stability	across	different	distribution	types	(Acerbi	&	Szekely,	2014:	

8),	 the	 critical	 values	 for	 the	acceptance	or	 rejection	of	 a	model	 are	 formed	under	 the	

assumption	 that	 portfolio	 outcomes	 follow	 a	 standard	 normal	 distribution	

(Unconditional	 Normal	 test)	 or	 a	 t-student	 distribution	 with	 3	 degrees	 of	 freedom	

(Unconditional	 t	 test).	 With	 this	 way	 the	 simulation	 procedure	 for	 the	 calculation	 of	

critical	values	required	by	Test	2	is	avoided,	leading	to	a	computationally	easier	solution.			
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This	variation	of	Test	2	is	proposed	by	MathWorks	(2018).		

	

Finally	the	reliability	of	a	model	in	producing	risk	measures	estimates	is	also	tested	for	

its	 accuracy.	 As	 backtesting	 is	 an	 informative	 criterion	 for	 the	 level	 of	 risk	 measure	

outliers	 in	 the	 examined	 period	 (i.e.	 the	 number	 of	 times	 the	 daily	 risk	 measure	 is	

exceeded	by	 return	 losses),	we	also	use	 the	accuracy	 criterion	to	estimate	 the	 level	of	

difference	between	daily	risk	measures	and	return	losses	(Mehta,	Neukirchen,	Pfetsch	&	

Poppensieker	 (2012:	 16).	 An	 accurate	model	 closely	 tracks	 the	 return	 series	 pattern,	

avoiding	risk	overestimation	and	subsequent	greater	market	risk	capital	requirements.		

		

7.1	VAR	Backtesting	Results	
	

In	this	section	the	reliability	of	VAR	estimates	is	examined	through	various	backtesting	

methods.	 Next	 the	 VAR	 backtesting	 results	 are	 exhibited	 for	 the	 crisis	 period	 (2007-

2010).		

	

S&P	VaR	Backtesting	results	under	different	models,	Crisis	Period	
Portfolio	

ID	 VaRID	
VaR	
Level	

Observed	
Level	 Observations	 Failures	 Expected	 Ratio	

First	
Failure	 Missing	

				"S&P"							 Normal97	 0,975	 0,96432	 1009	 36	 25,2250	 1,4272	 43	 0	

				"S&P"							 Historical97	 0,975	 0,96531	 1009	 35	 25,2250	 1,3875	 43	 0	

				"S&P"							 VaRT97	 0,975	 0,96829	 1009	 32	 25,2250	 1,2686	 43	 0	

				"S&P"							 EGARCH97	 0,975	 0.96421		 1006	 36	 25,1500	 1,4314	 15	 3	

				"S&P"							 Normal99	 0,99	 0,97225	 1009	 28	 10,0900	 2,7750	 43	 0	

				"S&P"							 Historical99	 0,99	 0,97919	 1009	 21	 10,0900	 2,0813	 132	 0	

				"S&P"							 VaRT99	 0,99	 0,98117	 1009	 19	 10,0900	 1,8831	 132	 0	

				"S&P"							 EGARCH99	 0,99	 0,97515	 1006	 25	 10,06	 2,4851	 15	 3	

	 	 	 	 	 	 	 	 	 	Portfolio	
ID	 VaRID	

VaR	
Level	 TL	 Bin	 POF	 TUFF	 CC	 CCI	 TBF	

				"S&P"					 Normal97	 0,975	 yellow	 reject	 reject	 accept	 accept	 accept	 reject	

				"S&P"					 Historical97	 0,975	 yellow	 reject	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 VaRT97	 0,975	 green	 accept	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 EGARCH97	 0,975	 yellow	 reject	 reject	 accept	 reject	 reject	 reject	

				"S&P"					 Normal99	 0,99	 red	 reject	 reject	 accept	 reject	 accept	 reject	

				"S&P"					 Historical99	 0,99	 yellow	 reject	 reject	 accept	 reject	 accept	 reject	

				"S&P"					 VaRT99	 0,99	 yellow	 reject	 reject	 accept	 reject	 accept	 reject	

				"S&P"					 EGARCH99	 0,99	 red	 reject	 reject	 accept	 reject	 reject	 reject	

Table	6.	S&P	VAR	backtesting	results,	Crisis	Period.	
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We	can	observe	that	the	performance	of	VAR	estimates	is	poor	for	all	models,	especially	

at	the	99%	confidence	level,	according	to	Traffic	Lights	test,	Kupiec’s	(1995)	Probability	

of	 Failures	 test	 and	 Christoffersen’s	 (1998)	 Conditional	 Coverage	 test.	 As	 the	 VAR	

estimation	results	in	Chapter	6	show	that	the	EGARCH	model	has	an	exceptionally	good	

performance	 in	 VAR	 estimation	 during	 the	 crisis	 peak	 period,	 producing	 few	 VAR	

breaks,	 we	 conduct	 a	 separate	 VAR	 backtesting	 analysis	 for	 the	 confined	 crisis	 peak	

period	(2008-2009).	For	a	total	of	505	observations	the	results	are	the	following.			

	

S&P	VaR	Backtesting	results	under	different	models,	Crisis	Peak	Period	
Portfolio	

ID	 VaRID	
VaR	
Level	

Observed	
Level	 Observations	 Failures	 Expected	 Ratio	

First	
Failure	 Missing	

				"S&P"							 Normal97	 0,975	 0,96436	 505	 18	 12,6250	 1,4257	 15	 0	

				"S&P"							 Historical97	 0,975	 0,96436	 505	 18	 12,6250	 1,4257	 15	 0	

				"S&P"							 VaRT97	 0,975	 0,96832	 505	 16	 12,6250	 1,2673	 48	 0	

				"S&P"							 EGARCH97	 0,975	 0,98614	 505	 7	 12,6250	 0,5545	 62	 0	

				"S&P"							 Normal99	 0,99	 0,97426	 505	 13	 5,0500	 0,2574	 48	 0	

				"S&P"							 Historical99	 0,99	 0,97822	 505	 11	 5,0500	 2,1782	 48	 0	

				"S&P"							 VaRT99	 0,99	 0,98218	 505	 9	 5,0500	 1,7822	 48	 0	

				"S&P"							 EGARCH99	 0,99	 0,99406	 505	 3	 5,05	 0,59406	 189	 0	

	 	 	 	 	 	 	 	 	 	Portfolio	
ID	 VaRID	

VaR	
Level	 TL	 Bin	 POF	 TUFF	 CC	 CCI	 TBF	

				"S&P"					 Normal97	 0,975	 green	 accept	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 Historical97	 0,975	 green	 accept	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 VaRT97	 0,975	 green	 accept	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 EGARCH97	 0,975	 green	 accept	 accept	 accept	 reject	 accept	 reject	

				"S&P"					 Normal99	 0,99	 yellow	 reject	 reject	 accept	 reject	 reject	 reject	

				"S&P"					 Historical99	 0,99	 yellow	 reject	 reject	 accept	 reject	 accept	 reject	

				"S&P"					 VaRT99	 0,99	 yellow	 accept	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 EGARCH99	 0,99	 green	 accept	 accept	 accept	 accept	 accept	 accept	

	Table	7.	S&P	VAR	backtesting	results,	Crisis	Peak	Period.	

	

We	can	observe	that	during	the	crisis	peak	period	the	performance	of	EGARCH	model	is	

remarkably	 enhanced.	 This	 model	 passes	 the	 Traffic	 Light,	 Kupiec’s	 POF	 and	

Christoffersen’s	 CC	 tests.	 Finally	 it	 exhibits	 an	 empirical	 coverage	 ratio	 of	 0.59406,	

significantly	 lower	 than	 the	 equivalent	 of	 its	 counterparts.	 Additionally,	 the	 model	

presents	a	high	degree	of	accuracy,	as	exhibited	in	figure	18.		

	

The	t	distribution	model	presents	the	second	best	performance,	a	result	which	is	related	

to	its	ability	to	capture	excess	kurtosis.		
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After	 analyzing	 models	 VAR	 backtesting	 results	 for	 the	 crisis	 period,	 the	 equivalent	

results	considering	the	after	crisis	period	are	presented	in	the	next	table.			

	

S&P	VaR	Backtesting	results	under	different	models,	After	Crisis	Period	

Portfolio	
ID	 VaRID	

VaR									
Level	

Observed	
Level	 Observations	 Failures	 Expected	 Ratio	

First	
Failure	 Missing	

				"S&P"							 Normal97	 0,975	 0,98213	 1007	 18	 25,1750	 0,7150	 81	 0	

				"S&P"							 Historical97	 0,975	 0,98113	 1007	 19	 25,1750	 0,7547	 81	 0	

				"S&P"							 VaRT97	 0,975	 0,98411	 1007	 16	 25,1750	 0,6356	 81	 0	

				"S&P"							 EGARCH97	 0,975	 		 1007	 32	 25,1750	 1,2711	 23	 0	

				"S&P"							 Normal99	 0,99	 0,98808	 1007	 12	 10,0700	 1,1917	 81	 0	

				"S&P"							 Historical99	 0,99	 0,98908	 1007	 11	 10,0700	 1,0924	 81	 0	

				"S&P"							 VaRT99	 0,99	 0,99007	 1007	 10	 10,0700	 0,9931	 81	 0	

				"S&P"							 EGARCH99	 0,99	 0,98213	 1007	 18	 10,0700	 1,7875	 23	 0	

	 	 	 	 	 	 	 	 	 	Portfolio	
ID	 VaRID	

VaR	
Level	 TL	 Bin	 POF	 TUFF	 CC	 CCI	 TBF	

				"S&P"					 Normal97	 0,975	 green	 accept	 accept	 accept	 reject	 reject	 reject	

				"S&P"					 Historical97	 0,975	 green	 accept	 accept	 accept	 accept	 reject	 reject	

				"S&P"					 VaRT97	 0,975	 green	 accept	 reject	 accept	 reject	 reject	 reject	

				"S&P"					 EGARCH97	 0,975	 green	 accept	 accept	 accept	 accept	 accept	 reject	

				"S&P"					 Normal99	 0,99	 green	 accept	 accept	 accept	 reject	 reject	 reject	

				"S&P"					 Historical99	 0,99	 green	 accept	 accept	 accept	 reject	 reject	 reject	

				"S&P"					 VaRT99	 0,99	 green	 accept	 accept	 accept	 reject	 reject	 reject	

				"S&P"					 EGARCH99	 0,99	 yellow	 reject	 reject	 accept	 reject	 accept	 reject	

Table	8.	S&P	VAR	backtesting	results,	After	Crisis	Period.	

	

In	 this	 period	we	 can	 observe	 that	 the	model	 that	 performs	 best	 is	 the	 t	 distribution	

model.	 This	model,	 at	 the	 99%	 confidence	 level,	 passes	 the	Traffic	 Light	 and	Kupiec’s	

POF	tests	but	fails	to	pass	the	Christoffersen’s	CC	test.	The	EGARCH	model	is	the	worst	

performer,	 implying	 that	 in	 low	 volatility	 tranquil	 periods	 this	model	 is	 inefficient	 in	

producing	reliable	VAR	estimates.			

	

	

	

	

	

	

	



 

73 
 

7.2	Expected	Shortfall	Backtesting	Results	
	

Having	 already	 analyzed	 the	models’	 reliability	 of	 VAR	 estimates	 through	 backtesting,	

this	 section	 proceeds	 with	 the	 equivalent	 Expected	 Shortfall	 backtesting,	 making	 us	

capable	 of	 examining	 which	models	 perform	 best	 in	 producing	 reliable	 estimates	 for	

both	risk	measures.		

	

As	 already	 mentioned	 in	 the	 introduction	 of	 this	 Chapter,	 the	 Expected	 Shortfall	

backtesting	procedure	used	in	the	analysis	is	a	variation	of	Test	2	proposed	by	Acerbi	&	

Szekely	 (2014:	 4).	 	 For	 the	 same	 reasons	 as	 in	 the	 previous	 section	 we	 confine	 our	

analysis	 in	 the	 crisis	 peak	 period	 and	 the	 after	 crisis	period.	 The	 results	 for	Expected	

Shortfall	backtesting	for	the	crisis	peak	period	are	exhibited	below.		

	

S&P	Expected	Shortfall	Backtesting	results	under	different	models,	Crisis	Period	Peak	
Portfolio				

ID	 VaRID	
VaR	
Level	

Observed	
Level	

Expected		
Severity	

Observed	
Severity	 Observations	 Failures	 Expected	 Ratio	 Missing	

	"S&P"	 Normal	 0,975	 0,96436	 1,1928	 1,5216	 505	 18	 12,625	 1,4257	 0	

	"S&P"	 Historical	 0,975	 0,96436	 1,598	 1,5984	 505	 18	 12,625	 1,4257	 0	

	"S&P"	 T	5	 0,975	 0,96832	 1,7686	 1,5605	 505	 16	 12,625	 1,2673	 0	

	"S&P"	 EGARCH	 0,975	 0,98614	 1,7686	 1,8721	 505	 7	 12,625	 0,5545	 0	

	 	 	 	 	 	 	 	 	 	 	
PortfolioID	 VaRID	 VaR	

Level	
Unconditional	

Normal	
Unconditional	

t	 		 		 		 		 		 		

	"S&P"			 Normal	 0,975	 reject	 reject	 		 		 		 		 		 		

	"S&P"			 Historical	 0,975	 accept	 accept	 		 		 		 		 		 		

	"S&P"			 T	5	 0,975	 accept	 accept	 		 		 		 		 		 		

	"S&P"			 EGARCH	 0,975	 accept	 accept	
	 	 	 	 	 	Table	9.	S&P	Expected	Shortfall	backtesting	results,	Crisis	Peak	Period.	

	

The	 results	 show	 that	 all	models	 except	 Normal	 distribution	 pass	 both	 Unconditional	

Normal	 and	Unconditional	 t	 tests.	Nevertheless,	 the	 EGARCH	model	 presents	 the	 best	

empirical	coverage	ratio	(0.5545).		Next	the	equivalent	results	for	the	after	crisis	period	

are	presented.		
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S&P	Expected	Shortfall	Backtesting	results	under	different	models,	After	Crisis	Period	
Portfolio	

ID	 VaRID	 VaRLevel	
Observed	
Level	

Expected	
Severity	

Observed	
Severity	 Observations	 Failures	 Expected	 Ratio	 Missing	

	"S&P"	 Normal	 0,975	 0,98213	 1,1928	 1,3471	 1007	 18	 25,175	 0,715	 0	

	"S&P"	 Historical	 0,975	 0,98113	 1,5535	 1,4017	 1007	 19	 25,175	 0,75472	 0	

	"S&P"	 T	5	 0,975	 0,98411	 1,7686	 1,3679	 1007	 16	 25,175	 0,63555	 0	

	"S&P"	 EGARCH	 0,975	 0,96723	 inf	 inf	 1007	 33	 25,175	 1,3108	 0	

	 	 	 	 	 	 	 	 	 	 	Portfolio	
ID	 VaRID	 VaRLevel	 Unconditional	

Normal	 Unconditional		T	
		 		 		 		 		 		

	"S&P"			 Normal	 0,975	 accept	 accept	 		 		 		 		 		 		

	"S&P"			 Historical	 0,975	 accept	 accept	 		 		 		 		 		 		

	"S&P"			 T	5	 0,975	 accept	 accept	 		 		 		 		 		 		

	"S&P"			 EGARCH	 0,975	 accept	 accept	
	 	 	 	 	 	Table	10.	S&P	Expected	Shortfall	backtesting	results,	After	Crisis	Period.	

	

	The	EGARCH	model	is	clearly	the	worst	performer,	while	the	t	distribution	the	best.		

	

7.3	Comparison	of	Backtesting	Results	
	

According	 to	 the	 backtesting	 results	 of	 the	 two	 risk	 measures,	 the	 EGARCH	 model	

produces	 the	 most	 reliable	 VAR	 and	 Expected	 Shortfall	 estimates	 in	 the	 crisis	 peak	

period.	This	 is	 clearly	due	 to	 its	 ability	 to	 capture	excess	kurtosis,	 volatility	 clustering	

and	asymmetries	in	the	conditional	variance	equation	(i.e.	leverage	effect).		

	

Contrary	 to	 that,	 this	 model	 presents	 the	 worst	 performance	 in	 VAR	 and	 Expected	

Shortfall	 reliability	 of	 estimates	 in	 the	 after	 crisis	 period.	 The	 best	 performer	 in	 this	

period	is	the	t	distribution	model,	though	at	a	cost	of	a	reduced	accuracy.			
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Chapter	8	
Conclusions	

	

	

	

Market	 risk	 is	 one	 of	 the	 most	 important	 risks	 faced	 by	 banking	 institutions.	 Basel	

Committee	on	Banking	Supervision	market	risk	regulatory	framework	has	evolved	from	

mid	 1990s	 in	 an	 effort	 to	 address	 this	 kind	 of	 risk	 that	 stems	 from	 bank	 trading	

activities.	 Lessons	 from	 the	 past	 have	 contributed	 considerably	 in	 the	 formation	 of	

changes	in	regulatory	standards.		

	

This	 Thesis	 presented	 the	 evolution	 of	 the	 Basel	 Committee	 market	 risk	 regulatory	

framework	and	the	challenges	from	a	shift	from	a	Value	at	Risk	to	an	Expected	Shortfall	

risk	measure	 for	 the	 calculation	of	market	 risk	 capital	 requirements.	According	 to	 the	

most	 recent	 Basel	 Committee	 market	 risk	 standards	 (BCBS,	 2016:	 4),	 national	

supervisors	are	expected	to	finalize	implementation	of	this	shift	by	January	2019.	Thus	

the	 development	 of	 models	 that	 accurately	 estimate	 VAR	 and	 Expected	 Shortfall	 risk	

measures	becomes	a	challenge	for	the	banking	industry.			

	

In	 the	 theoretical	part	of	 the	Thesis,	 various	 types	of	models	were	presented	 for	VAR	

and	 Expected	 Shortfall	 estimation.	 More	 specifically,	 the	 non	 parametric	 method	 of	

Historical	Simulation,	parametric	methods	like	the	normal	and	t	distributions,	models	of	

the	GARCH	 family	 capturing	volatility	dynamics,	 the	Monte	Carlo	 simulation	approach	

and	finally	the	hybrid,	semi	parametric	approach	of	Filtered	Historical	Simulation	were	

analyzed	 in	 detail.	 VAR	 and	 Expected	 Shortfall	 backtesting	 techniques	 for	 model	

reliability	checking	were	also	exhibited.		

	

The	empirical	part	of	the	Thesis	aimed	at	testing	possible	market	risk	underestimation	

under	 certain	models,	with	 the	 use	of	 VAR	 and	Expected	 Shortfall	 risk	measures,	 in	 a	

crisis	peak	period	like	US	financial	crisis	in	2008,	which	could	lead	to	lower	bank	capital	

requirements	and	subsequent	advent	of	systemic	risk.	In	addition	to	that,	a	period	of	low	

market	volatility	was	also	chosen	to	test	the	model	efficiency	in	an	after	crisis	tranquil	
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period.	 Four	 types	 of	 models	 were	 examined	 considering	 their	 VAR	 and	 Expected	

Shortfall	estimates	in	these	two	market	condition	states	separately	using	data	of	the	S&P	

index,	simulating	a	bank’s	equity	trading	portfolio.		

	

The	 estimation	 and	 backtesting	 results	 showed	 that	 an	 EGARCH	 model	 capturing	

volatility	dynamics,	as	well	as	asymmetries	in	the	conditional	variance	equation,	is	more	

efficient	 in	an	acute	crisis	stage,	where	the	crisis	erupts.	The	adoption	of	other	models	

that	 disregard	 these	 two	 properties	 of	 financial	 returns,	 like	 Historical	 Simulation,	

Normal	Distribution	or	t	Distribution	produce	poor	results	and	underestimate	growing	

market	risk	to	a	 large	extent.	Additionally,	 the	Expected	Shortfall	risk	measure	 for	 the	

EGARCH	model	leads	to	higher	level	market	risk	capital	requirements	than	VAR,	based	

on	its	property	to	capture	tail	risk.	The	above	results	imply	that	the	Expected	Shortfall	

risk	measure	under	a	model	 capturing	volatility	dynamics	 for	market	 risk	would	have	

acted	as	preventive	or	controlling	mechanism	for	market	risk	systemic	effects	during	the	

2008	US	financial	crisis.			

	

On	the	other	hand,	 in	a	 tranquil	period	with	reduced	market	volatility,	a	 t-distribution	

parametric	model	is	found	to	perform	best,	but	at	a	cost	of	a	reduced	accuracy	(i.e.	risk	

overestimation).		

	

As	 the	majority	 of	 banks	 today	 follow	 the	 simple	 but	 inefficient	 Historical	 Simulation	

approach	(EBA,	2017:	31)	for	the	calculation	of	their	market	risk	capital	requirements,	

the	 Basel	 Committee	 on	 Banking	 Supervision	 could	 consider	 requiring	 them	 to	 adopt	

more	 sophisticated	models	 in	 periods	 of	 extreme	market	 volatility.	 The	 results	 of	 the	

empirical	part	of	 the	Thesis	highlighted	the	 level	of	 failure	of	 the	Historical	Simulation	

method	 to	 produce	 reliable	 risk	measure	 estimates	 during	 such	 periods,	 as	 it	 follows	

rather	 than	controls	 financial	 crises.	Models	accounting	 for	volatility	 clustering	effects	

and	excess	kurtosis	in	financial	returns	would	prevent	further	escalation	stages	during	a	

financial	crisis	period.			

	

	

	

	

	



 

77 
 

Appendix	A	
Matlab	Code,	Crisis	Period	

	

	

	

A.1	Matlab	Variables	
	
Returns1=SP_neg_ret;	
DateReturns1=date1;	
SampleSize=length(Returns1);	
TestWindowStart=find(year(DateReturns1)==2007,1);	
TestWindow=TestWindowStart:SampleSize;	
EstimationWindowSize=250;	
DatesTest1=DateReturns1(TestWindow);	
ReturnsTest1=Returns1(TestWindow);		
pVaR=[0.025	0.01];	

	

A.2	Risk	Measure	Estimation	under	Different	Models	
	

A.2.1	Normal	Distribution	Model	

	

Zscore=norminv(pVaR);	
Normal97=zeros(length(TestWindow),1);	
Normal99=zeros(length(TestWindow),1);	
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns1(EstimationWindow));				
							Normal97(i)=-Zscore(1)*Sigma;	
							Normal99(i)=-Zscore(2)*Sigma;	
end	
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,[Normal97	Normal99])	
xlabel('Date')	
ylabel('VaR')	
legend({'Returns','97.5%	Confidence	Level','99%	Confidence	Level'},'Location','Best')	
title('S&P	VaR	Estimation	Using	the	Normal	Distribution	Method,	Crisis	Period')	
	
ESNormal97=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
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							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns1(EstimationWindow));				
							ESNormal97(i)=Sigma*normpdf(norminv(0.975))./(1-0.975);	
end	
	

A.2.2	Historical	Simulation	Model	

	
Historical97=zeros(length(TestWindow),1);	
Historical99=zeros(length(TestWindow),1);	
for	t=TestWindow	
				i=t-TestWindowStart+1;	
				EstimationWindow=t-EstimationWindowSize:t-1;	
				X1=Returns1(EstimationWindow);	
				Historical97(i)=-quantile(X1,pVaR(1));	
				Historical99(i)=-quantile(X1,pVaR(2));	
end	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,[Historical97	Historical99])	
ylabel('VaR')	
xlabel('Date')	
legend({'Returns','97.5%	Confidence	Level','99%	Confidence	Level'},'Location','Best')	
title('S&P	VaR	Estimation	Using	the	Historical	Simulation	Method,	Crisis	Period')	
		
ESH97=zeros(length(TestWindow),1);	
VARH97=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							N=length(Returns1(EstimationWindow));	
							k=ceil(N*0.975);	
							z=sort(Returns1(EstimationWindow));	
							VARH97(i)=z(k);	
if	k<N	
				ESH97(i)=((k-N*0.975)*z(k)+sum(z(k+1:N)))/(N*(1-0.975));	
else	
				ESH97(i)=z(k);												
end	
end	
	

A.2.3	Student’s	t	Distribution	Model	

	
DoF=5;	
VaRT97=zeros(length(TestWindow),1);	
VaRT99=zeros(length(TestWindow),1);	
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for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns1(EstimationWindow));				
							VaRT97(i)=Sigma*sqrt((DoF-2)/DoF)*tinv(0.975,5);	
							VaRT99(i)=Sigma*sqrt((DoF-2)/DoF)*tinv(0.99,5);	
end	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,[VaRT97	VaRT99]);	
xlabel('Date')	
ylabel('VaR')	
legend({'Returns','97.5%	Confidence	Level','99%	Confidence	Level'},'Location','Best')	
title('S&P	VaR	Estimation	Using	the	T-Distribution	Method,	Crisis	Period')	
		
EST97=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns1(EstimationWindow));	
							ES_StandardT=(tpdf(tinv(0.975,DoF),DoF).*(DoF+tinv(0.975,DoF).^2)./((1-
0.975).*(DoF-1)));	
							EST97(i)=Sigma*ES_StandardT;	
end	
		
A.2.4	EGARCH	model	

	
Mdl1=egarch('GARCH',NaN,'ARCH',NaN,'Leverage',NaN,'Distribution',struct('Name','t','D
oF',5));	
fitMdl1=estimate(Mdl1,ReturnsTest1);	
	
V=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;				
							fitMdl1EW=estimate(Mdl1,Returns1(EstimationWindow),'Display','off');	
							if	i==1	
											V(i)=forecast(fitMdl1EW,1,'Y0',Returns1(1:250),'V0',st0);	
							else	
											V(i)=forecast(fitMdl1EW,1,'Y0',Returns1(EstimationWindow));	
							end	
end	
		
figure;	
plot(DatesTest1,V)	
ylabel('ConditionalVariance')	
xlabel('Date')	
title('S&P	Forecasted	Conditional	Variances,	Crisis	Period')	
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grid	on	
		
VAREGARCH97=(sqrt(V))*(sqrt((DoF-2)/DoF))*tinv(0.975,5);	
VAREGARCH99=(sqrt(V))*(sqrt((DoF-2)/DoF))*tinv(0.99,5);	
		
ES_EGARCH97=(sqrt(V))*(ES_StandardT);	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,VAREGARCH97,DatesTest1,VAREGARCH99)	
ylabel('VaR')	
xlabel('Date')	
legend('Returns','VAREGARCH97','VAREGARCH99','Location','SouthEast')	
title('S&P	VaR	Estimation	under	EGARCH	model,	Crisis	Period')	
grid	on	

		
A.2.5		Comparison	of	Risk	Measure	Estimation	Results	under	Different				 			

Models	
		

figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,Normal97,DatesTest1,Historical97,DatesTest
1,VaRT97,DatesTest1,VAREGARCH97)	
ylabel('VaR')	
xlabel('Date')	
legend('Returns','Normal97.5','Historical97.5','VaRT97.5','EGARCH97,5','Location','Sout
hEast')	
title('S&P	VaR	Estimation	under	different	models	at	97.5%	Confidence	Level,	Crisis	
Period')	
grid	on	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,Normal99,DatesTest1,Historical99,DatesTest
1,VaRT99,DatesTest1,VAREGARCH99)	
ylabel('VaR')	
xlabel('Date')	
legend('Returns','Normal99','Historical99','VaRT99','EGARCH99','Location','SouthEast')	
title('S&P	VaR	Estimation	under	different	models	at	99%	Confidence	Level,	Crisis	
Period')	
grid	on	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,ESNormal97,DatesTest1,EST97,DatesTest1,ES
H97,DatesTest1,ES_EGARCH97);	
ylabel('ES')	
xlabel('Date')	
legend({'Returns','ESNormal','ES	T','ES	HS','ES	EGARCH'},'Location','Best')	
title('S&P	Expected	Shortfall	under	different	models	at	97,5%	Confidence	Level,	Crisis	
Period')	
grid	on	
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A.3	Risk	Measure	Backtesting		
	

vbt=varbacktest(ReturnsTest1,[Normal97	Historical97	VaRT97	VAREGARCH97	
Normal99	Historical99	VaRT99	
VAREGARCH99],'PortfolioID','S&P','VaRID',{'Normal97','Historical97','VaRT97','VAREGA
RCH97','Normal99','Historical99','VaRT99','VAREGARCH99'},'VaRLevel',[0.975	0.975	
0.975	0.975	0.99	0.99	0.99	0.99]);	
summary(vbt)	
runtests(vbt)	
		
ebt=esbacktest(ReturnsTest1,[Normal97	Historical97	VaRT97	
VAREGARCH97],[ESNormal97	ESH97	EST97	
ES_EGARCH97],'PortfolioID','S&P','VaRID',{'NORMAL','Historical','T	
5','EGARCH'},'VaRLevel',[0.975	0.975	0.975	0.975]);		
s=summary(ebt);	
disp(s)		
		
t=runtests(ebt);	
disp(t)	
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Appendix	B	
Matlab	Code,	After	Crisis	Period	

	

	

	

B.1	Matlab	Variables	
	
Returns2=SP_neg_ret1;	
DateReturns2=date1;	
SampleSize=length(Returns2);	
TestWindowStart=find(year(DateReturns2)==2012,1);	
TestWindow=TestWindowStart:SampleSize;	
EstimationWindowSize=250;	
DatesTest1=DateReturns2(TestWindow);	
ReturnsTest1=Returns2(TestWindow);	
pVaR=[0.025	0.01];	
	

B.2	Risk	Measure	Estimation	under	Different	Models	
	

B.2.1	Normal	Distribution	Model	

	

Zscore=norminv(pVaR);	
Normal97=zeros(length(TestWindow),1);	
Normal99=zeros(length(TestWindow),1);	
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns2(EstimationWindow));				
							Normal97(i)=-Zscore(1)*Sigma;	
							Normal99(i)=-Zscore(2)*Sigma;	
end	
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,[Normal97	Normal99])	
xlabel('Date')	
ylabel('VaR')	
legend({'Returns','97.5%	Confidence	Level','99%	Confidence	Level'},'Location','Best')	
title('S&P	VaR	Estimation	Using	the	Normal	Distribution	Method,	After	Crisis	Period')	
	
ESNormal97=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
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							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns2(EstimationWindow));				
							ESNormal97(i)=Sigma*normpdf(norminv(0.975))./(1-0.975);	
end		

	

B.2.2	Historical	Simulation	Model	
	
Historical97=zeros(length(TestWindow),1);	
Historical99=zeros(length(TestWindow),1);	
for	t=TestWindow	
				i=t-TestWindowStart+1;		
				EstimationWindow=t-EstimationWindowSize:t-1;	
				X1=Returns2(EstimationWindow);	
				Historical97(i)=-quantile(X1,pVaR(1));	
				Historical99(i)=-quantile(X1,pVaR(2));	
end	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,[Historical97	Historical99])	
ylabel('VaR')	
xlabel('Date')	
legend({'Returns','97.5%	Confidence	Level','99%	Confidence	Level'},'Location','Best')	
title('S&P	VaR	Estimation	Using	the	Historical	Simulation	Method,	After	Crisis	Period')	
	
ESH97=zeros(length(TestWindow),1);	
VARH97=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							N=length(Returns2(EstimationWindow));	
							k=ceil(N*0.975);	
							z=sort(Returns2(EstimationWindow));	
							VARH97(i)=z(k);	
if	k<N	
				ESH97(i)=((k-N*0.975)*z(k)+sum(z(k+1:N)))/(N*(1-0.975));	
else	
				ESH97(i)=z(k);												
end	
end	
	

B.2.3	Student’s	t	Distribution	Model	

	
DoF=5;	
VaRT97=zeros(length(TestWindow),1);	
VaRT99=zeros(length(TestWindow),1);	
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for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns2(EstimationWindow));				
							VaRT97(i)=Sigma*sqrt((DoF-2)/DoF)*tinv(0.975,5);	
							VaRT99(i)=Sigma*sqrt((DoF-2)/DoF)*tinv(0.99,5);	
end	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,[VaRT97	VaRT99]);	
xlabel('Date')	
ylabel('VaR')	
legend({'Returns','97.5%	Confidence	Level','99%	Confidence	Level'},'Location','Best')	
title('S&P	VaR	Estimation	Using	the	T-Distribution	Method,	After	Crisis	Period')	
		
EST97=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;	
							Sigma=std(Returns2(EstimationWindow));	
							ES_StandardT=(tpdf(tinv(0.975,DoF),DoF).*(DoF+tinv(0.975,DoF).^2)./((1-
0.975).*(DoF-1)));	
							EST97(i)=Sigma*ES_StandardT;	
end		

		
B.2.4	EGARCH	model	

	
Mdl1=egarch('GARCH',NaN,'ARCH',NaN,'Leverage',NaN,'Distribution',struct('Name','t','D
oF',5));	
fitMdl1=estimate(Mdl1,ReturnsTest1);	
V0=infer(fitMdl1,ReturnsTest1);	
		
	st0=var(Returns2(1:250));	
		
V=zeros(length(TestWindow),1);	
		
for	t=TestWindow	
							i=t-TestWindowStart+1;	
							EstimationWindow=t-EstimationWindowSize:t-1;				
							fitMdl1EW=estimate(Mdl1,Returns2(EstimationWindow),'Display','off');	
							if	i==1	
											V(i)=forecast(fitMdl1EW,1,'Y0',Returns2(1:250),'V0',st0);	
							else	
											V(i)=forecast(fitMdl1EW,1,'Y0',Returns2(EstimationWindow));	
							end	
end	
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figure;	
plot(DatesTest1,V)	
ylabel('ConditionalVariance')	
xlabel('Date')	
title('S&P	Forecasted	Conditional	Variances	under	EGARCH	Model,	After	Crisis	Period')	
grid	on	
		
VAREGARCH97=(sqrt(V))*(sqrt((DoF-2)/DoF))*tinv(0.975,5);	
VAREGARCH99=(sqrt(V))*(sqrt((DoF-2)/DoF))*tinv(0.99,5);	
		
ES_EGARCH97=(sqrt(V))*(ES_StandardT);	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,VAREGARCH97,DatesTest1,VAREGARCH99)	
ylabel('VaR')	
xlabel('Date')	
legend('Returns','EGARCH97','EGARCH99','Location','SouthEast')	
title('S&P	VaR	Estimation	under	EGARCH	model,	After	Crisis	Period')	
grid	on		

	
B.2.5		Comparison	of	Risk	Measure	Estimation	Results	Under	Different				 			

Models	
	

figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,Normal97,DatesTest1,Historical97,DatesTest
1,VaRT97,DatesTest1,VAREGARCH97)	
ylabel('VaR')	
xlabel('Date')	
legend('Returns','Normal97.5','Historical97.5','VaRT97.5','EGARCH97,5','Location','Sout
hEast')	
title('S&P	VaR	Estimation	under	different	models	at	97.5%	Confidence	Level,	After	Crisis	
Period')	
grid	on	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,Normal99,DatesTest1,Historical99,DatesTest
1,VaRT99,DatesTest1,VAREGARCH99)	
ylabel('VaR')	
xlabel('Date')	
legend('Returns','Normal99','Historical99','VaRT99','EGARCH99','Location','SouthEast')	
title('S&P	VaR	Estimation	under	different	models	at	99%	Confidence	Level,	After	Crisis	
Period')	
grid	on	
		
figure;	
plot(DatesTest1,ReturnsTest1,DatesTest1,ESNormal97,DatesTest1,EST97,DatesTest1,ES
H97,DatesTest1,ES_EGARCH97);	
ylabel('ES')	
xlabel('Date')	
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legend({'Returns','ESNormal','ES	T','ES	HS','ES	EGARCH'},'Location','Best')	
title('S&P	Expected	Shortfall	under	different	models	at	97,5%	Confidence	Level,	After	
Crisis	Period')	
grid	on	
	
B.3	Risk	Measure	Backtesting			
	
vbt=varbacktest(ReturnsTest1,[Normal97	Historical97	VaRT97	VAREGARCH97	
Normal99	Historical99	VaRT99	
VAREGARCH99],'PortfolioID','S&P','VaRID',{'Normal97','Historical97','VaRT97','VAREGA
RCH97','Normal99','Historical99','VaRT99','VAREGARCH99'},'VaRLevel',[0.975	0.975	
0.975	0.975	0.99	0.99	0.99	0.99]);	
summary(vbt)	
runtests(vbt)	
		
ebt=esbacktest(ReturnsTest1,[Normal97	Historical97	VaRT97	
VAREGARCH97],[ESNormal97	ESH97	EST97	
ES_EGARCH97],'PortfolioID','S&P','VaRID',{'NORMAL97','Historical97','VaRT97','VAREG
ARCH97'},'VaRLevel',[0.975	0.975	0.975	0.975]);		
s=summary(ebt);	
disp(s)		
		
t=runtests(ebt);	
disp(t)	
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