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MepiAnym

To stress AapuBavel SIACTACELS EMSNUIAG UE ONUAVTIKES KOWWVIKO-OIKOVOUIKEG ETUTTWOELG. H
nAektpodeppatiky Spaoctmpomta (electrodermal activity), peta&d Twv dAAwv Plo-onudtwy,
TIPOVCLALETAL WG EVAG UTIOCYOUEVOG SEKTG Yl TNV TXPAKOAOVON O Tou stress, KaBwg
OUGCXETIETL LLE TNV EVEPYOTIOOT) TOU GUUTIAONTIKOU VEUPIKOV CUCTILATOG.

M£0080L Alevepyr|Onke avackoOTmon TG uTtdpxovoas BBAOYpa@iag avapopkd e v xprion
TV Blo-aoBnmpwyv TNV aviYveuon Tou Stress e EUPAOT] GTNV KPLTIK o§LOAGYNOT TwV
1EBOS0AOYLWV TTOV XPTOLOTIOLOVVTAL YLX TV KXTAYPOPT) KAl EPUNVELN TNG NAEKTPOSEPUATIKG
SpaotnploTTaS,

Metd ™V El00YWYIKY) AVOOKOTINOT) ETETAL TO ELSIKO TIEWPAUATIKO OKEAOG TIOU CUVIOTATOL OTNV
avéAvon Sedopévwy amd elkool TEVTE €0€AOVTEG GUVOAIKA, e EMOKOAOUON OTATIOTIKN
enefepyaoia oe 800 opddeg (n=7 kot n=18 eBeAovtég avtioTolywg PAcel TG ouXVOTNTAG
Serypatoniag) oe cuvOnKeg Npepiag kat stress. H TauTomonom Kot 0 UTTOAOYIOHOG TWV OXETIKWY
TUPAUETPWY  MAEKTPO-OepUaTIKNG  Spactnplomrag Slevepynbnke upe v yAlwooa
Tpoypappatiopov Python, evi 1 otatiotikn avéAvon pe ) yAwooa poypappatiopo R.
Amotedéopata EVTomiomkoy OTATIOTIKA ONUAVTIKEG GUOXETIOES OF TIOAAQTIAY] YPOLLLLKT|
ToAvEpopmon petadd ™G tovikig Spactnpomrag(ovxvomta Non SCR) kot nAwiag twv
ovppetexovtwv(p<0.01), cuxvomtag Non SCRs kot @UAov(p<0.05), cuyxvottag Non SCRs kot
@uokng dpaoctmplomtag(p<0.01) yor v mpwtn opdda. I'a tn evtepn opdda evromioTnKoy
OTUTIOTIKA ONUAVTIKES ovoxeTioelg petagy vPoug SCR(amplitude) ko nAkiag(p<0.001) kabwg
kot Poug SCR(amplitude) ko STAI2 (p<0.001) o€ TOAAATAT] YPOUUKY TIOAVEpOpnor. H pn
TIUPAUETPLKT UEB0S0G Spearman’s rho eVTOTIOE OTATIOTIKA OMUAVTIKEG OXECELS 0TI SEVTEPN
opdda  petagy VPoug SCR(amplitude) ko STAI1(p<0.001), xpdvou emavaopAs 0To PO TOU
uéylotov voug(half recovery time) waw STAI1 (p<0.001), STAI2(P<0.05), nAwxiag(p<0.05).
EmmAcov 1 ouxyvomta Non SCR Topouciaos OTATIOTIKA OMUOVTIKEG CUOXETIOES HE TNV
NAwia(p<0.05), To STAI1(p<0.001) kat to STAI2(<0.001) o€ TTOAAATIAN YPOLUKY) TIOALVSPOUN oM
oV opada 2. Emiong SlamotwOnke oTaTioTIKG onuavTiki Sloupopd oty opdda 2 otov apldud
TwV KopuPwV (peaks) petad meplddwv stress katnpepiag (p<0.05, Wilcoxon signed rank test).
Tupnépacpa H niektpodepuatiky Spaotnptdtta @aivetal va oLoXeTileTtal Pe T emimeSa
stress, TIPOGEEPOVTAG WA XpNolun HEB0SO SlepelivionG TwV ATOUK®WY TAPAPETPWY TIOU
ovpfdAovy ot Snuovpyila stress. H TpooTrtiky Snuovpyiog onuHavVIIKGOV TPAKTIKWY
EPAPUOYWV BACIOUEVWV 0NV MAEKTPOSEPUATIKY] SPACTNPOTNTA Y TNV TPOANYM Kot

QVTIUETWTILOT] TOV Stress Ba TIPETIEL VO TUXEL LEAETNG.



Summary

Stress is becoming an epidemic with significant socioeconomic implications. The utilization of bio
signals in its detection is a promising research domain that could provide tools for prevention and
management. Electrodermal activity(EDA), among the other bio signals, appears as a promising
marker for stress monitoring, since it correlates with the activity of the sympathetic nervous
system.

Methods The current thesis reviews the existing literature regarding the utilization of biosensors
for stress detection with a focus on the critical appraisal of the methodologies employed in
electrodermal activity recording and interpretation in relation to stress. The introductory review is
followed by the experimental component, which involves data processing and analysis of volunteer
derived electrodermal activity in calm and stress conditions. More specifically data from twenty five
individuals (n=25) in total were processed with a subsequent two group statistical analysis (seven
and eighteen volunteers respectively based on different data acquisition frequencies) for the
investigation of possible correlations with volunteer specific variables. The extraction of relevant
EDA metrics was performed with algorithms implemented in the Python programming language
while the statistical analysis was performed with the R language and environment for statistical
computing and graphics.

Results The results revealed statistically significant correlations in multiple regression between
tonic activity (Non SCR frequency) and age(p<0.01), Non SCR frequency and Gender(p<0.05), Non
SCR frequency and physical activity(p<0.01) for the first group. For the second group statistically
significant correlations were identified between SCR amplitude and Age(p<0.001) as well as SCR
amplitude and STAI2(p<0.001) in multiple linear regression. Spearman’s rho in group two
additionally revealed statistically significant relationships between SCR amplitude and
STAI1(p<0.001), half recovery time and STAI1(p<0.001), STAI2(p<0.05), age(p<0.05).
Furthermore Non SCR frequency exhibited statistically significant correlations with age(p<0.05),
STAI1(p<0.001) and STAI2(<0.001) in multiple linear regression in group 2. A Wilcoxon signed
rank test revealed a statistically significant difference between the number of EDA peaks during
calm and stress phases(p<0.05) in group?2.

Conclusion Electrodermal activity appears to correlate with stress levels, providing a useful insight
into the volunteer specific parameters that contribute to the genesis of anxiety. Significant practical

applications in stress prevention and management should also be considered.
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Chapter 1

Introduction

Chronic stress is becoming an epidemic, with rising numbers of individuals experiencing
its adverse effects on their everyday social and professional activities. The economic
burden of mental and physical stress is also significant since those who suffer from it tend
to have reduced performance at work, be less productive and in need of medical and/or
psychological support [1]. Characteristically in 2002, work related stress cost in European
Union(EU) based enterprises amounted to 20 billion euro [2] [3], while 51% of workers

in the EU report experience stress in their working environment.

The definition of stress is not straightforward since a plethora of descriptions have been

proposed:

1. The perception of stress as an agent, situation or variable that perturbs the normal
functioning of an individual [4]. In the context of this definition stress can be sub-

classified into stimulus-based and response-based.

2. The transactional model, which is based on the notion that stress stems not solely
from the individual or the environment but from their transaction [5]. Transaction
requires processing, meaning that the cognitive mechanisms of perceiving stress

have to be investigated in order to understand stress and its implications [6].

3. The complex interaction between perceived demand, ability to cope and

perception of the significance of managing to do so [7].

4. Another approach emphasizes the fact that ultimately stress could be just
considered equivalent to time pressure, since limited time is the basic factor that

initiates and propagates stress [8].

Common categorizations (although arbitrary) of stress are:



1. Survival Stress. Associated with increased activity of the sympathetic nervous
system that enables the person to “fight” or “flight” regarding a stimulus perceived

as an imminent threat [9].

2. Environmental Stress. Induced by environmental factors such as noise [10].

3. Work related. This source of stress is on the rise and has significant social and
financial implications, since increased levels of stress have been reported to

reduce performance with diverse subsequent complications [11].

4. Internal Stress. Mostly attributed to the modern hectic lifestyle that tends to

prevail in modern societies [12].

Regardless of the exact definition and categorization, job stress is estimated to cost the
U.S. economy 300 billion dollars annually due to diminished productivity, absence from
work, and medical and insurance bills [1], further substantiating the fact that this

phenomenon constitutes a public health crisis.

In this context, stress has additionally been implicated in the initiation of complex
pathophysiological cascades contributing to the development of various medical
conditions including cardiovascular diseases, diabetes and immunosuppression [13].
Stress-induced sudden cardiac death has been reported to be the most severe
manifestation of psychosomatic interaction [14]. Furthermore, stress can also exacerbate
preexisting diseases such as gastrointestinal reflux disease, back pain, and irritable bowel

syndrome [15].

On the other hand, stress-free living has been associated with longevity and reduced
morbidity when other confounding factors are matched [16]. Self-perceived well-being
and a stress-free lifestyle are therefore of paramount importance in maintaining health

and homeostasis [16].

At the human physiology level, stress leads to changes in the activity of the central
nervous system and most notably the autonomous nervous system. More specifically,
under stressful conditions the hypothalamus and adrenal glands are activated, imitating

a hormonal cascade. The two main hormones involved are glucocorticoids (mainly



cortisol) and catecholamines (adrenaline and noradrenaline), both of which facilitate the

ability of the human body to cope with the demanding conditions that have arisen [17].

The relative amount of the hormones produced is considered to be of paramount
significance since the neuroendocrinological equilibrium can lead either to eustress or
distress. Eustress is characterized by positive emotions arising from a stressful but
pleasant stimulus (excitement) while distress is perceived as negative stress associated

with fear or threat [18].

Measuring stress has traditionally been associated with the usage of weighted
questionnaires, such as the relative stress scale [19] and the perceived stress scale [20].
The downside of these methods is that they are subjective, require manual recognition
and are static failing to adjust to the continuous changes in human emotions and

environmental conditions.

Continuous monitoring and classification of stress levels is very significant in order to
address and limit its consequences. The recording of various physiological parameters
such as blood pressure, heart rate, respiratory rate and electrodermal activity has been

elaborated to achieve this goal [21].

The human skin has distinct electrophysiological characteristics that can be measured
and analyzed [22]. The main determinant of the changes that occur in its electrical
properties is sweat gland activity, since the production of sweat reduces skin resistance.
This in turn depends on the function of the autonomous nervous system, which provides

sympathetic innervation to the skin glands and regulates their function [23].

The most widely accepted model of electrodermal activity dates back to the 1980 [24] but
the recording and analytic methodologies for its study have evolved over the years,
leading to a revived interest in its use as a non-invasive method to diagnose psychological
and somatic pathophysiology [23]. Mental and physical stress from various insults have a
direct effect on autonomous nervous system and therefore this model appears promising

for monitoring and interpreting stress activity [25].

1.1 Objectives and methodologies



The primary objectives of the current thesis are:

1. Reviewing the literature regarding the usage of biosensors for stress detection,
with a focus on electrodermal activity(EDA) recording. More specifically the types
of bio signals that are utilized, the methodologies employed to extract meaningful
electrodermal activity data regarding stress as well as their interpretation are an
essential part of this review.

2. The analysis of electrodermal activity data for the calculation of relevant metrics
and subsequent statistical analysis for potential correlations with volunteer

specific parameters.

As far as the methodological approaches are concerned, the review process involved
searching Google Scholar, ScienceDirect, the IEEE Xplore Digital Library, and Pubmed
with relevant keyword/phrases (electrodermal activity, bio signals, galvanic skin
response, skin conductance, skin resistance, stress and electrodermal activity, stress and
galvanic skin response) in order to identify the corresponding publications. Only

publications written in English were considered for further evaluation.

The analysis of EDA data from volunteers was performed with the Python programming
language (continuous wavelet transform (CWT)-based peak detection was employed)
while the subsequent statistical analysis was achieved by using the R language and

environment for statistical computing and graphics.

1.2 Potential contribution

The current thesis is expected to contribute to the better understanding of
electrodermal activity and its practical applications in stress detection methodologies
both in research and real-life scenarios. This will be facilitated not only by the critical
appraisal of the existing scientific literature but also by the experimental component,
which includes the analysis of electrodermal activity data from volunteers and their
statistical processing and interpretation. The outcomes of the study could also trigger
further research and rejuvenate interest over EDA and its applications in the field of bio

signal monitoring. Furthermore stress prevention based on the bio signal technology



would be in line with the long term goal that has been set by the EU to personalize

health care [26].

1.3 Thesis outline

Chapter two focuses on the physiological basis of stress detection via EDA recording and
processing. The link between sudomotor activation, changes in skin conductance and
stress is explained. Furthermore, other bio-signals that can be utilized according to the
literature in stress detection are presented alongside their corresponding sensitivities

and specificities.

Chapter three presents the technical aspect of EDA recording including the various
methodologies applied, the different metrics employed, and basic nomenclature. In

addition potential practical applications of EDA in relation to stress are summarized.

Chapter four analyzes the different determinants of EDA metrics, both person specific and
technical. The difficulties of EDA recording, especially in the ambulatory setting are

evaluated and methodologies for dealing with artifacts are presented.

Chapter five focuses on the interpretation of EDA metrics in relation to baseline volunteer
characteristics and combined with other bio signals. The importance of the nature of
applied stimuli is also underlined as well as the implications of this for research

methodologies.

Chapter six presents the analysis and the results of the current study. More specifically
the number of participants, the methodologies and statistical approaches are presented
as well as the statistically significant correlations that were identified and their

interpretation.

Chapter seven correlates the findings of the current study with results from the existing
literature and provides potential interpretations the statistical relationships detected.

Potential limitations of the study are also presented.



Chapter eight presents a justification for the plausibility of utilizing EDA metrics in stress
detection based on the findings of the current study and the appraisal of the literature.

The potential for future applications in personalized healthcare is also underlined.

Chapter nine provides (Appendix A) detailed information regarding the algorithms
employed for the identification of EDA metrics as well as samples of the Python code that

was utilized. In addition, relevant R code examples are included.



Chapter 2

Physiology, Biosignals and
Stress

The skin consists of two main layers, the dermis (corium) and the epidermis. The latter
comprises the surface of the skin and consists of epithelial cells. Dermis, which lies deeper,
consists primarily of connective fibrous tissue and is followed by hypodermis (subcutis)
which contains the majority of the secretory parts of sweat glands (some also lie in the

dermis), fat and vasculature [27].

Sweat gland activity is of paramount importance for thermal auto-regulation. Sweat
glands are categorized as eccrine, meaning that they depose their secretion (which
contains no cytoplasmic material) directly onto the skin surface (Figure 1). Under
stressful conditions sweat secretion can reach 2 L/hour, potentially leading to severe

dehydration [28].

The biological significance of electrodermal activity (EDA) and increased sweat gland
activation is considered to be associated with the survival advantage arising from the
increased grip strength, mobility and protection from cuts that the hydration of palms and

soles confer [29].

Sudomotor activation is mainly sympathetic, originating initially from the spinal
sympathetic nerves. Each sweat gland is innervated by multiple sudomotor efferent fibers
[30], with every fiber corresponding to a skin area of approximately 1.28 cm? [31]. When
multiple fibers are activated concurrently, a nerve burst can be recorded in the form of a
skin conductance response [32]. The involvement of the central nervous system in the
production of EDA is crucial, since the limbic system, the basal ganglia and the reticular
formation have all been implicated in sweat gland activation and elicitation of Galvanic

Skin Response(GSR) [33].



Electrodermal activity is considered an appropriate indicator of autonomous nervous

system function because:

1. The eccrine glands of the fingers receive innervation solely from the sympathetic
part of the autonomous nervous system (no innervation from the parasympathetic

system)

2. The postganglionic sympathetic nerves are cholinergic and not noradrenergic,

which is in line with the other tissues that receive sympathetic innervation [33].

Figure 1. Relevant anatomy of the human skin depicting the sweat glands and their ducts [34].



2.1 Biosignals that can be utilized in stress monitoring

Apart from electrodermal activity [35], a variety of other biosignals have been reported

to correlate with stress levels including the following:

1. Electrocardiogram (ECG) acquisition. ECG recording has been utilized for
extracting heart rate variability, a parameter that has been found to correlate not
only with stress but also with other physiological variables. It is recorded non-
invasively through the usage of the corresponding leads and the consequent
analysis can be automatically performed with appropriate software packages.
Both time and frequency based domain methodologies have been applied for HRV
analysis. The former is considered the simpler one, with its basic characteristic
being that it preserves the temporal integrity of the signal while lacking in
frequency resolution [36]. The latter one is based on time aggregation, preserving

frequency composition but lacking in terms of temporal resolution [36].

2. Electroencephalogram (EEG). EEG (Electroencephalogram). This parameter
depicts the spontaneous and occasionally induced brain activity recorded through
electrodes [37]. The recording of brain waves correlates with the mental activity
of a person and their type and frequency is indicative of the level of stress
experienced by the person. In addition, the location of the scalp where the wave
activity is detected is also characteristic of the emotions and mental state of the
person [38]. The band category and frequency range of brain waves is very
informative since Beta waves (13-30 Hz) are associated with anxiety and stress
while Alpha waves are considered indicative of relaxation [39]. It has also been
reported that the theta/beta brain wave ratio is analogous to the individual’s

stress levels [40].

3. Electromyogram (EMG). Muscle contractions and activity can also be used in the
context of stress level monitoring [41], though less reliably due to difficulties that
may arise in its interpretation and the existence of confounding factors and

artifacts.

4. Photo-plethysmography is a technique that analyzes transmitted or reflected light

in order to calculate heart rate, respiratory rate and even oxygen saturation. This



method is also non-invasive and provides continuous data. The combination of the
above-mentioned parameters can be used to reach statistical conclusions

regarding stress [42].

. Pupil dilation. Changes in the diameter of the pupils have been reported to

correlate with stress induction, although further validation is still pending [43].

. Heart rate variability (HRV). The high frequency component of HRV in indicative
of parasympathetic activity while the low activity correlates with the sympathetic

system activation [44].

. Respiratory system. More specifically the respiratory rate has been found to both

correlate with heart rate and stress levels [45].

. Speech. Neural network-based classifiers have been theorized to be of use in

utilizing speech pattern for detecting stress [46].

The recording of each type of bio signal requires a different data acquisition technique

while the anatomic site for sensoring should also be adjusted (Table 1). Furthermore, the

sensitivity of the corresponding bio signals in detecting stress ranges from 79% to 97%

depending on the nature of the stimuli applied and other methodological and

investigational factors (Table 2).

Interestingly every bio signal has its own unique characteristics that provide specific

metrics such as the various intervals in the ECG waves (Figure 2) and the frequency and

morphology of EEG waves (Table 3).

Response) sensor

Recording device Bio signal Anatomic site for
sensoring
GSR  (Galvanic  Skin | Skin resistance/conductance | Usually

digits/wrist/arms/thorax
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Recording device Bio signal Anatomic site for
sensoring

Electrocardiograph Electrocardiogram Thorax

Electroencephalograph | Electroencephalogram/Brain | Scalp

waves

Electromyogram Muscle contractions Muscle groups

Electrooculograph Electrooculogram Area surrounding eyes

Inductive Respiratory rate Thorax

plethysmography

Photoplethysmography | Heart rate, oxygen saturation | Finger and ear

Sphygmomanometer Blood pressure Upper arm

Table 1. Bio signal recording devices and anatomic sites [47], [48], [49]
Biosignals Stimulus Maximum reported
sensitivity
EMG, ECG, EDA, RSP Driving 97%
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EDA, Blood Volume Pulse

Stroop test variant

90%

EMG, ECG, EDA

Driving (car racing)

79%

Table 2. Maximum reported sensitivities for stress detection by using specific biosignals. [50]

[51] [52]

QRS

Complex

R

PR Interval

QT Interval

Figure 2. Electrocardiogram intervals. Heart rate variability can be calculated based on ECG trace

and utilized in stress detection

algorithms. [53]

anxious thinking.

Brain wave Characteristics

Alpha Frequency range from 7 Hz to 14 Hz. Detected during
eye closure and with relaxation.

Beta Frequency range from 15Hz to 30Hz. Usually

symmetrical distribution. Closely related to motor

activity. Low-amplitude beta can be seen with busy or
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Brain wave Characteristics

Theta Frequency range from 4 Hz to 7 Hz. Usually recorded in
young children and during meditation. Excess theta

activity can indicate encephalopathy.

Delta Frequency range up to 4 Hz. Usually observed during

sleep. If it is recorded focal it can indicate subcortical

brain lesions.

Gamma Frequency range 30-100 Hz. Indicative of complex

inter neuron interaction.

Table 3. Brain waves that can be detected in an EEG recording and their characteristics [54].

2.2 Physiology of sympathetic skin response

Various terms have been used over the years to describe the electrical characteristics of
the skin including electrodermal response, electrodermal activity, psychogalvanic reflex,
galvanic skin response and sympathetic skin response [55]. Regardless of the term that is
being used, galvanic skin response is a change in potential recorded from the surface of
the skin that represents the result of increased sympathetic nerve activity that

consequently leads to eccrine sweat gland stimulation.

Eccrine glands, located on the palms and the soles, have a distinctly different function than
glands that are found elsewhere in the body, in the sense that they have no
thermoregulatory function. On the contrary, they are activated in order to increase grip
effectiveness from a phylogenetic point of view and are associated with a fight or flight

reaction.

The autonomous nervous system is divided in two distinct parts: the sympathetic and
parasympathetic components (Figure 3). The former is responsible for facilitating the so-

called “fight or flight” reactions [56], meaning that when the human organism perceives

13



an external stimulus as dangerous then a cascade of events is initiated leading to
preparations to either confront the insult (fight) or flee the scene (flight). In this context
under stressful conditions the production of sweat is produced by the glands through the
above-mentioned mechanism, leading to the creation of reduced resistance pathways and

hence distinct skin electrophysiological results.

The basic afferent nerve pathway that controls sweat gland activation originates in the
posterior hypothalamus which interacts with the medullary reticular formation and the
pontine tegmentum of the brainstem. The pathway ends with the preganglionic
sympathetic nerve in the spinal cord and postganglionic sudomotor innervation of the
eccrine glands. Multiple interactions with the lateral prefrontal cortex, amygdala,
cingulate and hippocampus also exist [33], raising the possibility of the existence of an

autonomic regulation feedback loop.

The autonomous nervous system is excited by various stimuli such as visual, audial,
thermal, working and exercising [57] creating a complex network of causality that need

to be unraveled in order to create plausible scientific experiments.
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Chapter 3

Electrodermal activity and
stress

According to Ohm's law, the current through a conductor between two points is

proportional to the voltage across these two points. The mathematical equation that

describes the above-mentioned relationship is:
[=V /R

where I is the current measured in units of amperes, V is the voltage measured in volts,

and R is the resistance of the conductor expressed in ohms.

The law can be expressed as R=V/I if resistance is the investigated parameter.

16



Rz
Resistance of
Stratum Corneum

Rvariable(=1/r1+1
Ir2+._1irm)

R
Resistance of
Dermis

Figure 4. Model of skin resistance. r1,r2,...rn=sweat gland resistance

Skin can be viewed as an epidermal conduction pathway with interspersed sweat glands,
connected externally to the applied electrode and at the other end to deeper dermal and

connective tissues, creating a parallel resistor schematic.

As depicted above, constant current or constant voltage methods can be used in the
context of electrodermal response. If current is kept stable, then voltage is directly

proportional to skin resistance R [59].

Measuring skin conductance can be achieved by detecting the current that flows in the
skin when a constant voltage is applied. The output of the EDA amplifier in this case is the

skin’s conductance (usually measured in microSiemens) [59].

A significant limitation is that Ohm's law holds only when the exosomatic electrodermal
activity is recorded and current density does not exceed 10 pA/cm2 [59]. Higher current
densities appear to decrease skin resistance level (SRL) and skin resistance response

(SRR) and in this context constant current methodologies are preferentially elaborated.
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However, in patients with considerably low resistance levels, current densities up to 75

HA/cm2 seem to produce valid results before non-linearity ensues [59].

3.1 Technical aspects of galvanic skin response

recording

The two main methodologies that have been elaborated in the recording procedure of

galvanic skin responses are the following [60]:

1. The application of a small electrical current between two electrodes in the skin
surface and measurement of the changes in skin conductance with the use of a
galvanometer when an external stimulus is applied to the individual (exosomatic
method). If a DC current is applied, and voltage is kept constant, then EDA can be
measured in conductance units (uS), while when the current is kept constant
resistance units are applicable (£1). AC measurements are more rarely used, but
when this is the case impedance units apply when effective voltage is kept constant

and admittance units when the effective current remains constant [61].

2. Measurement of natural differences in skin potential after the exposure of the

individual to an external stimulus (endosomatic method).

There is no clear consensus regarding the site where the electrodes should be placed;
however, the most common areas are palmar surface of the hand in medial and distal
phalanges of the fingers and the thenar and hypothenar eminences. The movement of the
hands can occasionally produce artifacts in certain experimental settings, in which case

other areas such as the ventral sides of the distal forearms can be used.

There is a wide range of electrodes that can be elaborated in GSR recordings, however the
Ag/AgCl type is the most common one. In this case, a suitable electrode paste is required
(usually consisting of sodium chloride), since the contact medium should be isotonic to

sweat [61].

In this context, the measurements that can be acquired are subdivided depending on the

method applied as follows [60](Figure 5):
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1. Skin resistance response (exosomatic)

2. Skin resistance level (exosomatic)

3. Skin conductance response (exosomatic)

4. Skin conductance level (exosomatic)

5. Skin potential response (endosomatic)

)

. Skin potential level (endosomatic)

Conductivity is defined as G = 1/R, where R (resistance) equals the opposition of an
element (skin in this occasion) to the passage of an electric current. Specific conductivity
o =G x (L/A), where L is the length of the column of liquid between the electrode and A is
the area of the electrodes. In the context of galvanic skin response measurements sweat
is considered as the liquid conductor since it has significantly higher conductivity from
the surrounding fat and other tissues. The SI unit of electrical conductance is siemens (S)

while that of electrical resistance is the ohm (£1).

Conductance is considered the preferred expression for recording EDA activity, since it is
reported to be more appropriate for averaging and statistical processing [60]. Phasic
components are short lived fluctuations in GSR while tonic levels are generally less
versatile. In this context, SCR is the measure of phasic activity while SCL corresponds to
tonic EDA. The former appears to have a better temporal resolution and consequently the
potential to reveal event related responses [62]. This is particularly important in order to
exclude arousal that occurs due to thoughts unrelated to the experimental setting that
could potentially lead to erroneous results. On the other hand, differential SCL recordings
between two states of arousal (baseline and post stimulus) has the advantage of (even

partially) addressing the problem of differential level dependency.

In the electrodermal measurement experimental setup, the stratum corneum of the skin
may be considered as a large flat insulating layer (dielectric - usually 50,000 to 100,000
ohms due to moisture retained in the keratin layer). In the superficial side of this

“insulating” material lies the electrode from the measurement device, while the inner
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tissues with 300 to 1000 ohm resistance can be considered as another electrode in the

context of the experimental design [63].

The internal resistance of the human body varies from approximately 300 ohms to 1,000
Ohms. Bone and fat have the greatest resistance while nerves and muscles have the lowest
ones [64]. Resistance depends also on the location of the electrodes, since greater distance
is associated with increased resistance, meaning that a configuration that uses adjacent
finger electrodes will have greater conductivity in comparison to placing the two

electrodes in the hand and foot.

Another important factor is the diameter of eccrine glands (maximum is <30 pm), which
at any certain event is variable between the thousands of glands that exist in the skin
surface, thus alternating conduction locally in a different manner [65]. Grip strength can
also increase the quantity of sweat released in the surface leading to differentiated results

that should be taken into account in order to increase the repeatability of the studies.

The elicitation of stress in research settings requires the utilization of an effective and
reproducible stressor mechanism. In this context, the so-called Stroop test, has been
widely accepted and validated as an appropriate means of inducing stress in a dependable
and objectified manner [66]. More specifically, this test (in its classical version) demands
from the user to name the color font of a word that designates a different color [66].
Interactive variations of the test have also been created, that are more practical in the era

of electronics and computer technology [67].

Other stressors that have been occasionally elaborated include videogames,

hyperventilation sessions as well as driver and pilot simulations [68] [69].

The delay time between the stimulus and the detection of a skin conductance change has

been reported to be 1.5-2.5 sec [70].

The choice of location between the hands (Figure 7) and feet for the placement of the
electrodes may also lead to small differences. More specifically, EDA peaks at the foot have
been recorded to occur approximately 0.5 sec after those recorded in the hands [71].
Despite the disparities in the absolute values, a similar behavior is exhibited in the data

pattern as manifested by the close correlation of the reported results.
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The recording rates should also be appropriately adjusted in order to facilitate the

research goal. In the context of an ambulatory measurement setting a rate of 1-5 samples

per second could suffice [72], while during an event triggered analysis acquisition rates

are expected to be considerably higher [73].

EDR/Phasic

EDL/tonic level

response

Skin potential

Natural difference in
skin gotential s i g S i e T G

External elechical
cument applied

SPR

SPL

]\ |
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l

Skin conductance S'.i:II'Il'E'SIS‘tEI'IDE Skin Edm"hﬂ”UEJ kSK'"'deEHEJ

SCR SCL

Figure 5. Electrodermal activity nomenclature

The first two letters in the acronyms refer to method applied (SP: skin potential, SR: skin

resistance, SC: skin conductance, SZ: skin impedance, SY: skin admittance), while the third

letter to response.

Parameter

Explanation

Normal/typical values

immediately following
the application of

stimulus

Skin conductance level | Baseline skin electrical | 2-20uS
conductivity

SCR amplitude Phasic rise in | 0.1-1pS
conductance
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Parameter

Explanation

Normal/typical values

SCR latency

Time internal between
stimulus application and

SCR initiation

1-3s

SCRrise time

Time interval between
SCR initiation and SCR
peak

1-3s

Non-specific SCR

Frequency  of  skin
conductance responses
not attributable to

stimuli

1-3 per min

SCR half recovery time

Time interval between
SCR peak and fall to 50%
of SCR amplitude

2-10s

SCR habituation

Rate of decrement in
response amplitude with
repetitions of the same

stimulus

0.01-0.5pS per trial

Table 4. Based on [74] and [75]
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Peak value

GSR

SCR amplitude
50%

Latency Rise t/2 recovery

Figure 6. Galvanic skin response illustration

Unipolar electrode placement
5P measurement

Bipolar electrode placecment
SC measurement

Figure 7. Common placement of electrodes for GSR measurement [76]. Modified by author.
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3.2 Galvanic skin response, detection of stress and

subsequent applications

The correlation of galvanic skin response and stress levels has been validated not only
through the elaboration of questionnaires [77], but also biochemically. More specifically
the levels of cortisol, a hormone that increases in stressful conditions have been found to
correlate with GSR measurements, therefore indicating that there is a solid underlying
physiological basis for its utilization in this context [78]. Radiological studies have also
indicated that GSR values reflect the activity in brain areas associated with complex

cognition patterns and stress perception [79].

It has been reported that financial traders experience significant predictable GSR changes
correlating with stress levels during periods of market volatility [80]. The accuracy of GSR
measurements for stress detection can reach 80%, especially when combined with other

physiological indicators such as pupil size or heart rate [81].

Real world scenarios seem to validate the effectiveness of GSR measurements.
Characteristically, individuals can be classified into distinct stress states with 97.4%
accuracy when exposed to different stress levels during driving sessions, by utilizing GSR

based algorithms [69].

These results have also been validated in real world and experimental settings involving

arithmetic [82], reading [83] and visual tasks [84] with accuracy ranging from 80 to 90%.

These promising findings have led wearable device developers to incorporate GSR
sensors in their new releases [85], indicating the potential applications of electrodermal

activity in everyday life.

The incorporation of sensors in garments has attracted scientific attention in the recent
years since this methodology allows the continuous non-invasive recording of
physiological data indicative of stress. More specifically, chest straps [86], wrist/glove like
devices [87] and T- shirts [88] have been manufactured for research purposes with the
potential for wider implementations. With the advent of newer technologies and the
evolution of the industry of electronics, these embedded galvanic detection systems have

been refined to the point that they can be seamlessly incorporated in everyday
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items/clothing while providing high quality data recording thanks to the application of
textrodes [89].

The non-invasive nature of GSR recordings allows its application in various settings were

stress level measurement is required including:

1. Perioperative stress detection and guidance of appropriate treatment [90].

2. Military applications [91]

3. Diagnosis of diseases that affect peripheral nerves [92]. Any condition affecting the
peripheral nervous system could potentially influence GSR results. Most notably,
diabetes, which is intrinsically associated with dis-regulation of the autonomous
nervous system, has been a focus in GSR studies investigating the potential for
early diagnosis and monitoring of disease progression. Interestingly, GSR
amplitude has been found to be an objective and reproducible marker for
peripheral nervous system dysfunction in diabetes patients [93] on the contrary

to latency, which does not solely reflect peripheral c fibre activity.

4. Diagnosis of central nervous system conditions such as multiple sclerosis,
Parkinson’s disease and brain infarctions. Characteristically, as high as 75% of
patients with multiple sclerosis exhibit deranged electrodermal activity, a
sensitivity comparable to that of somatosensory evoked potentials, a method well
validated and universally elaborated for monitoring these patients [94]. In the
same context, sympathetic skin responses have been successfully utilized in the
early diagnosis of Parkinson’s disease [95] even when clinical findings are scarce.
More specifically, it has been reported that suppression of the SSR amplitude is a
marker of Parkinson’s disease activity and response to medications [96]. As far as
brain infarctions (strokes) are concerned, it has been suggested that hemispheral
and brain stem lesions suppress the reflex activity of the sympathetic nervous

system and hence reduce GSR amplitude [97].

5. Reducing road accidents by detecting operator dependent errors related to

increased stress levels [98].

25



6. As a biofeedback tool in psychiatric disorders in the context of minimizing anxiety
responses [99]. EDA based biofeedback training has also been reported to increase

athletes' sport performance and promote their self-perceived well-being [100].

7. As a tool to improve video game experience and understand the complex

behavioral patterns associated with gaming [101].
8. To assess cognitive load and optimize academic performance [102]

9. Studying sleep patterns (REM and non-REM) and improving its quality [103].

3.3 Galvanic skin response and other biosignals in the

context of intelligent biofeedback systems

Biofeedback systems are an emerging method to promote stress control by providing
quantifiable values of a specific physiological parameter as an indicator to guide the
patients’ efforts towards relaxation [104]. The monitored factors are usually non-
invasively obtained and provided as feedback in real time. Heart rate, blood pressure and
galvanic skin resistance have been successfully used in this context, since they correlate
in a predictable manner with stress levels and they can be easily recorded and analyzed

[105].

Characteristically the practicality of such applications has been exhibited in various

medical conditions including:

1. Hypertension and achieving reduced need for medications upon usage of

biofeedback systems [106]

2. Controlling epileptic activity and avoid heart arrhythmias [107]. More specifically
galvanic skin response biofeedback training has been reported to achieve
statistically significant less seizure frequency in the experimental group in

comparison to controls [108].
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3. Recovery from training and heavy competition circumstances that are associated

with anxiety [109].

4. GSR biofeedback and the elaboration of relaxation techniques to reduce

physiological indicators of stress such as the respiratory rate [110].

5. Control anxiety and avoid exacerbation of symptoms in psychiatric patients. The
GSR profiles of each patient appear to be different, and for this reason an

individualized follow up is preferential for monitoring mood disorders [111].
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Chapter 4

Factors Affecting Galvanic Skin
Response Measurement

Several baseline factors could potentially influence the results of individual parameters

of the galvanic skin response including:

1. Age, height and gender. More specifically older individuals have been reported to
produce a statistically significant lower amplitude with normal latency periods
[112] although this notion has not been verified in other studies [113]. The same
heterogeneity in results applies as far as height is concerned, with certain studies
reporting an association of latency with height [114] [115] while others do not
[116].

2. Skin and body temperature, with both parameters being linearly related to
amplitude and latency values [117]. In this context, body temperature influences
post ganglionic nerve conduction activity and neuroglandular interaction [118]
leading to changes in the recorded measurements. In addition, the permeability of
skin for water increases exponentially in relation to skin temperature, with skin
permeability doubling for every 7 degrees’ Celsius increase in skin temperature
[119]. Appropriate room temperature and avoidance of local skin warming are of

paramount importance in order to avoid these confounding factors.

3. Habituation. This term refers to the gradual decrease on the recorded potentials
after repetitive stimulation [120]. This phenomenon may arise after as few as three
repetitions [121]. Therefore, allowing for appropriate time intervals between
repetitions and choosing a variable frequency of applied stimuli could contribute

to managing this phenomenon.
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4.1 External determinants of EDA signal recording

A variety of external factors may influence the data being recorded:

1. Relative humidity appears to be a significant confounding factor that should be

taken into account. Both negative and positive correlations have been reported for
different humidity levels [122], potentially differentiated between distinct age

groups.

. The influence of air pressure remains elusive, with studies indicating the existence

of a correlation for the male gender [123].

. The existence of artifacts is a major issue in EDA recordings since if they are not
removed before the statistical analysis, erroneous results may occur. Disruptions
of the skin electrode surface can arise due to mechanical pressures, flow of contact
gel and wire drag. In addition, body movements and even the breathing pattern
can be significant sources of artifact creation. In order to minimize artifacts, visual
inspection of the recordings, is always desirable, if possible, while for longer
recordings computer software can be used to remove the outlier values based on

appropriate algorithms.

. Medications can exert significant anti-cholinergic actions and therefore influence
the EDA results. This applies to both prescription and over the counter drugs.
Commonly used medications that could influence cholinergic activity include those
given for allergic reactions, stomach upset, glaucoma as well as for psychiatric
reasons (anti psychotics, antidepressants). Even caffeine has been reported to

influence results and more specifically increasing arousal [124].

. Statistical analysis. In this context, multiple statistical methodologies have been
developed with varying validity [125] [126], meaning that depending on the
researcher’s choice significant divergence of the results and interpretative

approaches could arise.

. Form of applied stimuli. The changes in methodology have the potential to greatly

influence the results. Bibliographically various modalities have been elaborated
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ranging from specific breathing patterns (deep inspiration/forced expiration)
[127], use of small intensity local currents [128] and mechanical effects [129] to
sensory stimulation(optical/hearing) [130]. The extent of the variability of the
reported findings attributed to the different applied methodologies remains
elusive and further studies could contribute to objectifying the experimental

procedures.

The aforementioned difficulties that may be encountered during the data recording can
be overcome by various methodological and organizational approaches such as filtering,

manual inspection, artefact removal(Table 5).

Proposed method Study

Inspect experimental conditions and recording [131]
equipment when rapid fluctuations in skin
conductance levels arise, or amplitude increases

beyond 40 uS/cm?2, or falls below 1 uS/cm?2

Utilization of model-based filtering to remove [132]

noise from recorded data

Elaboration of automated active learning [133]
techniques
Using alternative non-hydrating electrolyte [134]

mediums that reduce noise generation

DC and AC simultaneous measurements from the [135]

same site allowing comparison of results

Use of devices that include an accelerometer in [136]
order to identify moments of increased physical

activity with a propensity for artifact generation
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Proposed method Study

Wavelet-based motion artifact removal [137]

Table 5. Suggested methodologies for avoiding artifacts and erroneous results in EDA recordings

4.2 Ambulatory EDA recording

In most occasions EDA recording takes place in experimental conditions, when most
external factors can be controlled. Furthermore, the duration of the recording is usually
limited in the laboratory setting. Ambulatory monitoring offers the opportunity to record
data under real life scenarios; however, their interpretation may be troublesome since the
temporal correlation between the stimulus and the recorded results should be unraveled.
The elaboration of video and audio recordings by the individual and the institution of

intervening laboratory sessions can contribute to the delineation of the data.

Temperature, humidity and movement artifacts are major concerns in the ambulatory
setting that should be addressed. The application of non-hydrating isotonic gels seems to
produce better and more reliable results in these conditions [138]. Regardless of the type
of gel used, after 24 hours the results start to lack the needed sensitivity and therefore

ambulatory recordings beyond this period are discouraged.

A simple accelerometer sensor incorporated in the experimental device appears not to
suffice for controlling for physical activity that the person undergoes [139]. More
specifically, only strenuous activity seems to significantly increase sweating and SCL,
which would require more robust techniques of measuring physical activity in a

qualitative and quantitative manner.

Differences encountered during sleep awake cycles constitute an interesting aspect of
ambulatory EDA monitoring. SCL appears to have lower values during sleep when the
finger location is used for the electrodes [140]. At the wrist, prominent rises may also
occur which may indicate thermal sweating caused by the REM- non REM sleeping cycle

alterations.
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Taking into account the above-mentioned considerations it becomes evident that multi-
sensoring devices should be used for ambulatory EDA monitoring in order to
simultaneously record multiple parameters allowing for eradication of artifacts and

elucidation of causal relationships.
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Chapter 5

Interpretation of biosignal data

The interpretation of biosignal data in order to quantify stress levels poses certain
difficulties that have to be circumvented by elaborating appropriate statistical
methodologies and improving experimental conditions. In addition, the transition from
the experimental setting to a real-life scenario recording of biosignals is associated with
multiple confounding factors such as the fact that the measurements are influenced by
physical activity [132]. Characteristically individuals have a higher heart rate when
standing in comparison to sitting, so measuring the heart rare in an isolated manner to
predict the levels of anxiety would be an imprecise method. Furthermore, artifacts from
electrode placing or the individual’s movements can produce nonsense “noise” data that

lead to mistakes in interpretation.

In this context, combining data from different physiological parameters is expected to
increase the sensitivity and specificity of these stress detection techniques while
advanced statistical methodologies such as standard linear regression, wilcoxon signed-
rank, paired samples t tests, k means analysis and other advanced techniques that can

lead to better classification results [141].

GSR readings tend to gradually increase over time due to accumulation of sweat in the
electrodes, and therefore it is crucial that linear de-trend of the data should be performed.
Overall the main interest is focused on the local patterns instead of the overall trend of a

large sequence of recorded events.
Event related SCRs can be grouped as following [142]:
1. Phasic orienting responses to simple (usually noise) stimuli

2. Defensive responses to stimuli perceived as threatening
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3. Reactions to stimuli that require complex analysis and perception (eg emotional

visual stimuli)

The innate characteristics of galvanic skin response include(Figures 6,8):

1. Shape of the response. The form of sympathetic skin response can be triphasic,
biphasic (most commonly in the legs) and rarely monophasic. Depending on the
maximum deflection the responses can be classified into P type (positive maximum
deflection) or N-type (negative maximum deflection), with the former being the

most commonly encountered [143].

2. The latency of the GSR response, meaning the time interval between the stimulus
and the first deflection from the baseline. Latency tends to be shorter in the hands
compared to the feet [115]. The physiological stages of latency include afferent
conduction (approximately 20ms), central nervous system processing time
(milliseconds), and efferent conduction in autonomic nerve fibers. The majority of
the GSR latency is attributed to the efferent nerve conduction and the activation of
sweat glands. Normal latency is expected to lie in the vicinity of 1.3-1.5 sec in the

hands and 1.9-2.1 sec in the soles [144].

3. The amplitude of the response, which is usually higher in the hands compared to

the legs [115].

4. Reproducibility of the shape of the response. The rate of reproducibility in the
same individual has been reported to be relatively stable at 23.9% [145].

The tonic EDA component is always changing in each individual and therefore it has been
proposed that SCL on its own does not provide useful information [146]. In this context,
subtracting the amplitude of SCR from the tonic signal as well as additionally recording
outside stimulation events is considered crucial in analyzing data. The calculation of the
frequency and amplitude of non-significant (not attributable to stimulation) SCRs is
another important marker that should be taken into account, as they have been suggested
to reflect more reliably background arousal in comparison to SCL [146]. One of the most
significant difficulties that arise during GSR analysis is determining whether a SCR is event

related (caused by a stimulus) or not. Failing to properly categorize SCRs can lead to
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misinterpretation of the findings and erroneous results. This discrimination can be
facilitated by acquiring a baseline recording period in order to determine the frequency
and amplitude of NS-SCRs and also SCL. Hyper and hypo-respondents have distinct

baseline measurements that may be of value during the final interpretation of the results.

The number of NS-SCRs depends on the amplification factors and amplitude thresholds
that are being utilized [147], ranging from zero to ten per min during rest, while in active

periods they lie in the vicinity of twenty per minute [147].

Skin conductance has certain limitations that should be taken into account when data are
analyzed. More specifically habituation varies significantly between individuals, while as
high as 15% of people studies may be classified as non-responders, meaning that no clear

change in the SCR can be recorded after the exposure to a stimulus [148].

Another confounding factor that complicates the analysis of GSR is the fact that SCRs may
be superpositioned. Researchers have traditionally calculated the difference of the SC
values at its peak and preceding levels [149], with SCRs arising at an arbitrary time frame
after the stimulus considered as event related [150]. Alternative approaches such as the
curve-fitting decomposition and deconvolution have been proposed and applied by

various researchers in order to deal with this problem [151] [152].

GSR activity is indicative not only of stress but also of mental effort or emotional changes
and therefore its interpretation is not always straightforward. It has been suggested that
greater GSR activity is associated with more effective word learning [153]. Interestingly,
words that stimulate higher GSR activity appear to be characterized by a better long-term
recall ability, raising the possibility that memory systems can be affected through this

pathway [153].

If homogeneity or skew variance problems arise with the statistical analysis of the SCR
data, then transformations can be performed including the square root or logarithmic

transformations of the initial values.

The concept of transforming data into standard values has also been supported by
researchers since the need for utilizing range corrected methods and normalization are

obviated [154]. The transformation into z scores is one the prevailing methodologies in
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this context, that addresses both the aforementioned practicalities. The mean SCR value
and standard deviation of SCRs are utilized to create a normal random variable of a

standard normal distribution.

A z-score indicates how many standard deviations an element is from the mean. A z-score

can be calculated as follows:

z=(X-w/o

Z =Z-Score,

X =value of the element,

u=population mean

o =standard deviation.

e Az score of zero indicates that the value of the element is equal to the mean value

e A zscore ofless than zero indicates a value less than the mean

e Az score of zero greater than zero indicates a value greater than the mean

e The z score indicates how many standard deviations the value of the element is

greater or less than the mean value

Another approach would be to divide each SCR with mean SCR, providing an alternative

standardization [155].
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Figure 8. Example of acute stress pattern indicating the sequence of relevant phases. [156]

Modified by author.
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Chapter 6

Analysis and results of
experimental data

The data for the current analysis stem from two groups of volunteers with seven and
eighteen participants respectively. The first group consisted of one male and six female
individuals(age range 56-66) while the second one of three women and fifteen men(age
range 20-40). GSR recording was performed with a Shimmer GSR unit during calm and
stress periods ,with the latter phases being facilitated by corresponding stroop and

memory tests.

The recording frequency in the first group was 1.98 Hz and in the second group 32Hz.
Taking into account the different sampling frequencies and age distributions of the two

populations it was decided to undergo separate statistical analysis.

The participants of the second group were asked to fill the Spielberger State-Trait Anxiety
Inventory (STAI) for adults questionnaires. Since they produce numeric results they were
included in the statistical analysis along with the other demographic and physical data

available.

The identification of NonSCRs, SCRs(with corresponding amplitudes) and Half Recovery
times was performed using the python programming language(with application of
continuous wavelet transform (CWT)-based peak detection)(Appendix A) while the
subsequent statistical analysis was performed with the R language and environment for

statistical computing and graphics(Appendix A).

Transformations to Z scores where employed where applicable in order to standardize
data and eliminate differences in baseline sympathetic arousal. Figure 9 shows an

example of Z transformed GSR versus time with peaks indicated.
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The tonic electrodermal activity of each participant was evaluated by the calculation of

Non SCRs per minute(Appendix A), which is considered an appropriate measure for this

goal.

Multiple linear regression models and Spearman’s Rho correlation coefficient where the

primary statistical methods employed, since they do not require normal distribution of

the data.
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Figure 9. Example of Z transformed GSR versus time(in seconds) with peaks indicated with

vertical dotted lines. The solid vertical lines indicate stress periods(patient ID9)

The statistical analysis of the data from the first group identified statistically significant

correlations from the multiple regression analysis between the frequency of

NonSCRs(regarding non stress time intervals) as a measure of tonic activity and

age(p<0.01), gender(p<0.05) and physical activity(p<0.05)(Table 6). More specifically

increasing age appears to reduce the tonic EDA, which is in line with the literature which

suggests that advancing age leads to a reduction both in the number and the activity of

skin sweat glands [147]. The female gender is statistically associated with an increase in

Non SCRs frequency, a finding also commonly encountered in studies [147].

39



Mal1l -

Lalls

Im(formula = groupliFrequency nonscrs ~ grouplflige + groupliGender +
groupliphysicalactivity, data = groupl)

Residuals=:
Min iQ Median
-0.43988 0.00000 O.00000 0.096

[ VY]
XS]
=
a1}
#

Coefficients:

Eztimate 5td. Error t wvalue Pr(>|t])
{Intercept) 2.93124 0.69469 4,215 0.000464 #*&=
groupliige -0.03006 0.01046 -2.874 0.009711 =#==*
groupliGender 0.3861l6 0.1423%9 2.712 0.013825 *
groupléphysicalactivity -0.31706 0.11284 -2.810 0.011184 =
Signif. code=s: 0 “**%r (§_001 **=%r .01 **f Q.05 *.f 0.1 " 1

0.1577 on 19 degrees of freedom
N Adju=sted E-sguared: 0.3076
d 19 DF, p-value: 0.01847

Eesidual =tandard error
Multiple E-=sguared: 0.402
F-=statistic: 4.258 on 3 an

Table 6. Multiple linear regression model for group 1(the estimate coefficients represent the
difference in the predicted value of the dependent variable for each one-unit difference in the

independent variable, if all other variables remain constant.).

The statistical analysis of group 2 yielded a plethora of statistically significant results.
More specifically the multiple linear regression with SCR amplitude(z transformed-by
definition during stress intervals) as the dependent variable and identified an association
with the independent variables age(p<0.001) and STAI2(p<0.001)(Table 7). The
association with age is analogous to the one found in group 1 for the tonic component,
and can similarly be attributed to changes in sweat gland reactivity with age. STAIZ as a
measure of “trait” anxiety is expected to positively correlate with SCR activity, a notion

which is line with the current results.
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Call:
Im(formula = zscramplitude ~ group2$ige. + group255TATl. + group2$5TAIZ.,
data = group?)

Besiduals:
Min 1 Median 30 Max
-0.14188 -0.08056 —-0.025449 0.03074 0.69672

Coefficients:

Eztimate 5td. Error t walue Pr{>|t])
[(Intercept) 1.144e-01 3.451e-02 3.314 0.000965 *#*
group2 $ige. —-3.722e-03 9S.8544e-04 -3.T7B1 0.000169 #*#*%
group2£5TATl. -5.497e-05 5.4%97e-04 -0.100 0.320380
group2£5TATZ. 2.465e-03 5.75%e-04 4.251 2.4e-05 #*=*

S5ignif. codes: O **%*r Q0.001 **=*f Q.01 =~ Q0.05 ™." 0.1 ™ * 1

Eesidual standard error: 0.1178 on 726 degrees of freedom

(7T observations deleted due to missingness)
Multiple B-sguared: 0.04233, Adijusted R-=squared: 0.03837
F-=statistic: 10.7 on 3 and 726 DF, p-value: 6.92e-07

Table 7. Multiple linear regression with amplitude as the dependent variable(the estimate

coefficients represent the difference in the predicted value of the dependent variable for each one-

unit difference in the independent variable, if all other variables remain constant.).

Spearman's rank correlation rho detects a significant relationship(rho 0.1430246,

p<0.001) between SCR amplitude and STAI1, which expresses current state

anxiety(Figure 10).
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Figure 10. Spearman’s rho SCR amplitude, STAI1( plotting of the ranks of the data, while the

distributions of the raw data are also depicted.)

Spearman’s rho also validates the results of the linear regression as far as the association

between STAIZ and amplitude is concerned(rho 0.14471, p<0.001)(Figure 11).
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Figure 11. Spearman’s rho between STAI2 and amplitude(plotting of the ranks of the data, while

the distributions of the raw data are also depicted).

Finally Spearman’s rho also detects the significant relationship between age and

amplitude(-0.1033661, p<0.005)(Figure 12).
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Figure 12. Spearman’s rho between age and amplitude (plotting of the ranks of the data, while

the distributions of the raw data are also depicted).

The multiple regression model in group 2 with Non SCR frequency as dependent variable
detects the same relationship with age as described for group1(p<0.05)(Table 8). STAI2
increase appears to lead to an increase in the dependent variable, which is reasonable
taking into account that it is a marker of trait anxiety in the same way that tonic activity
expresses baseline arousal(p<0.001)(Table 8). Interestingly STAI1 appears to lead to
reduction in the independent variable(p<0.001)(Table 8). However since STAI1
expresses current anxiety it is generally expected to correlate with SCR amplitude and not

with tonic activity, meaning that this finding is not unreasonable.
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Call:
lm(formula = groupZ2fnonscrireguency ~ group2fhge + group2&5TAIll +
group2&S5TAIZ, data = group2)

Rezsiduals=s:
Min 1Q Median 3Q Max
-2.05072 -0.58591 -0.00285 O0.908B55 1.14638

Coefficients:

Eztimate 5td. Error t wvalue Pr(>|t])
(Intercept) T.52T7963 0.264589 28.452 <« Z2e-1lg *%*%
group2shge -0.015708 0.007526 -2.087 0.0372 *
group2sS5TATll -0.015653 0.004187 -3.738 00,0002 *%*
group2S5TAIZ 0.032704 0.00444%9 T.350 5.2%9e-13 =**

Signif. codes: 0 Y*%%Ff 0 Q001 *#**f 0,01 **f Q0,05 *." 0.1 * " 1
Rezidual standard error: 0.9016é on 733 degrees of freedom

Multiple B-sguared: 0.07047, Adjusted R-sguared: 0.06666
F-ztatistic: 18.52 on 3 and 733 DF, p-value: 1.367e-11

Table 8. Multiple linear regression with Non SCR frequency as the dependent variable(the
estimate coefficients represent the difference in the predicted value of the dependent variable for

each one-unit difference in the independent variable, if all other variables remain constant.)

Spearman’s rho validates the correlation of Non SCR frequency with STAIZ with a value

0f 0.0743554(p<0.05)(Figure 13).
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Figure 13. Spearman’s rho. Non SCR frequency and STAI2(plotting of the ranks of the data, while

the distributions of the raw data are also depicted).

Spearman’s rho has also detected a negative statistically significant relationship between
half recovery time and age(-0.08847413, p<0.05)(Figure 14). This interesting finding
could be attributed to the fact that according to the literature advancing age confers a
more optimistic attitude towards knowledge/information based stimuli, and a more
pronounced one to socioeconomic triggers, leading to an artificial reduction in half
recovery time [157]. Since the stimuli in this case are facilitated with a stroop test, this

hypothesis appears plausible.
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Figure 14. Spearman’s rho between half recovery time and age(plotting of the ranks of the data,

while the distributions of the raw data are also depicted).

Another interesting finding from non-parametric analysis is that half recovery time

appears to positively correlate with both STAI1(0.1515905,p<0.001)(Figure 15) and
STAI2(0.0743554, p<0.05)(Figure 16). The explanation could be that increased anxiety as

expressed by STAI1 and STAI2 leads participants to a more slow return to their baseline

GSR levels.
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Figure 15. Spearman rho between half recovery time and STAI1(plotting of the ranks of the data,

while the distributions of the raw data are also depicted).
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Figure 16. Spearman’s rho between half recovery time and STAI2(plotting of the ranks of the

data, while the distributions of the raw data are also depicted).

Finally, in order to compare peak frequency between stress and non stress periods, a
Wilcoxon signed rank test was performed in group 2, which has the highest recording
rate(32Hz) and population number. The analysis revealed statistically significant
differences(p<0.05) between peak frequency in non-stress and stress periods, with

median values 8.1 and 8.2 respectively(Table 9).
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Wilcoxon signed rank test with continuity correction

data: peaks non stress and peaks sStress
YV = 3%, p—value = 0.04451
alternative hypothesis: true location shift is not equal to O

Table 9. Wilcoxon signed rank test between frequency of peaks in non-stress and stress periods

indicating a statistically significant difference
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Chapter 7

Discussion

Electrodermal activity is considered a marker of sympathetic function [152], since it
depends on skin sweat gland activity which in turn is controlled by the autonomic nervous
system. The EDA metrics are influenced both by person specific characteristics(such as
age, gender, diseases, medications received, current mood ) and the quality of the applied
stimuli(such as visual, auditory, neutral, emotional) [158]. Interestingly, it has been
suggested that EDA responses may be partially genetically controlled by multiple genes
[159].

SCR amplitude is generally considered an appropriate measure of phasic EDA activity
[160] while tonic activity can be expressed by the frequency of non-specific skin
conductance responses [161]. These two EDA metrics were included in the current

analysis to investigate potential correlations and statistically significant associations.

In the current study the frequency of the Non SCRs appears in both groups to be correlated
with age. More specifically advancing age appears to lead to less Non SCRs. This finding
is reported in the literature and although the exact cause remains elusive, reduced sweat

gland reactivity is considered to play a role [147].

The analysis from the first group of data also identified a negative relationship between
increasing physical activity and frequency of Non SCRs. Regularly engaging in physical
activity is considered to reduce the person’s baseline anxiety levels [162] and therefore it

would be plausible to hypothesize that these individuals exhibit reduced SCL.

The incorporation of STAI1 and STAI2 as markers of current and trait anxiety respectively
in the data of the second group provided the opportunity to explore potential statistical
relationships with both SCR amplitude and Non SCRs. The State-Trait Anxiety Inventory
questionnaires have been used extensively in the literature for assessing the presence and

severity of current anxiety as well as the general propensity of the individual to be anxious

51



[163]. Reliability and validity tests that have been performed confirmed the robustness of
this tool and its usefulness in the evaluation of stress levels in research and clinical

settings [164].

As far as SCR amplitude is concerned, there appears to be a positive correlation with
STAI1(spearman’s rho) and STAI2(spearman’s rho and regression). An increase in state
anxiety is reasonably expected to correlate with SCR amplitude as they both correlate
with acute sympathetic system activity. Trait anxiety increases have been reported to lead
to increases in SCL [165], while the correlation with EDA amplitude appears to follow an

inverted U shape [166].

The frequency of Non-significant SCRs(independent variable) as a measure of tonic
activity appears to have a statistically significant positive association with
STAI2(dependent variable). This finding is reasonable as STAI2 expresses trait anxiety,
which in turn manifests as tonic electrodermal activity. Individuals with increased anxiety

appear to have more spontaneous EDA fluctuations and hence Non SCRs [167].

Half recovery time as a characteristic EDA metric has been occasionally evaluated in the
literature as a marker of conditioning, with faster times being associated with enhanced
information processing [168]. In the current study there appears to be a positive
correlation of half recovery with STAI1 and STAIZ2. This could be attributed to the fact that
patients with high anxiety levels (especially the trait component) may have developed
increased processing skills, allowing them to return faster to their baseline autonomous

nervous system state [169].

Interestingly age appears to have a negative correlation with half recovery time based on
the current results. However, studies indicate that increasing age is associated with less
pronounced physiological responses when the stimuli are knowledge /information based
in comparison to socio-economic stimuli [157]. In this context, the above mentioned
finding appears plausible, since the stimuli in the current study were generated via the

stroop and memory test.

Furthermore and in order to directly validate that EDA metrics differ between stress and

non stress periods a Wilcoxon signed rank test between frequency of peaks in non-stress
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and stress time intervals was performed. The results indicated that there a statistically

significant difference, with a higher median value for stress than non stress periods.

A potential limitation of the current study could be the lack of other bio signal data that
could have been analyzed concurrently in order to detect differences in sensitivity and
specificity of stress detection. This would facilitate the study of how different baseline
volunteer characteristics can modify different bio signals that can assess stress as well as
correlation analysis between the various signals. Despite this limitation, the current
analysis has provided a plethora of data regarding electrodermal activity and its
correlation with stress and the effect of age, gender, physical activity and trait anxiety. In
addition it offered the opportunity to correlate EDA stress metrics with standardized

anxiety questionnaires, which could prove useful for future validation purposes.
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Chapter 8

Conclusion

The primary objectives of the current thesis were to review the current literature in the
field of bio signal based stress detection and analyze EDA data from volunteers in order

to infer meaningful correlations between the different variables studied.

The review component was conducted by searching electronic databases with relevant
keyword/phrases and critically appraising the gathered scientific articles.

The experimental analysis component included EDA data processing from two groups of
volunteers with seven and eighteen participants respectively. Volunteer specific
characteristics such as age, gender, physical activity, and questionnaires for quantifying
current and trait anxiety were utilized as variables. The identification of the relevant EDA
metrics(SCRs,Non-SCRs, SCR frequency, half recovery times) was achieved with the

continuous wavelet transformation methodology for peak detection, applied in Python.

The statistical analysis that followed was based on multiple linear regression and
Spearman’s rho, performed with the R programming language for statistical analysis.
The results that were produced through the above mentioned process revealed multiple

statistically significant correlations.

Asrevealed by the Wilcoxon signed rank testin group 2(chosen due to the 32 Hz recording
and the greater sample size) there appears to be a statistically significant difference

between frequency of peaks in non-stress and stress periods.

Another finding of the current study is that advancing age seems to be associated with
reduced EDA levels(both tonic and phasic), a finding which has several potential
explanations. Furthermore advancing age appears to reduce half recovery time, which
again could be explained by the fact that older individuals return faster to their baseline

anxiety levels when exposed to information based stimuli (such as stroop/memory tests)
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, which do not perceive as very significant. The fact that age is a significant determinant
of EDA response as indicated in the current study supports the need for baseline age
related adjustments during data interpretation, and provides insight in how changing

physiology affects stress reactions.

A significant correlation between the STAI2 questionnaire and tonic activity(expressed as
Non-SCR frequency) was also detected. In addition the amplitude of SCRs and STAI1 have
been shown to have a statistically significant correlation in Spearman’s rho, which
indicates an association of EDA with state(current) anxiety too. In this context it is of
paramount importance that EDA appears to be able to quantify both state and trait
anxiety, in other words not only the tendency of the person to be anxious and stressed
before the application of stimuli but also the amplitude of the reaction during the
stimulation. Based on these findings it appears that the potential of using EDA for stress

quantification and recognition is significant.

The current study also indicated that half recovery time(the time to return to half the
value of the SCR amplitude) reduces when age advances. Furthermore it appears to
increase with higher STAI1 and STAI2, a finding that indicates that the more stress
someone has the more time it takes to return to baseline levels. Half recovery time is
generally rarely studied in the literature and the fact that the current findings show an
association with variables such as stress questionnaires and baseline volunteer

characteristics could rejuvenate interest towards this EDA metric.

The correlations that have been detected between the aforementioned EDA metrics and
both innate characteristics(age, gender) and acquired traits(trait anxiety, physical
activity) of individuals, create a base for potential incorporation of galvanic skin
responses to personalized health monitoring systems. In this context a real time EDA
recording system could provide early detection of anxiety attacks or stress related
sympathetic system activation, allowing for appropriate management and lifestyle
modifications. This application would also contribute to the understanding of the

underlying mechanisms of the genesis and propagation of stress.
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Appendix A

EDA Detection Algorithms and
Statistical Analysis

The continuous wavelet transform is a useful tool for analyzing time series signals in the
time-frequency domain that works by connecting wavelet local maxima points to
sequences that converge to a peak [170]. The CWT algorithm appears to work well in
noisy data [171], offering a significant advantage in comparison with other approaches in
signal processing. The Python function scipy.signal.find_peaks_cwt was used in the
current study to detect the relevant SCR peaks throughout the EDA signal. In this context
a sample of the code that detected the peaks is:

indexes = find_peaks_cwt(new_list, np.arange(1, 200)) #detection of indexes of peaks
for b in indexes:

if (b*(1/recording _frequency)<780 and b*(1/recording_frequency)>600) or (b*(1/
recording_frequency)<1080 and b*(1/ recording_frequency)>840):

significant_SCR.append(new_list[b]) #detecting SCRs

In the above mentioned example the index b multiplied by the time that each single value
measurement requires(1/recording frequency) equals the total time elapsed until this
point. The recording frequency was 1.98Hz for the first group(in which the volunteer of
the example belonged) and 32 Hz for the second group. The time intervals (600 sec, 780
sec, 1080 sec, 840 sec) are those corresponding to the stress periods of the specific

volunteer and they differed among the group members.
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The calculation of the amplitudes was performed by subtracting from the peak SCR value
the preceding minima. The calculation of the recent local minima required the use of

scipy.signal.argrelextrema but confined in a specific area of the data:

minimal=argrelextrema(slice2_list, np.less)

mini_list=slice2_list[minimal]

mini_mini=min(mini_list)

amplitude.append(new_list[b]-mini_mini)

Non specific SCRs are the SCRs occurring outside of the stress periods. The calculation of
the frequency of Non SCRs is then calculated by dividing with the corresponding time
duration. In this context the following code with the volunteer specific stress periods was

utilized:

for b in indexes:

ifb*(1/1.98)>1080 orb* (1 /1.98) <600 or (b* (1 /1.98)>780 and b * (1 /1.98)<840):

Non_SCR.append(new_list[b])

NonSCR_last_index=len(Non_SCR)-1

NonSCRs_frequency=NonSCR_last_index/time

The statistical analysis was performed with the R Language for Statistical Analysis, which

has been extensively used in the literature for facilitating data processing [172].

Performing a linear regression analysis was achieved by following the corresponding

syntax:

fit <- Im(y ~ x1 + X2 + x3, data=EDA_data)

summary(fit)

57



The calculation of Spearman’s rho was done by applying the syntax:

cor.test(x2,y2,method="spearman", exact=FALSE)

Obtaining a graphical representation required the code:
spearman.plot(cbind(Half_recovery_seconds,Age), col="red", lhist=50), for which the fifer
package is required. The latter allows the plotting of the ranks of the data, while the

distributions of the raw data are also depicted.

The calculation of Wilcoxon signed-rank test was achieved with the code:

wilcox.test(a,b, paired=TRUE), with appropriate substitution for the a, b variables.
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EDA
GSR
Non-SCR
SCR

SC

SR

SP

SZ

SY
STAI1
STAI2
Spearman’s rho
ECG
EMG
EEG
HRV

Appendix B

List of abbreviations

Electrodermal activity

Galvanic Skin Response

Non significant Skin Conductance Response
Significant Skin Response

Skin Conductance

Skin Resistance

Skin Potential

Skin Impedance

Skin Admittance

State-Trait Anxiety Inventory 1

State-Trait Anxiety Inventory 2

Spearman rank-order correlation coefficient
Electrocardiogram

Electromyogram

Electroencephalogram

Heart Rate Variability
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