

Open University of Cyprus

Faculty of Pure and Applied Sciences

 Information and Communication Systems

Master Thesis

Implementation and Performance Evaluation of
Cryptographic Algorithms.

Nicolas Nicolaou

Supervisor
Dr. Petros Nicopolitidis

May 2017

Open University of Cyprus

Faculty of Pure and Applied Sciences

 Information and Communication Systems

Master Thesis

Implementation and Performance Evaluation of
Cryptographic Algorithms.

Νικόλας Νικολάου

Επιβλέπων Καθηγητής

Dr. Πέτρος Νικοπολιτίδης

Η παρούσα μεταπτυχιακή διατριβή υποβλήθηκε προς μερική εκπλήρωση των
απαιτήσεων για απόκτηση μεταπτυχιακού τίτλου σπουδών

Στα Πληροφοριακά και Επικοινωνιακά Συστήματα
από τη Σχολή Θετικών και Εφαρμοσμένων Επιστημών

του Ανοικτού Πανεπιστημίου Κύπρου.

May 2017

iii

Summary

Network Security is a fast growing sector of computer networks. The rapid development

of technology and especially in the field of networks requires research and study in

several areas. The information data that pass through computer networks must be fast

and secure to have a reliable system. Security is not only about protecting computer data,

it is also important the availability and integrity of the network. While data is passing

through a communication channel is more vulnerable to malicious attacks. To protect the

data must have a strong encryption algorithm.

Encryption in modern times accomplished with the use of algorithms. To encrypt or

decrypt a data algorithms have to use a secret key combination with a mathematical

equation. The purpose of the key is to rearrange the relevant information into an

unreadable data. The private key is the most important element in algorithms and must

always remain secret.

An integrated online Information System requires a fast respond to exchange information

between users. A direct access to an Information System is one of the essential elements

of an organization's security (Confidentiality, Integrity, and Availability). A reliable

Information System must have the right hardware for a fast respond and a strong

algorithm to keep the data protected.

The purpose of this dissertation is to examine the various synchronous cryptographic

algorithms and to evaluate their performance concerning their implementation in a

particular software. The software compares the speed of the algorithms in different type

scenarios and analyzes how fast can encrypt and decrypt the data.

iv

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Dr. Petros Nicopolitidis for

the patience and trust that gave me the encouragement and help. Furthermore, I would like

to thanks my family and my friends that support me and encourage me to accomplish the

research.

v

Contents
Introduction .. 1

Algorithms Theory ... 4

2.1 Data Encrypted Standard (DES) .. 4

2.1.1 History of DES Algorithm ... 4

2.1.2 DES Structure .. 6

2.2 Triple Data Encryption Standard (3DES) .. 11

2.3 Advance Encryption Standard (AES) ... 12

2.3.2 AES Structure .. 14

2.4 Rivest Cipher 2 (RC2) .. 18

2.4.1 History of Rivest Cipher 2 .. 18

3.3.2 RC2 Structure .. 19

2.5 Algorithm Modes ... 22

2.5.1 Electronic Codebook (ECB) ... 22

2.5.2 Cipher Block Chaining (CBC) .. 23

2.5.3 Output Feedback (OFB) .. 23

2.5.4 Cipher Feedback (CFB) ... 24

2.5.5 Ciphertext Stealing (CTS) ... 25

Algorithm Benchmark ... 26

3.1 Simulation Implementation .. 26

3.1.1 Benchmark Program Development .. 26

3.1.2 Algorithms Private Functions ... 29

3.1.3 User Graphic Interface .. 33

Benchmark Results .. 36

4.1 Dual Core Experiment ... 37

4.1.1 Benchmark Cipher Mode ECB .. 37

4.1.2 Benchmark Cipher Mode CBC .. 42

4.1.3 Benchmark Cipher Mode CFB... 46

4.1.4 Dual Core Benchmark Overview ... 50

4.2 Intel Xeon Experiment .. 55

4.2.1 Benchmark Cipher Mode ECB .. 55

4.2.2 Benchmark Cipher Mode CBC .. 60

4.2.3 Benchmark Cipher Mode CFB... 64

4.1.4 Intel Xeon Benchmark Overview .. 68

vi

4.3 Compare Results .. 72

Conclusion ... 75

Bibliography ... 76

1

Chapter 1
Introduction

It is amazing how networks and computer systems have advanced over the last few years.

The network infrastructure has become more complex and the security control more

challenging. Systems communicate with a different type of applications and the security

of the network keeps the information safe. Malicious attacks can invade to the

communication network collect data and obtain sensitive information. To ensure the

reliability of the information, all the data that pass through the communication network

must be encrypted.

Cryptography is an intersection of electrical engineering, computer science and

mathematics. Cryptographic algorithms are complex mathematics that keep the system

secure and protect the sensitive information. Over the years, different cryptographic

algorithms have been developed to provide integrity, confidentiality and authentication

of the data.

Cryptology is the art of science that studies the techniques for secure communication and

information retrieval. The two main categories are Cryptography and Cryptanalysis.

Cryptography came from the Greek "kryptós" it means "secret" and "graphein" it means

"writing". In general, this subject studies the techniques of encryption and decryption that

prevent third parties reading private messages. The other main category, Cryptanalysis is

the study of analyzing the information systems and examine the hidden aspects of them

from unauthorized entities.

Figure 1. Cryptology Scheme

Encryption is the process of transforming a message into an unintelligible form using a

cryptographic algorithm. The purpose of the encryption is to be unreadable by third

parties. Decryption is the recovery process of the original message that performed by an

authorized person. Encryption/decryption of a message performed based on a

2

cryptographic algorithm and an encryption key. A cryptographic algorithm is a

mathematical function or a method of transforming the data into an unreadable form. The

key size is an important point for protecting the information data. Cryptographic

algorithms are all about development of protocols that keep off any third party from

accessing information, as well as the public against reading private information. Over the

years, different cryptographic algorithms have been developed to address the issues of

integrity, confidentiality and authentication of personal data. Cryptography is an

intersection of electrical engineering, computer science and mathematics.

The encryption on computer systems can achieve through different types of algorithms.

The algorithms can encrypt a plaintext or decrypt a ciphertext using a mathematical

equation and a secret key. The main purpose of the key is to reclassify the data in such

unique way that is incomprehensible to any intruder that would try to get access to the

system. The key keeps the information secret and must always remain hidden.

A system must have a security level to keep the information safe. When two points A, B

exchange information to the network the communication between them is safe if it

satisfies the following properties:

• Confidentiality is all about giving the sensitive information to the right authorized users

and prevent access to the wrong users.

• Integrity ensures that the content of the data cannot be altered by unauthorized people

also maintains the accuracy, and trustworthiness of the data.

• Availability is to provide quality services to the users and keep the system available to

provide the information data without any delay.

A system must have a number of different combination keys with a large cryptographic

algorithm in order to avoid the intruders to have access. For example, if the cryptanalyst

has the corresponding pair of original and encrypted text can try all the possible

combination keys until he finds the right key. Otherwise, the cryptanalyst can decrypt the

text with logical combinations until he gets the original and takes the right key. Typically,

a key is a combination of bits in a series. Therefore, more bits in a key then become more

complex. If a machine tests a key, every nanosecond can find all the possible combinations

of 64-bit length key around 300 years. In the most cases, a strong cryptographic algorithm

is the one is not able to break by conventional means in a reasonable time.

A modem information system with a high demand response has to exchange information

instantly without any delay. A valuable network asset to the system must be a fast

processing unit that can encrypt or decrypt the information. Direct access to the

information is one of the three common basic policies for a secure organization

(Confidentiality, Integrity, Availability). The performance of the system is not the only

part of a fast processing, but equal emphasis must be the algorithm type, the key size and

the cipher mode of the algorithm.

3

The purpose of this research is to study well-known symmetric algorithms with various

cipher modes on a different type of data sizes and examine their performance in a

particular program. The parameters will monitor the speed of the algorithms for

encryption and decryption on a particular system.

The symmetric algorithms are with a single secret key that both sides use it to encrypt or

decrypt the data. The security the algorithms always depends on the secret key.

Symmetric cryptosystems use a secure communication channel to exchange the secret

key. The two cryptosystems must have the secret key in a secure way and must keep the

key protected. If an unauthorized system can discover the key and identifies the

algorithm, all the data can be readable.

4

Chapter 2
Symmetric Algorithms

Cryptography has two main sections, symmetric cryptography that uses a single secret

key and the asymmetric cryptography that uses two keys the public key, and the private

key. The algorithms DES, 3DES, EAS, RC2, comes under the category of symmetric

cryptography. The symmetric algorithms have an equation E{P, K} and use the plaintext (P)

that comes with the secret key (K) to produce ciphertext (C) as shown in figure 2. The

plaintext along with the secret key pass to the algorithm as an input and then the

algorithm provide the ciphertext of the particular plaintext. The ciphertext(C) can be

converted back to plaintext (P), with the use of the right secret key (K) along with the

ciphertext (C) added to the reverse equation D{C, K}.

2.1 Data Encryption Standard (DES)
Cryptography has two categories of ciphers, a block cipher, and a stream cipher. In the

first category the data is encrypted or decrypted in small blocks, and in the second

category the data is in the form of a stream and all bits are encrypted or decrypted

individual. A stream cipher is not so often in use on modern cryptographic algorithms.

DES algorithm is a 64-bit block cipher, therefore in the input of the algorithm, the data is

divided into 64-bit blocks and moves to the encryption/decryption equation[1].

2.1.1 History of DES Algorithm

During 1960's, an IBM product division modified LUCIFER submitted the algorithm,

referred to as the data encryption standard (DES)[2]. On 15 May 1973, National Bureau

of Standards (NBS) published a request for creation of a standard encryption algorithm.

On 27 August 1974, NBS again published an application for creation of a standard

encryption algorithm. The International Business Machines (IBM) along with the help of

National Security Agency (NSA) started creating an encryption algorithm. IBM modified

and improved Lucifer to create an encryption algorithm with the name Data Encryption

Standard. Therefore, Data Encryption Standard is a derivative of Lucifer cipher. On 17

Figure 2. Symmetric Cryptography [1, p. 2]

5

March 1975, DES published for the purpose of comment in the Federal Register.

Afterward, two workshops created the first in August 1976 and the second in September

1976 to discuss the mathematics used in DES, eventually become a US federal standard in

November 1976. Next year on 15 January 1977 DES was published as a Federal

Information Processing Standard (FIPS) is standard as FIPS PUB46 [3]. Federal

Information Processing Standard are the standards made by US federal government, and

they primarily used for computer security by US government contractors and agencies of

US government which are not related to US Army. DES was reasserted first in 1983, then

on 22 January 1988 as FIPS 46-1 and for the third time on 30 December 1993 as FIPS 46-

2. In the coming years, DES broken multiple times. A project named DESCHALL succeeded

in decrypting a text, which encrypted using DES publicly in June 1997. Later in July 1998,

deep cracker by EFF successful break a key of DES in 56 hours. In January 1999, deep

cracker along with a distributed network broke DES in 22 hours and 15 minutes. While

on 25 October 1999 DES was reasserted for the fourth time as FIPS 46-3 and declare that

Triple DES give preference over DES, but in the case of old systems the usage of simple

DES was allowed [3].

 Advanced Encryption Standard is known as AES published in Federal Information

Processing Standard's (FIPS) standard FIPS 197 on 29 November 2001. Use of Advanced

Encryption Standard (AES) started on 26 May 2002 effectively. As AES is much stronger

than DES and is broken on 26 July 2004, a proposal made in Federal Register of US that

DES FIPS 46-3 and removed from the Federal Register. Afterward, on 19 May 2005,

National Institute of Standards and Technology (NIST) withdrew DES FIPS 46-3 [3].

National Bureau of Standards (NBS)'s name changed multiple times in history. Last time

change in 1988 and it was as National Institute of Standards and Technology (NIST). In

April 2006, a parallel machine based on Field Programmable Gate Arrays (FPGA) named

COPACOBANA used to broke DES in almost nine days. In November 2008, another

machine named RIVYERA, which came after COPACOBANA had much better performance

in breaking DES and it broke DES in less than 24 hours [3]. Without any doubt, DES has

been a very famous and widely used encryption standard in the past now AES is replacing

it.

 Lucifer uses a 128-bit key, while the key size of DES is 64-bit. From the 64-bit the

8-bit used for parity check, the rest 56-bit is for encryption. The size of 56-bit is small, and

a brute force attacks can easily break DES algorithm. In the history of DES algorithm, the

S-boxes made under dark conditions. The community discusses that National Security

Agency made it in such way that they can keep a backdoor and can easily decrypt the data

of the algorithm. The IBM denied the involvement of NSA in the creation of DES, but still

today, it remains a controversy. United States Senate Select Committee on Intelligence,

publish an unclassified detail in 1971 that NSA assured IBM for smaller key size use in

DES was enough and the creation of S-boxes and further the finalize algorithm did not

contain any mathematical and statistical loophole that can break DES algorithm. The IBM

decide that a small key size for DES is appropriate for the commercial software. A

declassified book by NSA on the history of cryptologic stated that NBS in 1973 gathered

private companies for the creation of data encryption standard (DES). The initial offer was

6

not so good as a result, NSA start to work on their encryption algorithm. The book further

states that NSA's deputy director for research and engineering Howard Rosenblum found

that Walter Tuchman was modifying Lucifer. Howard Rosenblum then brought Walter

Tuchman to work with NSA for modifying Lucifer [8]. Thus, NSA starts working with IBM

closely to improve the cryptographic algorithm. NSA made an effort to convince IBM to

reduce the size of to 48 bit instead of 64 bit. In the end, both of them finalized 56 bit as the

key size[4].

2.1.2 DES Structure

The Data Encryption Standard (DES) have 16 rounds with four different modes, to encrypt

blocks individually or make each cipher block dependent on all the previous blocks. The

initial and final permutations are straight Permutation boxes (Tables 1-2) that are

inverses of each other. However, permutations they do not play any role for encryption

or decryption. Are included to facilitate loading blocks in and out of mid-1970s 8-bit based

hardware[5].

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Table 1. Initial permutation [6, p. 10]

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

Table 2. Inverse Initial Permutation [6, p. 10]

Table 1 shows the Initial Permutation and how can be applied to the 64-bit block input.

The first cell being in the table is the 58th bit of the input and the second cell is the 50th

7

bit of input. The structure of the Final Permutation is the equivalent as the Initial

Permutation, and the procedures are the same (Table 2).

Figure 3. Enciphering computation [6, p. 9]

The 64-bit block of DES divided into two 32-bit blocks the left and the right respectively.

The use of Feistel structure makes sure that both encryption and decryption are identical

to each other. The only difference between encryption and decryption in DES is that all

subkeys are in reverse order during the process of decryption. The symbol ⊕ is to show

exclusive OR operation gate (XOR).

The Feistel function can work on 32-bit data at one time, and the structure consists four

stages as follows:

1. Expansion

2. XOR with subkey

3. Substitution

4. Permutation

8

1-Expansion

An expansion permutation in “Table 3” is for expanding the 32-bit half block into 48-bit

and prepared the duplication of the half bits of the input. The output of the 48-bit consists

of 8 pieces where each piece contains 6-bit (8 * 6 = 48 bit). Out of this 6-bit, the 4-bit are

respective input bits while the remaining 2-bit are a copy of an adjacent bit of input pieces

present on either side.

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table 3. E BIT-Selection [6, p. 13]

2-XOR-with-subkey

There are sixteen rounds in DES algorithm, and for each round, uses a different subkey.

The subkeys produced from the actual key.

3-Substitution

Substitution takes place in the S-boxes “Table 4”, there are eight S-boxes in DES algorithm,

each one takes 6-bit as an input and provide 4-bit as an output. The S-boxes are a vital and

important part of DES security. The purpose of the S-boxes is to mix the cipher in such

way to not remain linear and be secured. The table shows the substitution of eight S-boxes

every table is different from the other.

S1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

01 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

10 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

11 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 4. Feistel Structure [7, p. 83]

9

00 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

01 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

10 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

11 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

01 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

10 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

11 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

01 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

11 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

01 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

10 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

01 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

10 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

11 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

01 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

10 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

10

11 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

01 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

10 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

11 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table 4. primitive functions S1,...,S8 [6, p. 17]

4-Permutation

The permutation, P-box reorganizes the 32-bit output that comes from the S-boxes in

Table 5. The permutation in P-boxes is designed in such a way that the 4-bit output of each

S-box will go to four different S-boxes in the next round.

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25
Table 5. Permutation of half block of 32 bit [6]

Subkey-generation-from-main-key

The main 54-bit key includes the 8-bit that are only for parity check. The remaining 56-

bit of the key are for the encryption or decryption of the data. The 56-bit use for permuted

choice 1 in Table 6 and is divided into two halves of 28-bit. In all rounds, the halves rotated

towards left by one or two bit. The rotation by one or two bit is different for each round

“Table 8”. A 48-bit subkey is by permuted choice to “Table 7”. The 24-bit is from the left

side, and the other 24-bit is from the right side. Different subkeys use for each round. The

subkeys apply in the reverse order between encryption and decryption.

Left Right

57 49 41 33 25 17 9 63 55 47 39 31 23 15

1 58 50 42 34 26 18 7 62 54 46 38 30 22

10 2 59 51 43 35 27 14 6 61 53 45 37 29

19 11 3 60 52 44 36 21 13 5 28 20 12 4

Table 6. Permuted Choice 1 [6]

11

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 7. Permuted Choice 2 [6]

Round

number

Number of

left rotations

1 1

2 1

3 2

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2

12 2

13 2

14 2

15 2

16 1

Table 8. Rotation in rounds [6]

2.2 Triple Data Encryption Standard (3DES)
The Triple DES in figure 5 is derived from the DES algorithm and use the same structure

as the simple DES. The difference is that in triple DES, the plaintext pass through the

encryption process with key-1 then go to the decryption process with key-2 and then

again pass for encryption with the key-3 for the final output. There are two types of Triple

DES the “2 Key Triple DES” and “3 Key Triple DES”. The “2-Key DES” contains two different

keys k1 and k2. The k1 is to begin to encrypt the data, and then the k2 decrypt the data,

and again k1 encrypt it back. The main key length for this process is 112-bit. The “3 Key

12

DES” contains three different keys k1, K2, and k3. In the beginning, the data encrypted with

k1 then k2 for decryption and the last process use k3 to encrypt the data. In this procedure,

the length of the main key is 168-bit.

3des use the DES three times to encrypt the data. The 3DES algorithm came out when

DES algorithm becomes weaker due to advanced technology. Triple DES ensure backward

compatibility with simple DES.

Figure 5. Triple DES

2.3 Advance Encryption Standard (AES)
The Advance Encryption Standard (AES) is a symmetric cryptography algorithm that uses

a single secret key to encrypt the data and with the same secret key decrypt it back

(figure6). AES is a secure method to communicate and transfer information by encrypting

and decrypting the data by transmitting files in two points different protocols like HTTPS,

FTPS, SFTP, WebDAVS, OFTP, the data can encrypt with AES algorithm.

Figure 6. Simplified Model of Symmetric Encryption [7, p. 33]

AES is a block cipher that encrypts and decrypts the data in blocks of 128-bit with the use
of cryptographic keys. The ciphers secret is the same key for encrypting and decrypting
situation, so both times must know and use the same secret key. DES use fiestel structure

13

while AES is using a substitution-permutation network. What the AES came from Square
block cipher is invented by Joan Daemen and Vincent Rijmen, it has a block length and key
length of 128 bits [8]. AES have three different key sizes 128 bit, 192 bit and 256 bit.
Moreover, depend on the key size; AES can have different rounds 10, 12 and 14
respectively.

Throw time DES algorithm became more vulnerable to brute force attacks because of the
small key size. It was time to create a new algorithm standard that can effectively replace
“Data Encryption Standard” (DES). National Institute of Standards and Technology (NIST)
start a process in 1997 to choose a new cryptographic algorithm that ended in 2000. On
2 January 1977, National Institute of Standards and Technology (NIST) announced the
new algorithm “Advance Encryption Standard” (AES), that it would replace the DES
algorithm. Along with a larger keyspace, AES had to be a 128-bit block cipher; that is,
process 128-bit blocks of plaintext input at a time. AES also had to support 128-, 192-, and
256-bit key settings and be more efficient than DES.[9, p. 140]. On June 15, 1998, twenty-
one algorithms submitted to NIST and after a review, NIST determined that 15 of these
meet the minimum acceptability requirements. To discuss these submissions, NIST held
a conference in August 1998 named as AES1. Different cryptographers gathered to focus
on 15 cryptographic algorithms to check them for security and analysis[10]. They review
each algorithm with a systematic evaluation of the factors of security, efficiency in speed
and memory usage, flexibility on low and high-end smart cards and other issues discussed
in public comments. Later during August 1999, NIST announced they had shortlisted five
algorithms from a list of fifteen algorithms. These five algorithms termed as “AES
finalists.” During second conference “AES2”, algorithms received votes.

No Algorithm
Name

Submitters of algorithm Positive
votes

 Negative
votes

1 Rijndael Joaen Daemen, Vincent Rijmen 86 10
2 Serpent Ross Anderson, Eli Biham, Lars

Knudsen
59 7

3 Twofish Bruse Schneier, John Kelsey,

Doug Whiting, David Wagner,

Chris Hall, Niels Ferguson

31 21

4 RC6 RSA Laboratories 23 37
5 MARS IBM 13 84

Table 9. "AES2" Algorithms with votes

On 2 October 2000, NIST announced that Rijndael block cipher selected as the Advance
Encryption Standard (AES) and initiated the process to make it an official standard by
publishing it in the Federal Register. Finally, the process completed on 26 November 2001
and AES approved as FIPS PUB 197. On 26 May 2002, AES became a standard of the US
federal government and got approval from the secretary of commerce. Also, AES included
in the ISO/IEC 18033-3 standard.

14

2.3.2 AES Structure

In “figure 7” shows the entire fabric of the AES encryption process. The cipher takes a

plaintext block size of 128 bits or 16 bytes. The key length can be 128-bit, 192-bit, or 256-

bit. Depends on the key size the algorithm can be as AES-128, AES-192, or AES-256.

Figure 7. AES Encryption Standard [7, p. 151]

The AES structure can separate into four sections “key expansion,” “add round key,”

“rounds” and the “final round.”

15

1-Key-Expansion

In the first Section is the Rijndael Key Expansion that generates around key for each round

plus one “16*(rounds + 1)”, each round key is a 128- bit block. For example, if the original

key is 128-bit then is equal to 16 bytes (8 bits = 1 byte) and can expand to “16*(rounds +

1)”. If there are “10 rounds” then “16*(10 + 1) = 16 *11 = 176-bytes”. Therefore, the cipher

key expanded to a size of 176-bytes. This expanded key can be broke down into a round

key for each round. Each Round key is added once at the start before the first round and

then at the end of each round.

2-Add-Round-key

AES algorithm works with a 4x4 matrix, each cell has bytes in it and calls it as a state. The

matrix has columns in a major order. Every cell of this matrix combines with a round key

block using bitwise XOR operation.

3-Rounds

Each round contains four steps “Substitute Bytes,” “Shift Rows,” “Mix Columns” and “Add

Round Key.”

Step 1: Substitute Bytes, every cell replaced with another cell using the Rijndael S-box

“Table 10”. Suppose is the hexadecimal “2E”, from the S-box the “2” goes to the y-axis, and

“E” to the x-axis and the hexadecimal substitution is value “31”. The S-box on “Table 10”

is for the process of encryption and the inverse S-box “Table 11” is for the process of

decryption.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

16

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
Table 10. Rijndael S-box

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de 39 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

A 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

B fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

C 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

D 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

E a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

F 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
Table 11. Rijndael inverse S-box

Step 2: Shift Rows, each row is a move to the left by n-1. The first row remains unchanged.

The second, third and fourth rows shifted towards to the left by 1, 2 and three times

respectively “figure 8”. This procedure happens when the key size is 128-bit or 192- bit.

When the key is 256-bit, the first row is untouched and the shifting for the second, third

and fourth row is a byte, 3 bytes, and 4 bytes respectively.

17

Figure 9. Round key

Figure 8. Shift Rows[11, p. 17]

Step 3: Mix Columns, every column from the state taken as a vector and multiply with a

specific polynomial. Mix column gets an input of four bytes and provides an output of four

bytes. The output replaces the input after multiplication in the state block. From this

multiplication, the four bytes in a column superseded by the following:

Step 4: Add Round Key, the 128-bit subkey or 128-bit round key that came with the main

key combined with the state using the XOR operation as in figure 9.

18

4- Final Round come with the three steps substitute bytes, shift rows and add round key,

for decryption, the last operation would be the first as in “Figure 10”.

Figure 10. AES Encryption / Decryption

AES is a great secure algorithm, and the keys have a huge amount of possible

combinations and are tough and difficult to break with a brute-force attack. The possible

combinations for the 128-bit key are 3.4*1038, for the 192-bit key is 6.2*1057 and for the

256-bit key is 1.1*1077.

2.4 Rivest Cipher 2 (RC2)
The RC2 is a symmetric block cipher designed by Ron Rivest for RSA Data Security in

1989. Initially held as a confidential and proprietary algorithm, RC2 published as an

Internet Draft during 1997. An important feature of RC2 is the flexibility offered to the

user regarding the effective key size. Now, this feature becomes common in many block

cipher proposals and it is a property that has proven to be important in commercial

applications. Over the years, RC2 has very common, and it features prominently in the

S/MIME secure messaging standard [12]. The RC2 cipher has a block size of 64- bit. The

variable key size length comes from 8-bits up to 128-bits. The flexibility of the RC2 cipher

can use it in many commercial applications.

2.4.1 History of Rivest Cipher 2

Ron Rivest was one of the co-founders of RSA. He initially created RC1, but he never

published it, after a long research, he designed Rivest Cipher 2 (RC2) with a name ARC2.

The design finish in 1987, the Lotus Software sponsored the project, and they include it

in their software LotusNotes. After that, the National Security Agency (NSA) evaluate the

cipher, and they provide suggestions for improvement. During 1988, Ron Rivest wrote an

RFC (Request for Comments) document on RC2. In 1989, finally, RC2 approved for

19

publishing it. In the establishment all the details of RC2 block cipher were secret. In 1996,

RC2 source code leaked through Usenet. RC2 designed as a proposal to replace DES

algorithm. The structure of RC2 it is so simple that can implement it on 16-bit

microprocessors without any crash. The main purpose of the design of RC2 is to optimized

for 16-bit microprocessors. The IBM AT machine can run RC2 algorithm two times faster

than DES algorithm provided the same key[12].

3.3.2 RC2 Structure

The rc2 algorithm operates on 64-bit blocks and the blocks divided in four words where

each word is sixteen bits. One byte is equal to 8-bit, and a word is 16-bit or two bytes. RC2

is an iterated block cipher, and the secret key is utilized to transform a plaintext into a

ciphertext through a mixing and a mashing rounds. The mixing rounds in RC2 are sixteen

while mashing rounds are only two. The main key is constructing a 64 -sub-keys, and in

every mixing round, it uses a 16-bit subkey.

In the explanation of RC2 given below there are different symbols for example “+” symbol

stands for twos complement addition, the “&” symbol stands for bitwise “and” operation,

the “~” symbol means bitwise supplement and the “^” symbol stands for exponentiation

operation. The “XOR” means bitwise “exclusive-or” operation and the “MOD” means

modulo operation[12].

The RC2 algorithm separate into three different parts:

1-Key-expansion, the algorithm have two different types of operations, the byte

operations, and the word operations on the key buffer. For better identification to the

explanation, the letter “K” is for word, and the letter “L” is for the byte operation. The

relationship between the word and byte operation is “K[i] = L[2*i] + 256*L[2*i+1]”. The

byte of a lower order of every K word is present before the higher order byte. Let us

assume that a key has a “T” bytes and is in the range of T 1 to 128. For example T=8. The

maximum effective key length in bits denoted T1. In this way, the smaller from 2^(8*T)

or 2^T1 will consider as key space. The main task of key expansion is to change the key

buffer in such a way that every bit of the expanded key is dependent in a complex manner

on each and every bit of key which provided as an input.

First the key expansion algorithm the provide Tbytes of a key and are place in the form of

bytes from L[0] to L[T-1] in the key buffer. The calculation effective key length is T8 in

Figure 11. RC2 Diagram

20

bytes “T8 = (T1+7)/8”. A mask TM calculates the effective key length in bits T1 “TM = 255

MOD 2^(8 + T1 - 8*T8)” TM have 8 - (8*T8 - T1) least significant bits set.

For example, if there is an effective key length of 64 bits then T1 = 64, T8 = 8 and TM =

0xff. With an effective key length of 63 bits, T1 = 63, T8 = 8 and TM = 0x7f.

From PITABLE[0] to PITABLE[255] is an array of random bytes which based on the digits

of PI = 22/7 = 3.14159. The array “PITABLE” is made by randomly permuting values from

0 to 255. The “PITABLE” array in hexadecimal notation as in Table 12.

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00 d9 78 f9 c4 19 dd b5 ed 28 e9 fd 79 4a a0 d8 9d

10 c6 7e 37 83 2b 76 53 8e 62 4c 64 88 44 8b fb a2

20 17 9a 59 f5 87 b3 4f 13 61 45 6d 8d 09 81 7d 32

30 bd 8f 40 eb 86 b7 7b 0b f0 95 21 22 5c 6b 4e 82

40 54 d6 65 93 ce 60 b2 1c 73 56 c0 14 a7 8c f1 dc

50 12 75 ca 1f 3b be e4 d1 42 3d d4 30 a3 3c b6 26

60 6f bf 0e da 46 69 07 57 27 f2 1d 9b bc 94 43 03

70 f8 11 c7 f6 90 ef 3e e7 06 c3 d5 2f c8 66 1e d7

80 08 e8 ea de 80 52 ee f7 84 aa 72 ac 35 4d 6a 2a

90 96 1a d2 71 5a 15 49 74 4b 9f d0 5e 04 18 a4 ec

a0 c2 e0 41 6e 0f 51 cb cc 24 91 af 50 a1 f4 70 39

b0 99 7c 3a 85 23 b8 b4 7a fc 02 36 5b 25 55 97 31

c0 2d 5d fa 98 e3 8a 92 ae 05 df 29 10 67 6c ba c9

d0 d3 00 e6 cf e1 9e a8 2c 63 16 01 3f 58 e2 89 a9

e0 0d 38 34 1b ab 33 ff b0 bb 48 0c 5f b9 b1 cd 2e

f0 c5 f3 db 47 e5 a5 9c 77 0a a6 20 68 fe 7f c1 ad

Table 12.”PITABLE” array [12]

 The key expansion operation contains two loops and an intermediate step,

for i = T, T+1, ..., 127 do

L[i] = PITABLE[L[i-1] + L[i-T]];

L[128-T8] = PITABLE[L[128-T8] & TM];

 for i = 127-T8, ..., 0 do

L[i] = PITABLE[L[i+1] XOR L[i+T8]];

The valid key has values from L[128-T8] to L[127]. The intermediate step has bitwise

"and" operation that decreases the search space for L[128-T8], this way the sufficient

number of key bits is T1. The expand key depends entirely upon effective key bits,

irrespective of the provided key K. As the expand key does not change during both

21

encryption or decryption, as a result, can expand the key only one time during encrypting

or decrypting a big block of data [13].

2-Encryption-Algorithm comprises of mixing and mashing operations. If there is a word

“x” then “x rol k” means that a 16-bit word has rotated towards left by k-bits, while those

bits that have been shifted outside from the upper end will enter from the bottom end[13].

The mixing operation can describe like, s[0] is 1, s[1] is 2, s[2] is 3, s[3] is 5, this index the

array “R” that use as MOD 4. The “R” will always have a subscript from 0 to 3.

R[i] = R[i] + K[j] + (R[i-1] & R[i-2]) + ((~R[i-1]) & R[i-3]);

j = j + 1;

R[i] = R[i] rol s[i];

and the operations are Mix R[0], Mix R[1], Mix R[2], Mix R[3]

The Mashing operation have the mathematical operation R[i] = R[i] + K[R[i-1] & 63];

and the operations are Mash R[0], Mash R[1], Mash R[2], Mash R[3].

Steps of encryption operation

1. Words R[0], R[1], R[2] and R[3] Initialize by 64 bit input value.

2. Key expanded so that all words from K[0] to K[63] are defined.

3. J initialized by zero (j is a global variable of type integer, have effect only by mixing

operation).

4. Mixing rounds perform five times.

5. Mashing round do one time.

6. Mixing rounds perform six times.

7. Mashing round do one time.

8. Mixing rounds perform five times.

3-Decryption-Algorithm can perform by reversing the mix and mash operations. The r-

mix and r-mash use the “r” symbol to the reverse operations. For example is the word “x”

then “x ror k” means that a 16-bit word rotates towards the right by k bits, while the bits

are shifted outside from the bottom end will enter from the upper end.[13]

The Remixing round can perform with

R[i] = R[i] ror s[i];

R[i] = R[i] - K[j] - (R[i-1] & R[i-2]) - ((~R[i-1]) & R[i-3]);

j = j - 1;

and the operations are Mix R[3], Mix R[2], Mix R[1], Mix R[0]

The Mashing operation have the mathematical operation R[i] = R[i] + K[R[i-1] & 63];

and the operations are Mash R[3], Mash R[2], Mash R[1], Mash R[0].

Steps of decryption operation

22

1. Words R[0], R[1], R[2] and R[3] are Initialize by 64-bit ciphertext.

2. The key expands so that all words from K[0] to K[63] are defined.

3. J initialized by 63 (j is a global variable of type integer, it is effected only by mixing

operation).

4. Reverse mixing rounds for five times.

5. Reverse mashing round for one time.

6. Reverse mixing rounds for six times.

7. Reverse mashing round for one time.

8. Reverse mixing rounds for five times.

2.5 Algorithm Modes
Block ciphers operate on blocks, and each block of plaintext is independent and is used to

produce a ciphertext block of equal length. Typically, a block size is 64bit or 128bit, and

an algorithm mode usually combines the basic cipher and simple operations. Transactions

are simple because the security is a function of the underlying cipher and not the mode

[5].

2.5.1 Electronic Codebook (ECB)

Electronic codebook (ECB) is the simplest encryption mode. A block of plaintext encrypts

into a block of ciphertext straight forward. The specific block of plaintext always encrypts

to the specific block of ciphertext. The encryption or decryption can do in parallel. The

same blocks encrypt to identical blocks and though this cannot provide confidentiality to

the data.

Figure 12. ECB Mode

23

2.5.2 Cipher Block Chaining (CBC)

On Cipher Block Chaining, the blocks are XOR from the previous block so depends on the

previous one in the encryption. As shown in figure 13, every ciphertext block relies on all

the plaintext blocks, prepared all the period of time. The initialization vector (IV) is to

protect and prevents the reveal of the fist block that might give some useful information.

Because each block depends on the previous one cannot support parallelizable

encryption.

Figure 13. CBC Mode

2.5.3 Output Feedback (OFB)

The Output Feedback (OFB) mode makes a block cipher into a synchronous stream cipher.

The encryption and decryption are the same because of the symmetry of the XOR

operation. Then initialization vector (IV) is XOR with the plaintext, it generates the

keystream block and with the key produce the cipher text. Each block operation depends

from the previous blocks and cannot perform parallel encryption.

24

Figure 14. OFB Mode

2.5.4 Cipher Feedback (CFB)

The Cipher Feedback (CFB) mode is essentially like CBC mode, but it makes a block cipher

into a self-synchronizing stream. The advantage of that is cipher is when a part of the

ciphertext is lost is capable of continuing the decryption. This operation mode is

associated to CBC and CFB decryption and is almost the same as CBC encryption but in

reverse mode. Moreover, the Cipher Feedback has the problem of propagating; if an

error occurs on a single bit, then all the procedure is completely corrupted.

Figure 15.f CFB Mode

25

2.5.5 Ciphertext Stealing (CTS)

The Ciphertext stealing (CTS) is a cipher method that is encrypting and decrypting a

plaintext to a block cipher, without expanding the message to a multiple of the block size.

With CTS the ciphertext is the identical size as the data input the plaintext. The last

incomplete block of the encryption can be filled in some reversible way and encrypted.

For example, the reversible padding is appending a single one followed by zeroes until the

length is a multiple of the block length. This padding operation results in a cryptogram

that is longer than the message and can give storage or bandwidth problems if many

relatively short messages must encrypt.

Figure 16. CTS Mode

26

Chapter 3
Algorithm Benchmark

A benchmark is a process of running a computer program tool, to measure a specific

performance of an object and compare the results with the different past tests or different

tools. Normally the common benchmark tests have to do with the comparison of the

period and operations over time. The benchmark results have the characteristics of the

hardware and operating system of the computer. To perform a benchmark testing have

to perform on the same environment parameters and under the same conditions to have

valid results. For the maximum proper results, the tests should be repeatable, other

applications need to deactivated except the require processes, and the software

/hardware components must be the same environment and conditions.

3.1 Simulation Implementation
The main objectives are to analyze and investigate the performance of different

cryptographic algorithms over a different kind of data and hardware processors. The goal

is to compare the measurements of the encryption and decryption processing time for

each algorithm with the same data, hardware and “Cipher Mode.” Processing time is the

time that indicates the speed that takes an algorithm to complete the procedure of

encrypting of decrypt. The simulation of the cryptographic algorithms designed under the

dot net Framework.

3.1.1 Benchmark Program Development

The dot net Framework is a software framework developed by Microsoft and runs under

Windows operating system. The program developed under the latest Microsoft

Framework 4 supports parallel programming and enable multiple threads to be executed

simultaneously[14]. The simulation benchmark drawn up with the programming

language C sharp and the graphic interface system is a rendering with Windows

Presentation Foundation (WPF). The cryptography model designed through the

CryptoStream class, which derives from the Stream class and all this give the feature to

add a hardware and software implementations [14].

Table 13. Algorithms supported by.NET

Algorithms Type Block Bits
RC2 Block 64
DES Block 64

3-DES Block 64
AES Block 128

27

The structure design of the benchmark program comes down to three top parts as it

shows to the figure 17 bellow. The user graphic interface, the algorithms classes and the

“binding elements” that connect the two most important parts.

Figure 17. Benchmark Solution Structure

1. The GUI is a rendering user interface on Windows Presentation Foundation base

on XML language for a standalone desktop program.

Figure 18. WPF Benchmark GUI

28

2. The second part of the program are the algorithms, and each one is a different Class

with specific functions. The main public function for each class is the contractor

that initialize the values of the algorithm (key, IV, cipher mode, key size, filename,

progress bar, encryption, decryption mode, export folder). The background

worker with a start the task of a specific process and call the private functions to

encrypt or decrypt. Parallel with a background worker a stopwatch is running to

calculate the time it takes to complete a task. The stopwatch starts from the time

that a process starts on the input data. The private function for the Key size,

Initialization Vector executed with the contractor.

Figure 19. Benchmark AES Class

3. The binding element is a process that establishes the connection between the WPF

graphic interface and the class functions of the algorithms. The binding has the

data settings and provides the proper notifications when the data changes, the

elements that are bound to the data reflect back automatically.

29

Figure 20.Benchmark Binding Elements

3.1.2 Algorithms Private Functions

-The-password-key-size

The key length is a critical security parameter that use to control the operation of the

cipher. For each algorithm is a different level of cryptographic complexity and usual have

different key sizes depend on the security level. The simulation generates keys from the

string password and the user. Each letter on UTF8 (character encoding) code is equal with

8-bits, most of the times the password that a user enters is smaller than or greater that

the key size. To get the correct key length each algorithm has to do a process to convert

the password to the right size.

Letter UTF-8 Binary
A U+0041 01000001
B U+0042 01000010
C U+0043 01000011
D U+0044 01000100

Table 14. UTF-8 encoding table and Unicode characters

30

-DES-key-function

The password string key enters the function, checks if is null and after that goes to the

next statement and test the size. The DES algorithm has 64-bits (8+ parity bits) so if the

string is bigger than the key cut down to the correct size. If the text is less than the key, a

“0” bits are added to make the right size key.

Figure 21. DES key Function Simulation

-3DES-key-function

3DES have two types of key size length the 128-bits and 196-bits. The user can choose the

size length from the user interface, and the 3DES key function computes the key. To

calculate the key size the integer converts from bits to bytes length. If the size is 192-bits

then is equal to the fist statement of the function, and the length becomes to 24-bytes. If

the key is 128-bit then stays to the initial state of 16-bytes. Then if the text is more than

the key is round up to the specific size, from the other side if the text is less than the text

a 0-bits added to the end.

Figure 22. 3DES key Function Simulation

31

-AES-key-function

The AES algorithm comes with three types of the main length 128-bits, 192-bits, 256-bits

the same with the rest function algorithms depend on the size from the input of the user.

The size integer is divided with eight to convert it to bytes. After that, a statement checks

the specific key length and is less or more than the size and add or remove the key.

Figure 23.AES Function key Simulation

-RC2-key-function

The RC2 algorithm supports key lengths from 40-bits to 1024-bits in increments of 8-bits.

If the key size is smaller than 40-bits, the procedure cannot continue, and the key return

to the function as it is. If the size is greater than 40-bits, then go to the next function and

compares the key length with the size. For example, the key size is larger; then letters

have to remove the password to get the correct size. From the other side if the key is less

than the size then 0-bits round up the key length to the right.

32

-Benchmark-Initialization-Vector-(IV)

Each symmetric algorithm has an initialization vector (IV) and is a binary number that

uses at the beginning of the session of the encryption. The initialization vector is not

necessary for the encryption but is more vulnerable to dictionary attacks. The

initialization vector size depends on the block size of the algorithm. The block size of the

algorithms is eight times bigger than the Initialization Vector. The AES algorithm has 16-

bits initialization vector, and the rest benchmark algorithms have 8-bits. The program

function takes the key password and checks the length, for example, is 3DES the key must

be 8-bit and add or subtract to complete the 8-bits. Each bit represents a letter from the

key and completes the initialization vector.

Figure 24. AES Initialization Vector

Figure 25. 3DES Initialization Vector

33

3.1.3 User Graphic Interface

The Simulation Algorithm Benchmark contains three main taps the Encrypt tap, the

Decrypt tap and the Chart Results tap. For the Encryption/Decryption tap, can browse the

input file, enter the password key and choose the Cipher Mode. Can encrypt or decrypt

each symmetric algorithm by selecting the key size and start the process. Afterward, a

process complete and get the exact encryption or decryption time. The last tap is the Chart

Results that compares the cryptographic algorithms through time is a single graph.

Figure 26. Algorithm Benchmark Simulation

The data encrypted file save to a specific folder with the same name as the input file and

the encryption type. Can choose and select the specific folder for the main menu “Export

Folder.”

Figure 27. Benchmark "Export Folder."

34

The user has to choose the correct file name from the specific export folder before the

encryption process. To have a successful decryption, have to choose the right algorithm,

password, cipher mode and the right key size. At the end of each encrypted file name, can

find the encryption type. For example, “figure 28” show the file that encrypted with DES

algorithm you can recognize the name “DesEncrypted.”

Figure 28. Algorithm Decryption Benchmark

When the process complete, the benchmark program has all the time results. The last tap

is the “Chart Results” you can check the results for all the algorithms briefly and compare

them. The graph compares the algorithms base the time that takes to encrypt and decrypt

on the same file and system. The Chart Results can export to an image with the “Export

Chart” button on the main menu.

35

Figure 29. Algorithm Benchmark Chart Results

36

Chapter 4
Benchmark Results

The goal of this project is to measure the processing time of each algorithm for encryption

and decryption on a different files and systems. A time watch counter runs parallel with

the procedure to calculate the progress time. The calculation speed of the algorithm is the

data file divide by the total time that takes the particular procedure to finish. All the

experiments for the synchronous cryptographic algorithms are under Windows interface

with dot net framework. For the experiments, we use the data files as shown in Tables 15,

16, 17 bellows.

File Data Sample 1

Filename Sample1.jpg
Size 3299 Kbyte
Type Image
Dimensions 5760 * 3840 pixels

Table 15. Data Sample 1 Details

File Data Sample 2

Filename Sample2.jpg
Size 2886 Kbyte
Type Image
Dimensions 5760 * 3840 pixels

Table 16. Data Sample 2 Details

File Data Sample 3

Filename ISAW0022.MP4
Size 617717 Kbyte
Type Video
Dimensions 1920 * 1080 pixels
Frame rate 60 frames/second

Table 17. Data Sample 3 Details

File Data Sample 4
Filename ISAW0506.MP4
Size 110902 Kbyte
Type Video
Dimensions 1920 * 1080 pixels
Frame rate 60 frames/second

Table 18. Data Sample 4 Details

37

Benchmark User Password
Algorithms Key Size (bits) Key password
DES 64 sample
3DES 128 sampleimage00000
AES 128 sampleimage00000
RC2 128 sampleimage00000

Table 19. Password key size

4.1 Dual Core Experiment
The first experiment was under Intel Dual-Core laptop with a combination of all

encryption and decryption algorithms with a different size range of files. The benchmark

process a different type of photos around 3-5 Mbytes and a video files format from 100MB

up to 620MB with the same key. For every example, the benchmark program runs several

times to get the most accurate results for every example, and every cipher mode try.

Hardware components:

• Mainboard: R700-X.AP12HS

• Central Processing Unit (CPU): Intel(R) Core(TM)2 Duo CPU T8300

• Physical Memory 4GB

• Hard Disk: Corsair Force LS SSD ATA Device (111.8GB)

CPU Performance T8300
Cores 2
Processor Base Frequency 2.40 GHz
Cache 3 MB L2
Bus Speed 800 MHz FSB
FSB Parity No
Thermal Design Power (TDP) 35W
VID Voltage Range 1.000V-1.250V

Table 20. Performance Intel® Core™2 Duo Processor T8300

4.1.1 Benchmark Cipher Mode ECB

The first examination of the experiment was with the simplest ECB cipher with the

minimum key length of 128bit and 64bit for the DES (max length key). Four different file

size takes place to the experiment. From the first results as shown on figures below the

AES algorithm is the faster one, the RC2 algorithm is a second more quickly and is the only

one that in the most cases the decryption is quicker than the encryption. The 3DES

algorithm is almost the same results with the DES algorithm.

38

Sample 1

Benchmark Encryption ECB Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.284 11616K 12M

3DES 0.247 13356K 13M

AES 0.103 32029K 32M

RC2 0.308 10711K 11M
Table 21.ECB Dual Core encryption Sample1

Benchmark Decryption ECB Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.366 9014K 9M

3DES 0.447 7380K 7M

AES 0.136 24257K 24M

RC2 0.212 15561K 16M
Table 22. ECB Dual Core decryption Sample1

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 3299 Kbyte. DES algorithm encryption is slightly faster than

decryption also 3DES remain to the same structure but is gently slower in encryption and

slightly slower in decryption. The AES is significantly quicker from the other algorithms

with a bit difference between encryption/decryption. The RC2 is the second faster

algorithm and decryption is swifter than encryption. In this sample, the 3DES algorithm

is not 3 times faster than DES because the file disassemble in a two smaller buffer size of

2000KB and 1299KB in a parallel process. The encryption is not the same with decryption

because the results are in a real situation and the environment of the system change due

to the different address array pointer.

Figure 30. ECB Dual Core Sample1 Chart

39

Sample 2

Benchmark Encryption ECB Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.232 12440K 12M

3DES 0.213 13549K 14M

AES 0.059 48915K 49M

RC2 0.153 18863K 19M
Table 23. ECB Dual Core encryption Sample2

Benchmark Decryption ECB Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.233 12386K 12M

3DES 0.290 9952K 10M

AES 0.099 29152K 29M

RC2 0.130 22200K 22M
Table 24. ECB Dual Core Decryption Sample2

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 2886 Kbyte. DES algorithm remained the same between

encryption and decryption from the other hand 3DES decryption significantly increases.

The AES is steeply quicker from the other algorithms with a moderately difference

between encryption/decryption. The RC2 is the second faster algorithm with the

encryption bit slower than decryption. This sample is the smaller file from the

experiments and again the data buffer size separate into two pieces of 2000KB and 886KB

and the parallel process gives close results to the DES and 3DES.

Figure 31. ECB Dual Core Sample2 Chart

40

Sample 3

Benchmark Encryption ECB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 72.295 8544K 9M

3DES 76.715 8052K 8M
AES 18.335 33691K 34M
RC2 55.282 11174K 11M

Table 25. ECB Dual Core encryption Sample3

Benchmark Decryption ECB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 78.635 7855K 8M

3DES 77.665 7954K 8M
AES 25.705 24031K 24M
RC2 48.423 12757K 13M

Table 26. ECB Dual Core decryption Sample3

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 617717 Kbyte. Both DES, 3DES algorithms stabilized to the

same levels of encryption and decryption. The AES is steeply quicker from the other

algorithms with a moderately difference between encryption/decryption. The RC2 is

again the second faster algorithm with the encryption slightly delayed in a relation of the

decryption.

Figure 32. ECB Dual Core Sample3 Chart

41

Sample 4

Benchmark Encryption ECB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 11.889 9328K 9M

3DES 11.787 9409K 9M

AES 2.965 37404K 37M

RC2 8.773 12641K 13M
Table 27. ECB Dual Core encryption Sample4

Benchmark Decryption ECB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 13.027 8513K 9M

3DES 15.275 7260K 7M

AES 4.636 23922K 24M

RC2 9.162 12105K 12M
Table 28. ECB Dual Core decryption Sample4

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 110902 Kbyte. Both DES, 3DES algorithms stabilized to the

same levels of encryption the 3DES is slightly slower on decryption. The AES the faster

algorithm with little slower on decryption. The RC2 is a faster algorithm with almost to

the same encryption and decryption. The two big files of sample 3, 4 can easy understand

the fast algorithm with parallel threads. The encryption and decryption are close in all the

algorithms but the decryption is slightly slower than the encryption direction due to

asymmetries in the key schedule.

Figure 33. ECB Dual Core Sample4 Chart

42

4.1.2 Benchmark Cipher Mode CBC

The second try of the benchmark program is with the CBC mode of operation that uses a

XOR gate with the previous ciphertext. Again, on this mode, AES is the faster then RC2

comes second, and DES with 3DES are almost the same.

Sample 1

Benchmark Encryption CBC Sample 1 (Size:3299 Kbyte)

Type Time (seconds) Speed (byte/second)

DES 0.236 13979K 14M
3DES 0.253 13040K 13M
AES 0.057 57877K 58M

RC2(64,128) 0.177/0.205 18638K/16092K 19M/16M
Table 29. . CBC Dual Core encryption Sample1

Benchmark Decryption CBC Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.277 11910K 12M

3DES 0.320 10309K 10M
AES 0.073 45192K 45M

RC2(64,128) 0.138/0.206 23906K/16014K 24M/16M
Table 30. CBC Dual Core decryption Sample1

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 3299 Kbyte. DES algorithm encryption is slightly faster than

encryption the 3DES is different in encryption/decryption structure but is gently slower.

The AES is significantly quicker from the other algorithms with a bit difference between

encryption/decryption. The RC2 is a fast algorithm and decryption is swifter than

encryption.

43

Figure 34. CBC Dual Core Sample1 Chart

Sample 2

Benchmark Encryption CBC Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.200 14430K 14M

3DES 0.433 6665K 7M

AES 0.069 41826K 42M

RC2(64/128) 0.159/0.166 18151K/17385K 18M/17M
Table 31. CBC Dual Core encryption Sample2

Benchmark Decryption CBC Sample 2 (Size: 2886 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.273 10571K 11M

3DES 0.377 7655K 8M

AES 0.078 37000K 37M

RC2(64/128) 0.132/0.157 21864K/18382K 22M/18M
Table 32.CBC Dual Core decryption Sample2

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 2886 Kbyte. DES algorithm encryption is faster than

decryption the 3DES algorithm is slower with gently slower in encryption and slightly

slower in decryption. The AES is significantly quicker from the other algorithms and

almost the same encryption/decryption. The RC2 is the second faster algorithm and

decryption is swifter than encryption.

44

Figure 35. CBC Dual Core Sample2 Chart

Sample 3

Benchmark Encryption CBC Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 70.551 8756K 9M

3DES 65.903 9373K 9M

AES 17.921 34469K 34M

RC2(64/128) 53.104/54.345 11632K/11366k 12M/11M
Table 33. CBC Dual Core encryption Sample3

Benchmark Decryption CBC Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 87.653 7047K 7M

3DES 93.131 6633K 7M

AES 25.666 24068K 24M

RC2(64/128) 52.574/53.567 11749K/11531 12M/11M
Table 34. CBC Dual Core decryption Sample3

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 617717 Kbyte. DES algorithm encryption is quicker than

decryption the 3DES is almost the same result than the DES. The AES is a fast algorithm

with a bit faster on encryption. The RC2 is the second faster algorithm and decryption is

the same with encryption.

45

Figure 36. CBC Dual Core Sample3 Chart

Sample 4

Benchmark Encryption CBC Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 13.444 8249K 8M

3DES 14.026 7907K 8M

AES 3.608 30738K 31M

RC2(64/128) 9.158/10.086 12110K/10995K 12M/11M
Table 35. CBC Dual Core encryption Sample4

Benchmark Decryption CBC Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 15.088 7350K 7M

3DES 15.372 7215K 7M

AES 4.195 26437K 26M

RC2(64/128) 9.595/9.765 11558K/11357K 12M/11M
Table 36. CBC Dual Core decryption Sample4

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 110902 Kbyte. Both DES, 3DES algorithms stabilized to the

same levels of encryption the 3DES is on the same results as DES. The AES the faster

algorithm with little slower on decryption. The RC2 is a faster algorithm with bit faster on

encryption.

46

Figure 37. CBC Dual Core Sample4 Chart

4.1.3 Benchmark Cipher Mode CFB

The last investigation is the most complex cipher mode than the two previous tests. In this

trial, the algorithms are slower than the others, but the algorithms stay in the same order

as the previous trials.

Sample1

Benchmark Encryption CFB Sample 1 (Size:3299 Kbyte)

Type Time (seconds) Speed (byte/second)

DES 19.44 170K 0.170M
3DES 19.51 169K 0.169M
AES 0.668 4939K 5M
RC2 15.06 219K 0.219M

Table 37. CFB Dual Core encryption Sample1

Benchmark Decryption CFB Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 22.26 148K 0.148M

3DES 20.18 163K 0.163M
AES 0.729 4525K 5M
RC2 18.17 182K 0.182M

Table 38. CFB Dual Core decryption Sample1

47

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 3299 Kbyte. DES algorithm encryption is faster than

encryption; the 3DES remain to the same levels but is gently slower in decryption and

slightly faster in encryption. The AES is a fast algorithm with a bit difference between

encryption/decryption. The RC2 is slow in this cipher mode and decryption is slower than

encryption.

Figure 38. CFB Dual Core Sample1 Chart

Sample2

Benchmark Encryption CFB Sample 2 (Size: 2886 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 22.98 126K 0.126M

3DES 19.67 147K 0.147M

AES 0.644 4481K 4.000M

RC2(64/128) 15.22 190K 0.190M
Table 39. CFB Dual Core encryption Sample2

Benchmark Decryption CFB Sample 2 (Size: 2886 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 21.51 134K 0.134M

3DES 16.74 172K 0.172M

AES 0.623 4632K 5.000M

RC2(64/128) 14.59 198K 0.198M
Table 40. CFB Dual Core decryption Sample2

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 2886 Kbyte. DES is slower than 3DES both are slightly

slower on encryption. The AES the faster algorithm with both encryption/decryption on

the same level. The RC2 is gently faster algorithm than DES and 3DES.

48

Figure 39. CFB Dual Core Sample2 Chart

Sample3

Benchmark Encryption CFB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 507.162 1218K 1M

3DES 503.173 1228K 1M

AES 162.909 3792K 4M

RC2(64/128) 366.225 1687K 2M
Table 41. CFB Dual Core encryption Sample3

Benchmark Decryption CFB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 498.887 1238K 1M

3DES 619.583 997K 1M

AES 210.466 2935K 3M

RC2(64/128) 431.247 1432K 1M
Figure 40. CFB Dual Core decryption Sample3

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 617717 Kbyte. DES remain the same, as 3DES but the

decryption is slower. The AES is the faster algorithm with encryption step faster. The RC2

is gently faster algorithm than DES and 3DES.

49

Figure 41. CFB Dual Core Sample3 Chart

Sample 4

Benchmark Encryption CFB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 89.863 1234K 1M

3DES 95.540 1161K 1M

AES 29.477 3762K 4M

RC2(64/128) 68.834 1611K 2M
Table 42. CFB Dual Core encryption Sample4

Benchmark Decryption CFB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 90.934 1220K 1M

3DES 92.917 1194K 1M

AES 30.615 3622K 4M

RC2(64/128) 66.048 1679K 2M
Figure 42. CFB Dual Core decryption Sample4

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 110902 Kbyte. Both DES, 3DES algorithms stabilized to the

same levels of encryption the 3DES is slightly slower on encryption. The AES the faster

50

algorithm with little slower on decryption. The RC2 is a faster algorithm with a little bit

slower to encryption.

Figure 43. CFB Dual Core Sample4 Chart

4.1.4 Dual Core Benchmark Overview

A summary of the previous results is easier to identify that AES is a fast algorithm. The

ECB mode of operation is the simpler one the AES algorithm process the data faster in CBC

mode. The rest of the algorithms compare them from ECB versus CBC mode is not a big

difference between those two cipher modes. The ECB is a basic operation but is faster than

the others for the reason that same block repeats it will result the same ciphertext. The

CFB mode very slow compares the other ones the process speed reduce dramatically. An

important performance parameter is the memory utilization, the file size increases

memory size is drastically increased in AES means for extra-large files, it need a system

with good memory and more CPU.

51

Average Algorithms Speed ECB Mode

Algorithm Encryption Speed bytes/second Decryption Speed bytes/second

DES 10482K 10M 9442K 9M

3DES 11091.5K 11M 8136.5K 8M

AES 38009.75K 30M 25340.5K 25M

RC2 13347.25K 13M 15655.75K 15M
Table 43. Overview Speed ECB Mode

Average Algorithms Speed CBC Mode

Algorithm Encryption Speed bytes/second Decryption Speed bytes/second

DES 11354K 11M 9220K 9M

3DES 9246K 9M 7953K 8M

AES 41228K 41M 33174K 33M

RC2(64/128) 15133K/99407K 15M/10M 17269K/14321K 17M/14M
Table 44. Overview Speed CBC Mode

Average Algorithms Speed CFB Mode

Algorithm Encryption Speed bytes/second Decryption Speed bytes/second

DES 687K 0.687M 685K 0.685M

3DES 676K 0.676M 632K 0.632M

AES 4244K 4M 3929K 4M

RC2 927K 0.927M 873K 0.873M
Table 45. Overview Speed CFB Mode

The figures below show the progress of each algorithm as the data file increase in the

different benchmark scenarios. In the first ECB scenario, the two algorithms AES, RC2

have a starting point in a high peak and immediately after the size increases the speed

decreases vertically. The CBC mode is slightly different the algorithms elevated in a minor

and reduced but is more stable until the end. The last mode is CFB and is the slower one,

and even here the AES start from high to low but with not a big difference. The latency for

individual tasks is slow in cryptographic contexts CFB mode requires the complete

processing for each block before the next can be processed.[15, p. 392]

52

Figure 44. Encryption Speed ECB (CPU Dual core)

Figure 45. Decryption Speed ECB (CPU Dual core)

0

10000

20000

30000

40000

50000

60000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Encryption ECB (CPU Dual Core)

DES 3DES AES RC2

0

10000

20000

30000

40000

50000

60000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Decryption ECB (CPU Dual Core)

DES 3DES AES RC2

53

Figure 46. Encryption Speed CBC (CPU Dual core)

Figure 47. Decryption Speed CBC (CPU Dual core)

0

10000

20000

30000

40000

50000

60000

70000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Encryption CBC (CPU Dual Core)

DES 3DES AES RC2(KEY 64BIT) RC2(KEY 128BIT)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Decryption CBC (CPU Dual Core)

DES 3DES AES RC2 (KEY64) RC2 (KEY128BIT)

54

Figure 48. Encryption Speed CFB (CPU Dual core)

Figure 49. Decryption Speed CFB (CPU Dual core)

0

1000

2000

3000

4000

5000

6000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Encryption CFB (Cpu Dual Core)

DES 3DES AES RC2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Decryption CFB (Cpu Dual Core)

DES 3DES AES RC2

55

4.2 Intel Xeon Experiment
For the second experiment, we use a Google Cloud Platform that can enable to launch

virtual machines on different operating systems. The virtual machines have a feature to

customize the needs. The software and the data files are the same of the first experiment.

Hardware components:

• Mainboard: Google Compute Engine

• Central Processing Unit (CPU): Intel(R) Xeon(R) CPU @ 2.30GHz [Family 6 Model

63 Stepping 0]

• Hard Disk: Google Persistent SCSI Disk Device

Intel(R) Xeon(R) CPU
Cores 8
Processor Base Frequency 2.40 GHz
Cache 12 MB Smart Cache
Bus Speed 5.86 GT/s QPI
Thermal Design Power (TDP) 80W
VID Voltage Range 0.750V-1.350V

Table 46. Intel(R) Xeon(R) CPU [Family 6 Model 63 Stepping 0]

4.2.1 Benchmark Cipher Mode ECB

The first analysis was with the simplest ECB and from the first results; there is a big

difference between AES algorithm. Compare the results with the Dual Core CPU on table

21, 22 the DES and 3DES is not even double the speed. From the other side, RC2 is two

times faster, and AES increases five times faster.

Sample 1

Benchmark Encryption ECB Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.183 18027K 18M

3DES 0.207 15937K 16M

AES 0.021 157095K 157M

RC2 0.138 23906K 24M
Table 47.ECB Intel Xeon encryption Sample1

56

Benchmark Decryption CBC Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.177 18638K 19M

3DES 0.190 17363K 17M

AES 0.035 94257K 94M

RC2 0.099 33323K 33M
Table 48. ECB Intel Xeon decryption Sample1

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 3299 Kbyte. DES algorithm decryption is slightly faster than

encryption also 3DES remain to the same structure but is gently slower in encryption and

slightly slower in decryption. The AES is significantly quicker from the other algorithms

and the encryption is faster than decryption. The RC2 is the second faster algorithm and

decryption is faster in this case than encryption.

Figure 50. ECB Intel Xeon Sample1 Chart

57

Sample 2

Benchmark Encryption ECB Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.144 20042K 20M

3DES 0.145 19903K 20M

AES 0.014 206143K 206M

RC2 0.101 28574K 29M
Table 49. ECB Intel Xeon encryption Sample2

Benchmark Decryption ECB Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.149 19369K 19M

3DES 0.149 19369K 19M

AES 0.026 111000K 111M

RC2 0.083 34771K 35M
Figure 51. ECB Intel Xeon decryption Sample2

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 2886 Kbyte. DES and 3DES algorithm stabilized to the same

level. The AES is sharply quicker from the other algorithms and the encryption is more

rapidly than decryption. The RC2 is the second faster algorithm and decryption is faster

in this case than encryption.

Figure 52.ECB Intel Xeon Sample2 Chart

58

Sample 3

Benchmark Encryption ECB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 30.327 20369K 20M

3DES 29.896 20662K 21M

AES 2.241 275643K 276M

RC2 20.622 29954K 30M
Table 50. ECB Intel Xeon encryption Sample3

Benchmark Decryption ECB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 31.152 19829K 20M

3DES 31.021 19913K 20M

AES 3.605 171350K 171M

RC2 16.189 38157K 38M
Table 51. ECB Intel Xeon decryption Sample3

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 617717 Kbyte. DES and 3DES algorithm remained constant

to the same level. The AES is sharply the faster algorithm and the encryption is more

rapidly than decryption. The RC2 is the second faster algorithm and decryption is faster

in this case than encryption.

Figure 53. ECB Intel Xeon Sample3 Chart

59

Sample 4

Benchmark Encryption ECB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 5.392 20568K 21M

3DES 5.258 21092K 21M

AES 0.258 429853K 430M

RC2 3.707 29917K 30M
Table 52. CBC Intel Xeon encryption Sample4

Benchmark Decryption ECB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 5.453 20338K 20M

3DES 5.256 21100K 21M

AES 0.558 198749K 199M

RC2 2.852 38886K 39M
Figure 54. ECB Intel Xeon encryption Sample4

The graph below shows the speed of algorithms of encryption and decryption in ECB

mode with a sample data size 110902 Kbyte. Both DES, 3DES algorithms stabilized to the

same levels. The AES the faster algorithm with little slower on decryption. The RC2 is a

faster algorithm with a faster decryption.

Figure 55. ECB Intel Xeon Sample4 Chart

60

4.2.2 Benchmark Cipher Mode CBC

The second try with the CBC mode of operation shows that is not so fast on small files. The

process of AES algorithm is going faster on a large data files. Again, on this mode, AES is

the faster then RC2 comes second, and DES with 3DES are almost the same.

Sample 1

Benchmark Encryption CBC Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.236 13979K 14M
3DES 0.353 9346K 9M
AES 0.057 57877K 58M
RC2 0.177 18638K 19M

Table 53.ECB Intel Xeon encryption Sample1

Benchmark Decryption CBC Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.277 11910K 12M

3DES 0.320 10309K 10M

AES 0.073 45192K 45M

RC2 0.138 23906K 24M
Table 54. ECB Intel Xeon decryption Sample1

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 3299 Kbyte. DES algorithm is different between encryption

and decryption from the other hand 3DES is slower and decryption is faster. The AES is

very quick with a moderately difference between encryption/decryption. The RC2 is the

next faster algorithm with the encryption bit slower than decryption.

Figure 56.CBC Intel Xeon Sample1 Chart

61

Sample 2

Benchmark Encryption CBC Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 0.154 18740K 19M

3DES 0.145 19903K 20M

AES 0.017 169765K 170M

RC2 0.106 27226K 27M
Table 55. . CBC Intel Xeon encryption Sample1

Benchmark Decryption CBC Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 0.165 17491K 17M

3DES 0.154 18740K 19M

AES 0.014 206143K 206M

RC2 0.082 35195K 35M

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 2886 Kbyte. DES algorithm is a little bit slower than 3DES.

The AES is the faster algorithm with a moderately difference between

encryption/decryption. The RC2 is the next faster algorithm with the encryption bit

slower than decryption.

Figure 57. CBC Intel Xeon Sample2 Chart

62

Sample 3

Benchmark Encryption CBC Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 31.444 19645K 20M

3DES 31.463 19633K 20M

AES 2.501 246988K 247M

RC2 22.190 27838K 28M
Table 56. ECB Intel Xeon encryption Sample3

Benchmark Decryption CBC Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 33.432 18477K 18M

3DES 32.801 18832K 19M

AES 3.280 188328K 188M

RC2 17.827 34651K 35M
Table 57. ECB Intel Xeon decryption Sample3

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 617717 Kbyte. DES algorithm is a remained constant with

3DES. The AES is the faster algorithm with a moderately difference between

encryption/decryption. The RC2 is the next faster algorithm with the encryption bit

slower than decryption.

Figure 58. CBC Intel Xeon Sample3 Chart

63

Sample 4

Benchmark Encryption CBC Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 5.744 19307K 19M

3DES 5.595 19822K 20M

AES 0.430 257912K 258M

RC2 3.866 28686K 29M
Table 58. CBC Intel Xeon encryption Sample4

Benchmark Decryption CBC Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 5.657 19604K 20M

3DES 5.737 19331K 19M

AES 0.658 168544K 169M

RC2(64/128) 3.114 35614K 36M
Table 59. CBC Intel Xeon decryption Sample4

The graph below shows the speed of algorithms of encryption and decryption in CBC

mode with a sample data size 110902 Kbyte. Both DES, 3DES algorithms stabilized to the

same levels. The AES is the faster algorithm with a big difference. The RC2 is a little bit

faster than DES and 3DES.

Figure 59. CBC Intel Xeon Sample4 Chart

64

4.2.3 Benchmark Cipher Mode CFB

The CFB mode even if it has common characteristics of CBC, the algorithms are slower and

takes a lot of time to encrypt or decrypt a large data files. In all the samples, it was a very

low speed, and the Xeon CPU did not play a significant role in the process.

Sample 1

Benchmark Encryption CFB Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 1.944 1697K 2M

3DES 1.951 1691K 2M

AES 0.668 4939K 5M

RC2 1.506 2191K 2M
Table 60.CFB Intel Xeon encryption Sample1

Benchmark Decryption CFB Sample 1 (Size:3299 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 2.226 1482K 1M

3DES 2.018 1635K 2M

AES 0.729 4525K 5M

RC2 1.817 1816K 2M
Table 61. CFB Intel Xeon decryption Sample2

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 3299 Kbyte. DES algorithm is n the same levels with 3DES.

The AES is a fast algorithm with a bit difference between encryption/decryption. The RC2

is slow in this cipher mode and decryption is slower than encryption.

Figure 60. CFB Intel Xeon Sample1 Chart

65

Sample 2

Benchmark Encryption CFB Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 1.129 2556K 3M

3DES 1.115 2588K 3M

AES 0.164 17598K 18M

RC2 0.775 3724K 4M
Table 62. CFB Intel Xeon encryption Sample1

Benchmark Decryption CFB Sample 2 (Size:2886 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 1.079 2675K 3M

3DES 1.099 2626K 3M

AES 0.144 20042K 20M

RC2 0.761 3792K 4M
Table 63. CFB Intel Xeon decryption Sample1

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 2886 Kbyte. DES and 3DES algorithms are almost the same

time speed level. The AES is a fast algorithm with a bit difference between

encryption/decryption. The RC2 is slow in this cipher mode and decryption/encryption

are almost on the same levels.

Figure 61. CFB Intel Xeon Sample2 Chart

66

Sample 3

Benchmark Encryption CFB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)

DES 244.641 2525K 3M

3DES 244.010 2532K 3M

AES 36.206 17061K 17M

RC2 167.273 3693K 4M
Table 64. ECB Intel Xeon encryption Sample3

Benchmark Decryption CFB Sample 3 (Size: 617717 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 241.235 2561K 3M

3DES 238.347 2592K 3M

AES 32.852 18803K 19M

RC2 164.217 3762K 4M
Table 65. ECB Intel Xeon decryption Sample3

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 617717 Kbyte. DES algorithm is at the same levels with

3DES. The AES is a fast algorithm with a bit difference between encryption/decryption.

The RC2 is slower than AES and encryption/decryption remain the same.

Figure 62. CFB Intel Xeon Sample2 Chart

67

Sample 4

Benchmark Encryption CFB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 43.005 2579K 3M

3DES 43.136 2571K 3M

AES 6.506 17046K 17M

RC2(64/128) 30.027 3693K 4M
Table 66. CFB Intel Xeon encryption Sample4

Benchmark Decryption CFB Sample 4 (Size: 110902 Kbyte)
Type Time (seconds) Speed (byte/second)
DES 41.474 2674K 3M

3DES 41.524 2671K 3M

AES 5.204 21311K 21M

RC2(64/128) 28.925 3834K 4M
Table 67. CFB Intel Xeon encryption Sample4

The graph below shows the speed of algorithms of encryption and decryption in CFB

mode with a sample data size 110902 Kbyte. Both DES, 3DES algorithms stabilized to the

same points. The AES a fast algorithm compare to the others. The RC2 is the second faster

algorithm. The CFB mode is a factor n/m times slower than the CBC mode, since only m

bits are used per encryption operation.[16, p. 793]

Figure 63. CFB Intel Xeon Sample4 Chart

68

4.1.4 Intel Xeon Benchmark Overview

A summary of the results CBC mode is the faster because is more simple procedure mode.

The AES algorithm is the faster on all the average results. Compare the two processors the

Intel Xeon and the Intel Dual-Core the algorithms DES, 3DES, RC2 are two times faster,

and AES is almost six times faster. From these results, we can recognize the parallel cores

architecture of the specific CPUs. The cipher mode CFB is the most complex one and again

the process is slow even if the processor is eight times faster.

Average Algorithms Speed ECB Mode

Algorithm Encryption Speed bytes/second Decryption Speed bytes/second

DES 197512K 20M 19544K 19M

3DES 19399K 19M 19436K 19M

AES 267184K 267M 143839K 143M

RC2 28088K 28M 36284K 36M
Table 68. ECB Intel Xeon Overview

Average Algorithms Speed CBC Mode

Algorithm Encryption Speed bytes/second Decryption Speed bytes/second

DES 17918K 18M 16871K 17M

3DES 17176K 17M 16803K 17M

AES 183136 183M 152052K 152M

RC2(64/128) 25597K 26M 32342K 32M
Table 69. CBC Intel Xeon Overview

Average Algorithms Speed CFB Mode

Algorithm Encryption Speed bytes/second Decryption Speed bytes/second

DES 2340K 2M 2348K 2M

3DES 2346K 2M 2381K 2M

AES 14161K 14M 16170K 16M

RC2 3325K 3M 3301K 3M
Table 70. CFB Intel Xeon Overview

The figures show the progress of each algorithm as the data file increase in the different

benchmark scenarios. In the first ECB scenario, the algorithms DES, 3DES, RC2 are stable,

and AES as the data increases the process going faster until it reaches the high peak after

that it reduce as the time pass. The graph of CBC and CFB is the same with different scales

AES when it reaches the high peak keep the speed stable. The rest of the algorithms take

specific speed time without any dramatical change. As the time, pass the AES algorithm

decreases in ECB mode. For the AES algorithm there is always a peak time at that time the

CPU goes to the maximum threads of the program.

69

Table 71. Encryption Speed ECB (XEON CPU)

Table 72. Decryption Speed ECB (XEON CPU)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Encryption ECB (cpu XEON)

DES 3DES AES RC2

0

50000

100000

150000

200000

250000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Decryption ECB (cpu Xeon)

DES 3DES AES RC2

70

Table 73. Encryption Speed CBC (XEON CPU)

Table 74.. Encryption Speed CBC (XEON CPU)

0

50000

100000

150000

200000

250000

300000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Encryption CBC (cpu Xeon)

DES 3DES AES RC2

0

50000

100000

150000

200000

250000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Decryption CBC (cpu dual core)

DES 3DES AES RC2

71

Table 75. Encryption Speed CFB (XEON CPU)

Table 76. Decryption Speed CFB (XEON CPU)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Encryption CFB (cpu XEON)

DES 3DES AES RC2

0

5000

10000

15000

20000

25000

-100000 0 100000 200000 300000 400000 500000 600000 700000

Sp
e

e
d

 (
K

B
/s

e
c)

Data Size (KB)

Benchmark Decryption CFB (cpu XEON)

DES 3DES AES RC2

72

4.3 Compare Results
Block ciphers like DES, 3DES, AES and RC2, ideal decryption is equal to encryption and

therefore takes the same time. The minor difference is encryption may require generating

a unique Initialization Vector (IV) and might take a small amount of extra time.

The encryption and decryption on block cipher in ECB mode are the same but in a

different direction. From the overview results on both hardware, the decryption is slower

than encryption but is possible the different point on the memory address. The system

hardware environment plays a significant role in the results. The results cannot be the

same because the speed of the hard disk and the address of the random access memory is

not always the same.

The CBC mode decryption is using the block cipher in inverse mode. Block ciphers that

are using an opposite direction may be slower than the forward direction due to

asymmetries in the key schedule. Therefore, systems like Xeon and Dual Core that support

parallel threads, CBC decryption is faster than encryption, but on systems that do not

support it may be slightly slower.

The block ciphers on CFB mode, the encryption of each block depends on the previous

one, but the decryption is parallel. Therefore, on a big data files with a multi-core

implementation like the eight core Xeon, the CFB decryption is typically faster than

encryption also the memory address changes each time and never will be the same in both

cases.

3DES is a three-key method, which the ciphertext is encrypted three times in a sequence.

The ciphertext is encrypted with the first key, then that text is decrypted using the second

key, and finally, the third key encrypts the last ciphertext. From the experiments, the 3DES

is almost the same with the DES because of the parallel blocks of the dot NET software

and hardware multicores. The below figures show a test experiment of a small 2KB file

(ECB Mode) that can't implement a parallel process, the results are close to the

background theory of DES algorithms.

73

Figure 64. Dual Core ECB 2KB File

According Jawahar Thakur and Nagesh Kuma[17] provide a comparison performance of

DES, AES implemented through a Java environment with a JCE framework. The

experiments made using AMD Sempron processor with 2GB RAM. [17]

Figure 65. ECB Results[17] Figure 66. CBC Results[17]

Figure 67. CFB Results[17]

74

The conclusion is using ECB mode shows that AES consumes more resources when the

data block size is relatively big[17, p. 5]. From this dissertation, the results show that big

data files AES is faster, and DES algorithm is not even close to that speed. According to

Jawahar Thakur and Nagesh Kuma[17], the CBC require more processing time than ECB

because of its key-chaining nature. The results indicate that the extra time added is not

significant for many applications, knowing that CBC is much better than ECB regarding

protection. Compare to that the average speed of the algorithms from Dual Core CPU

tables 43, 44 and Intel Xeon Tables 68, 69 show that CBC is faster that CBC and AES

algorithm have a huge difference on the speed. The CFB results are almost the same as

the rest cipher modes but with an overview in this experiment is a very slow block cipher

and takes a lot of process time to complete a data file even data around 1~2 Mbytes.

75

Chapter 5

Conclusion
This dissertation presents the performance evaluation of selected symmetric algorithms.

The selected algorithms AES, DES, 3DES, and RC2, examine the process of the encryption

and decryption time. A particular benchmark program record the performance of the

algorithms for different files and systems. How fast can a system process a Symmetric

algorithm? Is the parallelizable encryption with Electronic Codebook (ECB) faster than

Cipher Block Chaining (CBC) that is not parallelizable? There is a need to examine how an

information system can manage a process of encrypted data.

For a secure network or application, a strong algorithm provides a safe system. A system

that is safe and slow is not so reliable to the users because it takes time to get the

information. Encryption must be fast and secure to satisfy all the requirements. The

simulation results show that an expensive hardware is not always the key to a fast

encryption or decryption process. The Intel Xeon processor is an expensive x86

architecture that targets workstations and servers but compares to an Intel Dual core

processor the expectations are high. The results of Cipher Feedback (CFB) show that is a

complex cipher block and the speed of both experiments is very slow. If the cost matters

the usage of a fast cipher mode like CBC compare to CFB, it would be a wise choice.

A safe and fast access to a data information is the key asset for a security system. The most

critical element in a service is the high level of the availability. A system that provides

control services for applications and devices the interruption of services is considered a

significant disadvantage. When a service is working with difficulties results in financial

loss, low productivity, and customer downtime. In today's times, computers have evolved

into multiple and parallel processors. This technology makes it possible to process

parallel commands together with the appropriate encryption software design. Some

standard algorithms can take advantage of this fact and make encryption faster.

The technology and information security are demanding, a fast process of the data is an

important feature. On different kind of sizes and processors, the algorithms correspond

differently. On this area, Network Security requires more research, cryptographic

algorithms have to manage massive files of data on various kind scenarios.

76

Bibliography

[1] N. Kumar and B. V. Gopal, “VLSI Implementation of Data Encryption Standard

Algorithm,” no. 6, pp. 106–110, 2012.

[2] A. G. Konheim, Computer security and cryptography. Wiley-Interscience, 2007.

[3] E. B. William C. Barker, “Data Encryption Algorithm,” Recomm. Triple Data

Encryption Algorithm Block Cipher, no. January, 2012.

[4] “National Security Agency Releases History of Cold War Intelligence Activities.”

[Online]. Available: http://nsarchive.gwu.edu/NSAEBB/NSAEBB260/. [Accessed:

12-Mar-2017].

[5] B. Schneier, Applied cryptography: Protocols, algorithm, and source code in C, vol. 13,

no. 3. 1996.

[6] U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and

Technology, “Data Encryption Standard (DES),” Fips Pub 46-3, vol. 3, 1999.

[7] W. Stallings, Cryptography and Network Security, vol. 139, no. 3. Pearson, 2011.

[8] J. Daemen, L. Knudsen, and V. Rijmen, “The Block Cipher SQUARE,” Lect. Notes

Comput. Sci., vol. 1267, pp. 149–165, 1997.

[9] T. St Denis and S. Johnson, “Advanced Encryption Standard,” in Cryptography for

Developers, Elsevier, 2007, pp. 139–202.

[10] Edward Roback and and Morris Dworkin, “First advanced encryption standard

(AES) candidate conference Ventura, CA August 20-22, 1998,” vol. 104, no. 1.

[11] F. Information and P. S. P. 197, “Announcing the ADVANCED ENCRYPTION

STANDARD (AES),” 2001.

[12] L. R. Knudsen, V. Rijmen, R. L. Rivest, and M. J. B. Robshaw, “On the Design and

Security of RC2,” Springer, Berlin, Heidelberg, 1998, pp. 206–221.

[13] R. Rivest, “A Description of the RC2(r) Encryption Algorithm,” MIT Lab. Comput. Sci.

77

RSA Data Secur. Inc., pp. 1–12, 1998.

[14] “Parallel Programming in the .NET Framework.” [Online]. Available:

https://msdn.microsoft.com/en-us/library/dd460693(v=vs.110).aspx. [Accessed:

19-May-2017].

[15] S. Hauck and A. DeHon, Reconfigurable computing : the theory and practice of FPGA-

based computation. Morgan Kaufmann, 2008.

[16] S. J. Henk C.A. van Tilborg, Encyclopedia of Cryptography and Security - Google Books.

.

[17] J. Thakur and N. Kumar, “DES, AES and Blowfish: Symmetric Key Cryptography

Algorithms Simulation Based Performance Analysis,” Int. J. Emerg. Technol. Adv.

Eng. Website www.ijetae.com, vol. 1, no. 2, 2250.

